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ON THE SPACES OF EULER ALMOST NULL AND EULER
ALMOST CONVERGENT SEQUENCES*

MURAT KIRIŞÇI

Abstract. Let Er denotes the Euler means of order r. The Euler sequence
spaces er0, e

r
c and e

r
p, e

r
∞ consisting of all sequences whose Er-transforms are

in the spaces c0, c and `p, `∞ are introduced by Altay and Başar [2], Altay et
al. [3], and Mursaleen et al. [22]. Recently, Polat and Başar have studied the
Euler spaces of difference sequences of order m, in [24].

The concept almost convergence of a bounded sequence introduced by
Lorentz [19]. Quite recently, Başar and Kirişci have worked the domain of
the generalized difference matrix B(r, s) in the sequence spaces f0 and f of
almost null and almost convergent sequences, in [8]. In this paper, following
Başar and Kirişci [8], we essentially deal with the domains (f0)Er and fEr of
the Euler means of order r in the spaces f0 and f . Therefore, we add two new
spaces to the Euler sequence spaces.

1. Introduction

By a sequence space, we understand a linear subspace of the space ω = CN of
all complex sequences which contains φ, the set of all finitely non-zero sequences,
where C denotes the complex field and N = {0, 1, 2, . . .}. We write `∞, c and c0
for the classical spaces of all bounded, convergent and null sequences, respectively.
Also by bs, cs, `1 and `p, we denote the space of all bounded, convergent, absolutely
and p-absolutely convergent series, respectively.
Let λ and µ be two sequence spaces, and A = (ank) be an infinite matrix of

complex numbers ank, where k, n ∈ N. Then, we say that A defines a matrix
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mapping from λ into µ, and we denote it by writing A : λ→ µ if for every sequence
x = (xk) ∈ λ. The sequence Ax = {(Ax)n}, the A-transform of x, is in µ; where

(Ax)n =
∑
k

ankxk for each n ∈ N. (1.1)

For simplicity in notation, here and in what follows, the summation without limits
runs from 0 to ∞. By (λ : µ), we denote the class of all matrices A such that
A : λ → µ. Thus, A ∈ (λ : µ) if and only if the series on the right side of (1.1)
converges for each n ∈ N and each x ∈ λ and we have Ax = {(Ax)n}n∈N ∈ µ for
all x ∈ λ. A sequence x is said to be A-summable to l if Ax converges to l which is
called the A-limit of x. If there is some notion of limit or sum in λ and µ, then we
write (λ, µ; p) to denote the subclass of (λ : µ), which preserves the limit or sum.
Further, A ∈ (λ : c) is said to be strongly-multiplicative s, if limAx = s(f− lim xk)
for each x = (xk) ∈ λ, where λ ∈ {f, f(E)}. By (λ : µ)s, we denote the class of
all such matrices. It is now trivial in the case s = 1 that the class (λ, µ)s coincides
with the class (λ, µ; p) and thus it is immediate that (λ, µ; p) ⊂ (λ, µ)s ⊂ (λ, µ).
The matrix domain λA of an infinite matrix A in a sequence space λ is defined

by

λA = {x = (xk) ∈ ω : Ax ∈ λ} (1.2)

which is a sequence space. If A = (ank) is triangle, i.e., ann 6= 0 and ank = 0 for all
k > n, then one can easily observe that the sequence spaces λA and λ are linearly
isomorphic, i.e., λA ∼= λ.
The main purpose of present paper is to introduce the spaces f0(E) and f(E)

of Euler almost null and Euler almost convergent sequences, and to determine the
β- and γ- duals of these spaces. Furthermore, some classes of matrix mappings on
the space of Euler almost convergent sequences are characterized.
We shall write throughout for brevity that

ank =

∞∑
j=k

(
j

k

)
(r − 1)j−kr−janj ,

a(n, k) =

n∑
j=0

ajk,

a(n, k,m) =
1

m+ 1

m∑
j=0

an+j,k,

∆ank = ank − an,k+1,
∆a(n, k,m) = a(n, k,m)− a(n, k + 1,m)

for all k,m, n ∈ N.
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2. Euler Sequence Spaces

Firstly, we give the definitions of some sequence spaces in the existing literature.
The Euler sequence spaces er0 and e

r
c were defined by Altay and Başar [2] and

the spaces erp and e
r
∞ were defined by Altay et al. [3], as follows:

er0 =

{
x = (xk) ∈ ω : lim

n→∞

n∑
k=0

(
n

k

)
(1− r)n−krkxk = 0

}
,

erc =

{
x = (xk) ∈ ω : lim

n→∞

n∑
k=0

(
n

k

)
(1− r)n−krkxk exists

}
,

erp =

{
x = (xk) ∈ ω :

∑
n

∣∣∣∣∣
n∑
k=0

(
n

k

)
(1− r)n−krkxk

∣∣∣∣∣
p

<∞
}
, (1 ≤ p <∞),

er∞ =

{
x = (xk) ∈ ω : sup

n∈N

∣∣∣∣∣
n∑
k=0

(
n

k

)
(1− r)n−krkxk

∣∣∣∣∣ <∞
}
,

where Er = (ernk) denotes the Euler means of order r defined by

ernk =

{ (
n
k

)
(1− r)n−krk , (0 ≤ k ≤ n),

0 , (k > n)

for all k, n ∈ N. It is known that the method Er is regular for 0 < r < 1 and Er is
invertible such that (Er)−1 = E1/r with r 6= 0. We assume unless stated otherwise
that 0 < r < 1.
Altay and Başar [2] gave the inclusion relations between the sequence spaces er0

and erc with the classical sequence spaces, determined the Schauder basis for these
spaces. They also calculated the alpha-, beta-, gamma- and continuous duals of the
Euler sequence spaces, and characterized some matrix mappings on er0 and e

r
c .

Altay et al. [3] calculated the dual spaces of the sequence spaces erp and e
r
∞,

and constructed the Schauder basis of the sequence space erp. In [22], Mursaleen et
al. characterized the classes (erp : `∞), (er1 : `p) and (erp : f) of infinite matrices for
1 < p ≤ ∞ and gave the characterizations of some other matrix mappings from the
space erp to the Euler, Riesz, difference, etc., sequence spaces, also Mursaleen et al.
[22] emphasized on some geometric properties such as Banach—Saks property, weak
Banach—Saks property, fixed point property, Banach-Saks type p of the space erp.
Kara et al. [15] introduced the Euler sequence spaces er(p) of nonabsolute type

and proved that the spaces er(p) and `(p) are linearly isomorphic. Also the alpha-
beta- and gamma-duals of the Euler sequence spaces er(p) of nonabsolute type
are computed in [15]. Kara et al. [15] defined a modular on the generalized Euler
sequence spaces er(p) and considered it equipped with the Luxemburg norm. There-
fore, they gave some relationships between the modular and Luxemburg norm on
the space er(p) has property (H) but is not rotund (R).
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Let m be a positive integer. We define the operators ∆(m),
∑(m)

: ω → ω by(
∆(1)x

)
k

= xk − xk−1,

 (1)∑
x


k

=

k∑
j=0

xj for all k ∈ N,

∆(m)x = ∆(1) ◦ (∆(m−1))x,

(m)∑
x =

 (1)∑
◦
(m−1)∑ x for all m ≥ 2.

The following equalities hold for m ≥ 1 and k = 0, 1, 2, . . .(
∆(m)x

)
k

=

m∑
j=0

(−1)j
(
m

j

)
xk−j ,(m)∑

x


k

=
m∑
j=0

(
m+ k − j − 1

k − j

)
xj ,

∆(m) ◦
(m)∑

=

(m)∑
◦∆(m) = I,

where I is the identity on ω. We write ∆ and Σ for the matrices with ∆nk =(
∆(1)(e(k)

)
n
and

∑
nk =

(∑
(e(k))

)
n
for all n, k ∈ N. So the operators ∆(1) and∑(1) are given by the matrices ∆ and
∑
. Similarly, the operators ∆(m) and

∑(m)

are given by the composition of ∆ and
∑
with themselves m times.

Altay and Polat [4] defined the Euler sequence spaces with difference operator
∆ as follows:

er0(∆) =

{
x = (xk) ∈ ω : lim

n→∞

n∑
k=0

(
n

k

)
(1− r)n−krk∆xk = 0

}
,

erc(∆) =

{
x = (xk) ∈ ω : lim

n→∞

n∑
k=0

(
n

k

)
(1− r)n−krk∆xk exists

}
,

er∞(∆) =

{
x = (xk) ∈ ω : sup

n∈N

∣∣∣∣∣
n∑
k=0

(
n

k

)
(1− r)n−krk∆xk

∣∣∣∣∣ <∞
}
,

where ∆xk = xk − xk−1. Following Altay and Polat [4], Polat and Başar [24]
gave the new sequence spaces er0(∆

(m)), erc(∆
(m)) and er∞(∆(m)) consisting of all

sequences x = (xk) such that their ∆(m)−transforms are in Euler the spaces er0, erc
and er∞, respectively, that is,

er0

(
∆(m)

)
=
{
x = (xk) ∈ ω : ∆(m)x ∈ er0

}
,

erc

(
∆(m)

)
=
{
x = (xk) ∈ ω : ∆(m)x ∈ erc

}
,
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er∞

(
∆(m)

)
=
{
x = (xk) ∈ ω : ∆(m)x ∈ er∞

}
.

The sequence spaces er0(∆
(m)), erc(∆

(m)) and er∞(∆(m)) are reduced in the case
m = 1 to the spaces er0(∆), erc(∆) and er∞(∆) of Altay and Polat[4].

Başarır and Kayıkçı[10] defined the matrix B(m) = (b
(m)
nk ) by

b
(m)
nk =

{ (
m
n−k
)
rm−n+ksn−k , (max{0, n−m} ≤ k ≤ n),

0 , (0 ≤ k < max{0, n−m} or k > n)

for all k, n ∈ N which is reduced to themth order difference matrix ∆(m) in case r =
1, s = −1, where ∆(m) = ∆(∆(m−1)) and m ∈ N. Kara and Başarır [16] introduced
the Bm−Euler difference sequence spaces er0(B(m)), erc(B(m)) and er∞(B(m)) as the
set of all sequences whose Bm−transforms are in the Euler spaces er0, erc and er∞,
respectively, that is,

er0

(
B(m)

)
= {x = (xk) ∈ ω : Bmx ∈ er0} ,

erc

(
B(m)

)
= {x = (xk) ∈ ω : Bmx ∈ erc} ,

er∞

(
B(m)

)
= {x = (xk) ∈ ω : Bmx ∈ er∞} .

Karakaya and Polat [17] defined the new paranormed Euler sequence spaces with
difference operator ∆ as follows:

er0(∆, p) =

{
x = (xk) ∈ ω : lim

n→∞

∣∣∣∣∣
n∑
k=0

(
n

k

)
(1− r)n−krk∆xk

∣∣∣∣∣
pn

= 0

}
,

erc(∆, p) =

{
x = (xk) ∈ ω : ∃l ∈ C 3 lim

n→∞

∣∣∣∣∣
n∑
k=0

(
n

k

)
(1− r)n−krk(∆xk − l)

∣∣∣∣∣
pn

= 0

}
,

er∞(∆, p) =

{
x = (xk) ∈ ω : sup

n∈N

∣∣∣∣∣
n∑
k=0

(
n

k

)
(1− r)n−krk∆xk

∣∣∣∣∣
pn

<∞
}
.

The new sequence spaces er0(∆, p), e
r
c(∆, p) and er∞(∆, p) are reduced to some

sequence spaces corresponding to special cases of (pk). For instance, in the case
pk = 1 for all k ∈ N, the sequence spaces er0(∆, p), erc(∆, p) and er∞(∆, p) are reduced
to the sequence spaces er0(∆), erc(∆) and er∞(∆) defined by Altay and Polat [4].
Demiriz and Çakan [11] introduced the sequence spaces er0(u, p) and e

r
c(u, p) of

nonabsolute type, as the sets of all sequences such that their Er,u−transforms are
in the spaces c0(p) and c(p), respectively, that is,

er0(u, p) =

{
x = (xk) ∈ ω : lim

n→∞

∣∣∣∣∣
n∑
k=0

(
n

k

)
(1− r)n−krkukxk

∣∣∣∣∣
pn

= 0

}
,

erc(u, p) =

{
x = (xk) ∈ ω : ∃l ∈ C 3 lim

n→∞

∣∣∣∣∣
n∑
k=0

(
n

k

)
(1− r)n−krk(ukxk − l)

∣∣∣∣∣
pn

= 0

}
,
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where u = (uk) is the sequence of non-zero reals. In the case (uk) = (pk) = e =
(1, 1, 1, . . .), the sequence spaces er0(u, p) and e

r
c(u, p) are, respectively, reduced to

the sequence spaces er0 and e
r
c introduced by Altay and Başar [2].

Djolovíc and Malkowsky [12] added a new supplementary aspect to research
of Polat and Başar [24] by characterizing classes of compact operators on those
spaces. In [12], the spaces are treated as the matrix domains of a triangle in the
classical sequence spaces c0, c and `∞. The main tool for their characterizations is
the Hausdorff measure of noncompactness.

3. Spaces of Euler Almost Null and Euler Almost Convergent
Sequences

In this section, we study some properties of the spaces of the almost null and
almost convergent Euler sequences.
The shift operator P is defined on ω by (Px)n = xn+1 for all n ∈ N. A Banach

limit L is defined on `∞ as a non-negative linear functional, such that L(Px) = L(x)
and L(e) = 1. A sequence x = (xk) ∈ `∞ is said to be almost convergent to the
generalized limit l if all Banach limits of x is l [19], and is denoted by f−lim xk = l.
Let P i be the composition of P with itself i times and write for a sequence x = (xk)

tmn(x) :=
1

m+ 1

m∑
i=0

(P ix)n for all m,n ∈ N. (3.1)

Lorentz [19] proved that f− lim xk = l if and only if limm→∞ tmn(x) = l uniformly
in n. It is well-known that a convergent sequence is almost convergent such that
its ordinary and generalized limits are equal. By f and fs, we denote the space of
all almost convergent sequences and series, respectively, i.e.,

f =

x = (xk) ∈ ω : ∃l ∈ C 3 lim
m→∞

m∑
j=0

xn+j
m+ 1

= l uniformly in n

 ,

fs =

x = (xk) ∈ ω : ∃l ∈ C 3 lim
m→∞

m∑
k=0

n+k∑
j=0

xj
m+ 1

= l uniformly in n

 .

It is proved in [8] that f is a Banach space with the norm

‖x‖f := sup
m,n∈N

|tmn(x)|,

where tmn(x) is defined as in (3.1).
Başar and Kiri̧sci [8] have defined the sequence spaces f̂0 and f̂ derived by the

domain of generalized difference matrix B(r, s) in the sequence spaces f0 and f ,
that is

f̂0 = {x = (xk) ∈ ω : B(r, s)x ∈ f0} ,
f̂ = {x = (xk) ∈ ω : B(r, s)x ∈ f} ,
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where the generalized difference matrix B(r, s) = {bnk(r, s)} is defined by

bnk(r, s) =

 r , (k = n),
s , (k = n− 1),
0 , (0 ≤ k < n− 1 or k > n)

for all k, n ∈ N.
We introduce the sequence spaces f0(E) and f(E) as the sets of all sequences

whose Er-transforms are in the spaces f0 and f , that is

f0(E) =

{
x = (xk) ∈ ω : lim

m→∞

m∑
j=0

n+j∑
k=0

(
n+j
k

)
(1− r)n+j−krkxk
m+ 1

= 0 uniformly in n

}
,

f(E) =

{
x = (xk) ∈ ω : ∃l ∈ C 3 lim

m→∞

m∑
j=0

n+j∑
k=0

(
n+j
k

)
(1− r)n+j−krkxk
m+ 1

= l unif. in n

}
.

With the notation of (1.2), we can redefine the spaces f0(E) and f(E) as follows:

f(E) = (f)Er and f0(E) = (f0)Er

It is trivial that f0(E) ⊂ f(E).
Define the sequence y = {yk(r)} by the Er−transform of a sequence x = (xk),

i.e.,

yk(r) =

k∑
j=0

(
k

j

)
(1− r)k−jrjxj for all k ∈ N.

It is trivial that ‖ · ‖f(E) is a norm on the spaces f0(E) and f(E), where ‖x‖f(E) =
supm,n∈N |tmn(y)|.
Now we give some inclusion relations between the sequence spaces f0(E), f(E),

c and `∞.

Theorem 3.1. The inclusion f(E) ⊂ `∞ is strict.

Proof. It is clear that f(E) ⊂ `∞. Now, we should show that this inclusion is strict.
Define the sequence x = E1/ry with the sequence y in the set `∞ \f given by Miller
and Orhan [21] as y = {0, . . . , 0, 1, . . . , 1, 0, . . . , 0, 1, . . . , 1, . . .}, where the blocks of
0’s are increasing by factors of 100 and blocks of 1’s are increasing by factors of 10.
Then, the sequence x is not in f(E) but in the space `∞, as desired. �

Theorem 3.2. The inclusion c ⊂ f(E) strictly holds.

Proof. It is clear that c ⊂ f(E). Now we show that this inclusion is strict.
Now we consider the sequence x = (xk) defined by xk(r) = (−r)−k for all k ∈ N.

The sequence is not convergent but is in the space f(E). �

Theorem 3.3. The spaces f0(E) and f(E) are linearly isomorphic to the spaces
f0 and f , respectively, i.e., f0(E) ∼= f0 and f(E) ∼= f .
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Proof. To prove this theorem, we should show the existence of a linear bijection
between the spaces f(E) and f . Consider the transformation T from f(E) to f
by y = Tx = Erx. The linearity of T is clear. Further, it is obvious that x = θ
whenever Tx = θ and hence T is injective.
Let us take any y ∈ f and define the sequence x = {xk(r)} by

xk(r) =

k∑
j=0

(
k

j

)
(r − 1)k−jr−kyj for all k ∈ N.

Then, one can see that

(Erx)n =

n∑
k=0

(
n

k

)
(1− r)n−krk

 k∑
j=0

(
k

j

)
(r − 1)k−jr−kyj

 = yn for all n ∈ N

which shows that Erx ∈ f , i.e., x ∈ f(E). Consequently, we see from here that T
is surjective. Hence T is a linear bijection which therefore says us that the spaces
f(E) and f are linearly isomorphic, as was desired.
Since one can show in the similar way that f0(E) ∼= f0, we omit the detail. �

Başar and Kiri̧sci [8] proved that sequence space f is a BK−space with the norm
‖ · ‖∞ and non-separable closed subspace of (`∞, ‖ · ‖∞). So, the sequence space f
has no Schauder basis. Jarrah and Malkowsky [1] showed that the matrix domain
λA of a normed sequence space λ has a basis if and only if λ has a basis whenever
A = (ank) is triangle. Then;
The sequence spaces f0(E) and f(E) have no Schauder basis.

4. Duals of the Spaces of Euler Almost Null and Euler Almost
Convergent Sequences

The set S(λ, µ) defined by

S(λ, µ) = {z = (zk) ∈ ω : xz = (xkzk) ∈ µ for all x = (xk) ∈ λ} (4.1)

is called the multiplier space of the sequence spaces λ and µ. One can eaisly observe
for a sequence space υ with λ ⊃ υ ⊃ µ that the inclusions

S(λ, µ) ⊂ S(υ, µ) and S(λ, µ) ⊂ S(λ, υ)

hold. With the notation of (4.1), the alpha-, beta- and gamma-duals of a sequence
space λ, which are respectively denoted by λα, λβ and λγ are defined by

λα = S(λ, `1), λβ = S(λ, cs) and λγ = S(λ, bs).

The alpha-, beta- and gamma-duals of a sequence space are also referred as Köthe-
Toeplitz dual, generalized Köthe-Toeplitz dual and Garling dual of a sequence space,
respectively.
We give the beta- and gamma-duals of the sequence spaces f0(E) and f(E). For

this, we need the following lemma:
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Lemma 4.1. Let A = (ank) be an infinite matrix. Then, the following statements
hold:

(i) A ∈ (f : `∞) if and only if

sup
n∈N

∑
k

|ank| <∞.

(ii) (cf. [25]). A ∈ (f : c) if and only if (4.2) holds and

lim
n→∞

ank = αk for each fixed k ∈ N, (4.2)

lim
n→∞

∑
k

ank = α, (4.3)

lim
n→∞

∑
k

|∆(ank − αk)| = 0. (4.4)

(iii) (cf. [13]). A ∈ (f : f) if and only if (4.2) holds and

f − lim
n→∞

ank = αk for each fixed k ∈ N, (4.5)

f − lim
n→∞

∑
k

ank = α, (4.6)

lim
m→∞

∑
k

|∆[a(n, k,m)− αk]| = 0 uniformly in n. (4.7)

(iv) (cf. [13]). A ∈ (`∞ : f) if and only if (4.2), (4.6) and (4.8) hold.

Theorem 4.2. Define the sets dr1, d
r
2, d

r
3, d

r
4, d

r
5 defined as follows:

dr1 =

a = (ak) ∈ ω : sup
n∈N

n∑
k=0

∣∣∣∣∣∣
n∑
j=k

(
j

k

)
(r − 1)j−kr−jaj

∣∣∣∣∣∣ <∞
 ,

dr2 =

a = (ak) ∈ ω : lim
n→∞

n∑
j=k

(
j

k

)
(r − 1)j−kr−jaj exists

 ,

dr3 =

a = (ak) ∈ ω : lim
n→∞

n∑
k=0

[ n∑
j=k

(
j

k

)
(r − 1)j−kr−j

]
ak exists

 ,

dr4 =

a = (ak) ∈ ω : lim
n→∞

n∑
k=0

∣∣∣∣∣∣
n∑
j=k

(
j

k

)
(r − 1)j−kr−jaj

∣∣∣∣∣∣ = 0

 ,

dr5 =

a = (ak) ∈ ω : lim
n→∞

∞∑
k=n+1

∣∣∣∣∣∣
∞∑

j=n+1

(∆ajk − αk)

∣∣∣∣∣∣ = 0

 .

Then, the β−dual of the sequence space f(E) is
⋂5
n=1 d

r
n.
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Proof. Let a = (ak) ∈ ω and consider the equality

n∑
k=0

akxk =

n∑
k=0

 k∑
j=0

(
k

j

)
(r − 1)k−jr−kyj

 ak (4.8)

=

n∑
k=0

 n∑
j=k

(
j

k

)
(r − 1)j−kr−jaj

 yk = (T ry)n,

where T r = (trnk) is defined by

trnk =

{ ∑n
j=k

(
j
k

)
(r − 1)j−kr−jaj , (0 ≤ k ≤ n),

0 , (k > n),
(4.9)

for all k, n ∈ N. Thus, we deduce from Part (ii) of Lemma 4.1 with (4.9) that
ax = (akxk) ∈ cs whenever x = (xk) ∈ f(E) if and only if T ry = {(T ry)n} ∈ c
whenever y = (yk) ∈ f , where T r = (trnk) is defined by (4.10). Therefore, we derive
from (4.2), (4.3), (4.4) and (4.5) that

sup
n∈N

∑
k

∣∣∣∣∣∣
n∑
j=k

(
j

k

)
(r − 1)j−kr−jaj

∣∣∣∣∣∣ <∞,
lim
n→∞

n∑
j=k

(
j

k

)
(r − 1)j−kr−jaj = αk for each fixed k ∈ N,

lim
n→∞

∑
k

n∑
j=k

(
j

k

)
(r − 1)j−kr−jaj = α,

lim
n→∞

∑
k

∣∣∣∣∣∣∆
 n∑
j=k

(
j

k

)
(r − 1)j−kr−jaj − αk

∣∣∣∣∣∣ = 0

which shows that {f(E)}β =
⋂5
n=1 d

r
n. �

Theorem 4.3. The γ−dual of the sequence spaces f0(E) and f(E) is the set dr1.

Proof. This is similar to the proof of Theorem 4.2 with Part (i) of Lemma 4.1
instead of Part (ii) of Lemma 4.1. So, we omit the detail. �

5. Matrix transformations Related to the Sequence Space f(E)

In the present section, we characterize the matrix transformations from f(E)
into any given sequence space µ.
Since f(E) ∼= f , it is trivial that the equivalence "x ∈ f(E) if and only if y ∈ f"

holds.
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Theorem 5.1. Suppose that the entries of the infinite matrices A = (ank) and
D = (dnk) are connected with the relation

dnk = ank

for all k, n ∈ N and µ be any given sequence space. Then A ∈ (f(E) : µ) if and
only if {ank}k∈N ∈ f(E)β for all n ∈ N and D ∈ (f : µ).

Proof. Let µ be any given sequence space. Suppose that (5.1) holds between A =
(ank) and D = (dnk), and take into account that the spaces f(E) and f are linearly
isomorphic.
Let A ∈ (f(E) : µ) and take any y = (yk) ∈ f . Then DEr exists and {ank}k∈N ∈⋂5
i=1 d

r
i which yields that {dnk}k∈N ∈ `1 for each n ∈ N. Hence, Dy exists and thus∑

k

dnkyk =
∑
k

ankxk

for all n ∈ N. We have thatDy = Ax which leads us to the consequenceD ∈ (f : µ).
Conversely, let {ank}k∈N ∈ {f(E)}β for each n ∈ N and D ∈ (f : µ) hold, and

take any x = (xk) ∈ f(E). Then, Ax exists. Therefore, we obtain from the equality

m∑
k=0

ankxk =

m∑
k=0

 m∑
j=k

(
j

k

)
(r − 1)j−kr−janj

 yk
for all n ∈ N, as m → ∞ that Dy = Ax and this shows that A ∈ (f(E) : µ). This
completes the proof. �

By changing the roles of the spaces f(E) with µ in Theorem 5.1, we have:

Theorem 5.2. Suppose that the elements of the infinite matrices A = (ank) and
B = (bnk) are connected with the relation

bnk :=

n∑
j=0

(
n

j

)
(1− r)n−jrjajk for all k, n ∈ N.

Let µ be any given sequence space. Then, A = (ank) ∈ (µ : f(E)) if and only if
B ∈ (µ : f).

Proof. Let z = (zk) ∈ µ and consider the following equality
m∑
k=0

bnkzk =

n∑
j=0

(
n

j

)
(1− r)n−jrj

(
m∑
k=0

ajkzk

)
for all m,n ∈ N,

which yields as m→∞ that (Bz)n = {Er(Az)}n for all n ∈ N. Therefore, one can
observe from here that Az ∈ f(E) whenever z ∈ µ if and only if Bz ∈ f whenever
z ∈ µ. This completes the proof. �
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Of course, Theorems 5.1 and 5.2 have several consequences depending on the
choice of the sequence space µ. Whence by Theorem 5.1 and Theorem 5.2, the
necessary and suffi cient conditions for (f(E) : µ) and (µ : f(E)) may be derived by
replacing the entries of C and A by those of the entries ofD = CE1/r and B = ErA,
respectively; where the necessary and suffi cient conditions on the matrices D and
B are read from the concerning results in the existing literature.
Now, we list the following conditions on an infinite matrix A = (ank) transform-

ing the sequences from/in the sequence space f :

sup
n∈N

∑
k

|∆ank| <∞, (5.1)

lim
k→∞

ank = 0 for each fixed n ∈ N , (5.2)

lim
n→∞

∑
k

|∆2ank| = α, (5.3)

lim
m→∞

∑
k

|a(n, k,m)− αk| = 0 uniformly in n , (5.4)

lim
q→∞

∑
k

1

q + 1

∣∣∣ q∑
i=0

∆[(a(n+ i, k)− αk)]
∣∣∣ = 0 uniformly in n , (5.5)

sup
n∈N

∑
k

|∆a(n, k)| <∞, (5.6)

f − lim a(n, k) = αk exists for each fixed k ∈ N , (5.7)

lim
q→∞

∑
k

1

q + 1

∣∣∣ q∑
i=0

∆2[a(n+ i, k)− αk]
∣∣∣ = 0 uniformly in n , (5.8)

sup
n∈N

∑
k

|a(n, k)| <∞, (5.9)∑
k

ank = αk for each fixed k ∈ N , (5.10)∑
n

∑
k

ank = α, (5.11)

lim
n→∞

∑
k

|∆[a(n, k)− αk]| = 0. (5.12)

Lemma 5.3. Let A = (ank) be an infinite matrix. Then,

(i) A = (ank) ∈ (`∞ : f) if and only if (4.2), (4.6) and (5.5) hold, [13].
(ii) A = (ank) ∈ (f : f) if and only if (4.2), (4.6),(4.7) and (4.8) hold, [13].
(iii) A = (ank) ∈ (fs : `∞) if and only if (5.2) and (5.3) hold.
(iv) A = (ank) ∈ (fs : c) if and only if (4.3) and (5.2)-(5.4) hold, [23].
(v) A = (ank) ∈ (c : f) if and only if (4.2), (4.6) and (4.7) hold, [18].
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(vi) A = (ank) ∈ (bs : f) if and only if (4.6), (5.2), (5.3) and (5.9) hold, [9].
(vii) A = (ank) ∈ (fs : f) if and only if (4.6), (4.8), (5.3) and (5.6) hold, [5].
(viii) A = (ank) ∈ (cs : f) if and only if (4.6) and (5.2) hold, [7].
(ix) A = (ank) ∈ (bs : fs) if and only if (5.3) and (5.6)-(5.8) hold, [9].
(x) A = (ank) ∈ (fs : fs) if and only if (5.6)-(5.9) hold, [5].
(xi) A = (ank) ∈ (cs : fs) if and only if (5.7) and (5.8) hold, [7].
(xii) A = (ank) ∈ (f : cs) if and only if (5.10)-(5.13) hold, [5].
Now, we can give the following results:

Corollary 1. Let A = (ank) be an infinite matrix. The following statements hold:

(i) A ∈ (f(E) : `∞) if and only if {ank}k∈N ∈ {f(E)}β for all n ∈ N and (4.2)
holds with ank instead of ank.

(ii) A ∈ (f(E) : c) if and only if {ank}k∈N ∈ {f(E)}β for all n ∈ N and
(4.2)-(4.5) hold with ank instead of ank.

(iii) A ∈ (f(E) : c0) if and only if {ank}k∈N ∈ {f(E)}β for all n ∈ N and (4.2)
holds, (4.3) and (4.5) hold with αk = 0, and (4.4) holds and α = 0 as ank
instead of ank.

(iv) A ∈ (f(E) : f) if and only if {ank}k∈N ∈ {f(E)}β for all n ∈ N and (4.2),
(4.6)-(4.8) hold with ank instead of ank.

(v) A ∈ (f(E) : bs) if and only if {ank}k∈N ∈ {f(E)}β for all n ∈ N and (5.10)
holds.

(vi) A ∈ (f(E) : cs) if and only if {ank}k∈N ∈ {f(E)}β for all n ∈ N and
(5.10)-(5.13) hold with ank instead of ank.

Corollary 2. Let A = (ank) be an infinite matrix and bnk be defined by (5.2).
Then, following statements hold:

(i) A = (ank) ∈ (`∞ : f(E)) if and only if (4.2), (4.6) and (5.5) hold with bnk
instead of ank.

(ii) A = (ank) ∈ (f : f(E)) if and only if (4.2), (4.6), (4.7) and (4.8) hold with
bnk instead of ank.

(iii) A = (ank) ∈ (c : f(E)) if and only if (4.2), (4.6) and (4.7) hold with bnk
instead of ank.

(iv) A = (ank) ∈ (bs : f(E)) if and only if (5.2), (5.3), (4.6) and (5.6) hold with
bnk instead of ank.

(v) A = (ank) ∈ (fs : f(E)) if and only if (5.3), (4.6), (4.8) and (5.6) hold with
bnk instead of ank.

(vi) A = (ank) ∈ (cs : f(E)) if and only if (5.2) and (4.6) hold with bnk instead
of ank.

(vii) A = (ank) ∈ (bs : fs(E)) if and only if (5.3), (5.6)-(5.8) hold with bnk
instead of ank, where fs(E) denotes the domain of the matrix Er in the
sequence space fs.

(viii) A = (ank) ∈ (fs : fs(E)) if and only if (5.6)-(5.9) hold with bnk instead of
ank.
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(ix) A = (ank) ∈ (cs : fs(E)) if and only if (5.7) and (5.8) hold with bnk instead
of ank.

Now, we can give some consequences, below:

Corollary 3. A ∈ (f(E) : c)s if and only if (4.2) holds, (4.3) and (4.5) hold with
αk = 0 for each k ∈ N and (4.4) also holds with α = s with ank instead of ank.

Corollary 4. A ∈ (f(E) : f)s if and only if (4.2), (4.6) and (4.8) hold with αk = 0
and (4.7) also holds with α = s with ank instead of ank.

Now, we may mention about Steinhaus type theorems which were formulated
by Maddox [20], as follows: Consider the class (λ : µ)1 of 1-multiplicative matrices
and υ be a sequence space such that υ ⊃ λ. Then a result of the form (λ : µ)1

⋂
(υ :

µ) = ∅, where ∅ denotes the empty set, is called a theorem of the Steinhaus type.
Now, we can give the next Steinhaus type theorem concerning with the strongly-
multiplicative and coercive matrix classes:

Theorem 5.4. The classes (f(E) : c)s and (`∞ : c) are disjoint.

Proof. Suppose that the converse of this is true, that is (f(E) : c)s
⋂

(`∞ : c) 6= ∅.
Then there exists at least one infinite matrix A satisfying the conditions of Corollary
5.6 and Schur’s theorem. Then, we can easily see that limn→∞ ank = 0 which
contradicts the condition limn→∞

∑
k ank = s of Corollary 5.4. This completes the

proof. �
Theorem 5.5. The classes (f(E) : f)s and (`∞ : f) are disjoint.

Proof. This is similar to the proof of Theorem 5.8. So, we omit the detail. �

6. Conclusion

The construction of new sequence spaces with the Euler mean were studied by
Altay and Başar [2], Altay et al. [3] and Mursaleen et al. [22]. After Altay and
Polat [4], Polat and Başar [24] studied the Euler difference sequence spaces of or-
der m. Also, Karakaya and Polat [17] extended the Euler sequence spaces er0(∆),
erc(∆) and er∞(∆) defined by Altay and Polat [4] to the paranormed case. Kara
et al. [15] studied some topological and geometrical properties of the generalized
Euler spaces. Further Başarır and Kayıkçı[10] defined Euler B(m)-difference se-
quence spaces. Demiriz and Çakan [11] introduced the sequence spaces er0(u, p) and
erc(u, p) of nonabsolute type, as the sets of all sequences such that E

r,u-transforms
of them are in the spaces c0(p) and c(p). Djolovíc and Malkowsky [12] added a new
supplementary aspect to research of Polat and Başar [24] by characterizing classes
of compact operators on those spaces.
The concept of almost convergence has been employed many mathematicians

since 1948. Başar and Kiri̧sci [8] established new almost convergent sequence spaces
with the generalized difference matrix B(r, s) and Sönmez [26] studied the concept
of almost convergence with the triple band matrix B(r, s, t). Başar and Kiri̧sci [8]
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proved that the space f is a BK−space with the sup-norm, and is a non-seperable
closed subspace of (`∞, ‖ · ‖∞). Since the space f is non-seperable, this space and
the spaces isomorphic to the space f have no Schauder basis.
In this paper, we combine the almost convergence with the Euler means. Since

the domain of generalized difference matrix B(r, s) in the space f is studied by
Başar and Kiri̧sci [8], the present paper is its natural continuation.
Finally, we should note from now on that the investigation of the domain of some

particular limitation matrices, namely the composition of Euler means with the
mth order difference matrix or generalized weighted mean, the matrix Λ, etc., in the
space f will lead us to new results. Also it can study various matrix transformations,
such as sequence-to-sequence, sequence-to-series, series-to-sequences and series-to-
series, between the new almost Euler sequence spaces and other spaces.
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[8] F. Başar, M. Kirişçi, Almost convergence and generalized diff erence matrix, Comput. Math.

Appl. 61(3)(2011), 602—611.
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[16] E.E. Kara, M. Başarır, On compact operators and some Euler B(m)-diff erence sequence

spaces, J. Math. Anal. Appl. 379 (2011), no. 2, 499—511.
[17] V. Karakaya, H. Polat, Some new paranormed sequence spaces defined by Euler and diff erence

operators, Acta Sci. Math. (Szeged) 76(2010), 87—100.
[18] J.P. King, Almost summable sequences, Proc. Amer. Math. Soc. 17(1966), 1219—1225.



100 MURAT KIRIŞÇI
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