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EXISTENCE AND UNIQUENESS OF SOLUTION FOR A
SECOND ORDER BOUNDARY VALUE PROBLEM*

A. GUEZANE-LAKOUD, N. HAMIDANE AND R. KHALDI

Abstract. This paper deals with a second order boundary value problem with
only integrals conditions. Our aim is to give new conditions on the nonlinear
term, then, using Banach contraction principle and Leray Schauder nonlinear
alternative, we establish the existence of nontrivial solution of the considered
problem. As an application, some examples to illustrate our results are given.

1. Introduction

We study the existence of solutions for the following second-order boundary value
problem (BVP)(P1):

u′′ (t) + f(t, u(t)) = 0, 0 < t < 1 (1.1)

u (0) =

∫ 1

0

u (t) dt, u (1) =

∫ 1

0

tu (t) dt, (1.2)

where f : [0, 1] × R → R is a given function. We mainly use the Banach contrac-
tion principle and Leray Schauder nonlinear alternative to prove the existence and
uniqueness results. For this, we formulated the boundary value problem (P1) as
fixed point problem. We also study the compactness of solutions set.
The second order equations (1.1) are used to model various phenomena in physics,

chemistry and epidemiology. In general nonlinearities that refer to source terms rep-
resent specific physical laws, in chemistry, for example, if f (t, u) = ug(u)e

u−1
ε , then

it represents Arheninus law for chemistry reactions, where the positive parameter
ε represents the activation energy for the reaction and the continuous function g
represents the concentration of the chemical product, see [1].
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Non local conditions come up when values of the function on the boundary
are connected to values inside the domain. The integral conditions arise in quasi-
stationary thermoelasticity theory, in modeling the technology of integral circuits,....
Some times it is better to impose integral conditions because they lead to more pre-
cise measures than those proposed by a local conditions.
Very recently there have been several papers on second and third order boundary

value problems, we can cite the paper Graef and Yang [6], Guo et al [10], Hopkins
and Kosmatov [11], and Shunhong et al [15] . Excellent surveys of theoretical
results can be found in Agarwal [1] and Ma [14]. More results can be found in
[2, 3, 4, 5, 7, 8, 9, 10, 12, 13] . Most of the results dealing with these problems used
the nonlinear alternative of Leray-Schauder, or more generally the theory of fixed
point on the cone.
This paper is organized as follows. In section 2 we list some preliminaries ma-

terials to be used later. Then in Section 3, we give our main results which consist
in uniqueness and existence theorems. We end our work with some illustrating
examples.

2. Preliminaries

Let E = C ([0, 1] ,R) be the Banach space of all continuous functions from [0, 1]
into R with the norm ||y|| = max

t∈[0,1]
|y (t)|. We denote by L1 ([0, 1] ,R) the Banach

space of Lebesgue integrable functions from [0, 1] into R with the norm ||y||L1 =∫ 1
0
|y (t)| dt.

Definition 2.1. A function f : [0, 1]× R→ R is called L1−Carathéodory if
(i) The map t 7→ f(t, u) is measurable for all u ∈ R.
(ii) The map u 7→ f(t, u) is continuous for almost each t ∈ [0, 1].
(iii) For each r > 0, there exists an ψr ∈ L1 [0, 1] such that for almost all

t ∈ [0, 1] and |u| ≤ r we have |f(t, u)| ≤ ψr (t).

Lemma 2.2. [4] Let F be a Banach space and Ω a bounded open subset of F ,
0 ∈ Ω. Let T : Ω → F be a completely continuous operator. Then, either there
exists x ∈ ∂Ω, λ > 1 such that T (x) = λx, or there exists a fixed point x∗ ∈ Ω of
T.

Lemma 2.3. Let y ∈ L1 ([0, 1] ,R). Then the solution of the following boundary
value problem

u′′ (t) + y(t) = 0, 0 < t < 1 (2.1)

u (0) =

∫ 1

0

u (t) dt, u (1) =

∫ 1

0

tu (t) dt,

is

u(t) =
1

3

∫ 1

0

G(t, s)y(s)ds,
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where

G(t, s) =

{
23s+ 3s2t− 6st− 4s2 − 6s3 − 10 , 0 ≤ s ≤ t ≤ 1
(1− s)

(
10s+ 3t− 3st+ 6s2 − 10

)
, 0 ≤ t ≤ s ≤ 1.

Proof. Rewriting the differential equation (2.1) as u′′(t) = −y(t), then integrating
two times, we obtain

u(t) = −
∫ t

0

(t− s) y(s)ds+At+B. (2.2)

Using the first integral condition we get B =
∫ 1
0
u (s) ds . Substituting B in (2.2)

and using the second integral condition we get

A =

∫ 1

0

(1− s) y(s)ds+

∫ 1

0

su (s) ds−
∫ 1

0

u (s) ds.

Substituting A in (2.2) we obtain

u(t) = −
∫ t

0

(t− s) y(s)ds+ t

∫ 1

0

(1− s) y(s)ds (2.3)

+t

∫ 1

0

su (s) ds+ (1− t)
∫ 1

0

u (s) ds.

Integrating (2.3) over [0, 1] , it yields∫ 1

0

u (s) ds = −
∫ 1

0

(1− s)2 y(s)ds+

∫ 1

0

(1− s) y(s)ds+

∫ 1

0

su (s) ds. (2.4)

Substituting (2.4) in (2.3) then integrating the resultant equality over [0, 1] we get

u(t) = −
∫ t

0

(t− s) y(s)ds− (1− t)
∫ 1

0

(1− s)2 y(s)ds (2.5)

+

∫ 1

0

(1− s) y(s)ds+

∫ 1

0

su (s) ds.

Multiplying (2.5) by t then integrating the resultant equality over [0, 1] we obtain∫ 1

0

su (s) ds = −2

∫ 1

0

(1− s)2 (s+ 2) y(s)ds (2.6)

−1

3

∫ 1

0

(1− s)2 y(s)ds+

∫ 1

0

(1− s) y(s)ds.
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Substituting (2.6) in (2.5) it yields

u(t) = −
∫ t

0

(t− s) y(s)ds+
1

3

∫ 1

0

(1− s)2 (3t− 6s− 16) y(s)ds (2.7)

+2

∫ 1

0

(1− s) y(s)ds

=
1

3

∫ t

0

(
23s+ 3s2t− 6st− 4s2 − 6s3 − 10

)
y(s)ds

+
1

3

∫ 1

t

(1− s)
(
10s+ 3t− 3st+ 6s2 − 10

)
y(s)ds

=
1

3

∫ 1

0

G(t, s)y(s)ds.

�

3. Existence and Uniqueness Results

Theorem 3.1. Assume that the following hypotheses hold.
(A1) f is an L1-Carathéodory function.
(A2) There exists a nonnegative function g ∈ L1 ([0, 1] ,R+) such that

|f(t, x)− f(t, y)| ≤ g(t) |x− y| ,∀x, y ∈ R, t ∈ [0, 1] , (3.1)∫ 1

0

g(s)ds <
3

10
, (3.2)

then the BVP (P1) has a unique solution u in E.

Proof. We transform the boundary value problem (1.1)-(1.2) to a fixed point prob-
lem. Define the integral operator T : E → E by

Tu(t) =
1

3

∫ 1

0

G(t, s)f (s, u (s)) ds,∀t ∈ [0, 1] .

From Lemma 2.3, the BVP (1.1)-(1.2) has a solution if and only if the operator T
has a fixed point in E. Using elementary computations we prove that |G(t, s)| ≤ 10.
Let u, v ∈ E, applying (3.1) we get

|Tu(t)− Tv(t)| ≤ 1

3

∫ 1

0

|G(t, s)| |f (s, u (s))− f (s, v (s))| ds

≤ 10

3

∫ 1

0

g(s) |u (s)− v (s)| ds.

Due to (3.2), we obtain ‖Tu− Tv‖ < ‖u− v‖. Consequently T is a contraction,
hence it has a unique fixed point which is the unique solution of the BVP (1.1)-
(1.2). �

Now we give some existence results for the BVP (1.1)-(1.2).
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Theorem 3.2. Assume that the following hypotheses hold

(B1) f is an L1-Carathéodory function, the map t → f(t, 0) is continuous and
f(t, 0) 6= 0, for any t ∈ [0, 1].

(B2) There exist nonnegative functions h, k ∈ L1 ([0, 1] ,R+) and 0 < α < 1,
such that

|f (t, x)| ≤ k (t) |x|α + h (t) , (t, x) ∈ [0, 1]× R. (3.3)

Then the BVP (1.1)-(1.2) has at least one nontrivial solution u∗ ∈ E and
the set of its solutions is compact.

Proof. To prove this Theorem, we apply Leray Schauder nonlinear alternative. First
we prove that T is completely continuous.
(i) T is continuous. Let (un) be a sequence that converges to u in E. Using the

fact that |G(t, s)| ≤ 10, we obtain

|Tun(t)− Tu(t)| ≤ 10

3

∫ 1

0

|f (s, un (s))− f (s, u (s))| ds.

Moreover

‖Tun − Tu‖ ≤
10

3
‖f (., un (.))− f (, u (.))‖ .

(ii) T maps bounded sets into relatively compact sets in E. Let Br = {u ∈ E;
‖u‖ ≤ r} be a bounded subset.
(a) For any u ∈ Br and t ∈ [0, 1]

|Tu(t)| ≤ 10

3

∫ 1

0

(k(s) |u(s)|α + h(s)) ds

≤ 10

3
rα
∫ 1

0

k(s)ds+
10

3

∫ 1

0

h(s)ds,

then T (Br) is uniformly bounded.
(b) T (Br) is equicontinuous. Indeed for all t1, t2 ∈ [0, 1] , u ∈ Br, we have from

(3.3) that

|Tu(t1)− Tu(t2)|

≤ 10

3

∫ 1

0

|G(t1, s)−G(t2, s)| (k(s) |u(s)|α + h(s)) ds

≤ 10rα

3

∫ 1

0

|G(t1, s)−G(t2, s)| k(s)ds+
10

3

∫ 1

0

|G(t1, s)−G(t2, s)|h(s)ds,

when t1 → t2, then |Tu(t1)− Tu(t2)| tends to 0. Consequently T (Br) is equicon-
tinuous. Then T is completely continuous operator.
Now we apply Leray Schauder nonlinear alternative.
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Let m =
(
10
3

∫ 1
0
k(s)ds+ 10

3

∫ 1
0
h(s)ds

) 1
1−α

, M = max(1,m), 0 < λ < 1, Ω =

{u ∈ E : ‖u‖ < M + 1}, u ∈ ∂Ω, such that u = λTu. Using (3.3) we get

|u(t)| = λ |Tu(t)| ≤ 10

3

∫ 1

0

(k(s) |u(s)|α + h(s)) ds

≤ 10

3
‖u‖α

∫ 1

0

k(s)ds+
10

3

∫ 1

0

h(s)ds

so,

‖u‖ ≤ 10

3
‖u‖α

∫ 1

0

k(s)ds+
10

3

∫ 1

0

h(s)ds.

If ‖u‖ ≥ 1, then

‖u‖ ≤
(

10

3

∫ 1

0

k(s)ds+
10

3

∫ 1

0

h(s)ds

) 1
1−α

= m. (3.4)

Consequently ‖u‖ ≤ max(1,m) = M, then (3.4) contradicts the fact that u ∈ ∂Ω.
By Lemma 2.2 we conclude that the operator T has a fixed point u∗ ∈ Ω and then
the BVP (1.1)− (1.2) has a nontrivial solution u∗ ∈ E.
Let Σ be the set of solutions, we shall prove that Σ is compact, for this, we apply

Arzela-Ascoli Theorem. Let {un}n≥1 be a sequence in Σ, using the same reasoning
as above, we prove that the sequence {un}n≥1 is bounded and equicontinuous,
consequently there exists a uniformly convergent subsequence {un′}n′≥1 of {un}n≥1,
such un′ → u.
Now we prove that Σ is closed. From the condition (B2) we have

|f (t, un′)| ≤ k (t) |un′ |α + h (t) ≤ k (t)mα + h (t) , (t, x) ∈ [0, 1]× R.

By Lebesgue Dominated Convergence Theorem and the assumption f is an L1-
Carathéodory function one can guaranty that
u(t) = limun(t) = −

∫ 1
0
G(t, s)f (s, u (s)) ds,∀t ∈ [0, 1] , hence u ∈ Σ and conse-

quently Σ is compact. �

Theorem 3.3. Assume that the following hypotheses hold:
(C1) f is an L1-Carathéodory function, the map t 7→ f(t, 0) is continuous and

f(t, 0) 6= 0, for any t ∈ [0, 1].
(C2) There exist nonnegative functions h, k ∈ L1 ([0, 1] ,R+) such that

|f (t, x)| ≤ k (t) |x|+ h (t) , (t, x) ∈ [0, 1]× R,∫ 1

0

k(s)ds <
3

10
.

Then the BVP (1.1)-(1.2) has at least one nontrivial solution u∗ ∈ E and
the set of its solutions is compact.
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Proof. From the proof of Theorem 3.2, we know that T is completely continuous.

Let M1 =
10
∫ 1
0
h(s)ds

3− 10
∫ 1
0
k(s)ds

, Ω = {u ∈ E : ‖u‖ < M1 + 1} , u ∈ ∂Ω, 0 < λ < 1, such

that u(t) = λTu(t). From hypotheses (C1) and (C2), we have

‖u‖ ≤ 10

3
‖u‖

∫ 1

0

k(s)ds+
10

3

∫ 1

0

h(s)ds,

consequently ‖u‖ ≤ M1, this contradicts the fact that u ∈ ∂Ω. By Lemma 2.2 we
conclude that the operator T has a fixed point u∗ ∈ Ω and then the BVP (1.1)-(1.2)
has a nontrivial solution u∗ ∈ E.
The proof of the compacity of the set of solutions is similar to the case α ∈

[0, 1[. �

Theorem 3.4. Assume that the following hypotheses hold:

(E1) f is an L1-Carathéodory function, the map t → f(t, 0) is continuous and
f(t, 0) 6= 0, for any t ∈ [0, 1].

(E2) There exist nonnegative functions h, k ∈ L1 ([0, 1] ,R+) and α > 1 such that

|f (t, x)| ≤ k (t) |x|α + h (t) , (t, x) ∈ [0, 1]× R,

M =
10

3

∫ 1

0

k(s)ds <
1

2
, N =

10

3

∫ 1

0

h(s)ds <
1

2
.

Then the BVP (1.1)-(1.2) has at least one nontrivial solution u∗ ∈ E and
the set of its solutions is compact.

Proof. Let m =

(
N

M

)1/n
, where n is the entire part of α. Setting

Ω = {u ∈ E : ‖u‖ < m} ,

u ∈ ∂Ω, λ > 1 such that Tu(t) = λu(t) and using the same arguments as previous,
we get

λ ‖u‖ ≤ 10

3
‖u‖α

∫ 1

0

k(s)ds+
10

3

∫ 1

0

h(s)ds = ‖u‖αM +N

that implies λm ≤ mαM + N, then λ ≤ M ((n+1)−α)/nN (α−1)/n + M1/nN1−1/n.
From hypotheses we know that n ≤ α < n + 1, M < 1/2 and N < 1/2 so
M ((n+1)−α)/n < (1/2)

((n+1)−α)/n, N (α−1)/n < (1/2)
(α−1)/n, M1/n < (1/2)

1/n and
N1−1/n < (1/2)

1−1/n
, consequently λ < 1, this contradicts the fact that λ > 1.

By Lemma 2.2 we conclude that the operator T has a fixed point u∗ ∈ Ω then the
BVP (P1) has a nontrivial solution u∗ ∈ E.
The proof of the compacity of the set of solutions is similar to the case α ∈

[0, 1[. �
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Example 3.5. Consider the following boundary value problem{
u′′ + u sin3 t

4+2 cos te
t = 0 , 0 < t < 1,

u (0) =
∫ 1
0
u (t) dt , u (1) =

∫ 1
0
tu (t) dt.

(3.5)

One can check that |f(t, x)− f(t, y)| ≤ g(t) |x− y| ,∀x, y ∈ R, t ∈ [0, 1], where
g (t) = sin3 t

4+2 cos 1 and
∫ 1
0

sin3 t
4+2 cos 1dt = 0.03522 < 3

10 . From Theorem 3.1, the BVP
(3.5) has a unique solution u in E.

Example 3.6. Consider the following boundary value problem{
u′′ + 1

3u
1
4

(
t3 + cos t

)
+ arcsin t = 0 , 0 < t < 1,

u (0) =
∫ 1
0
u (t) dt , u (1) =

∫ 1
0
tu (t) dt.

(3.6)

We have f (t, u) = 1
3

(
u
1
4

) (
t3 + cos t

)
+ arcsin t, f (t, 0) 6= 0, 0 < α = 1

4 < 1 and

|f (t, u)| ≤ 1

3

(
t3 + cos t

)
|u|

1
4 + arcsin t = k(t) |u|

1
4 + h(t).

Using Theorem 3.2, we conclude that the BVP (3.6) has at least one nontrivial
solution u∗ in E.

Example 3.7. Consider the following boundary value problem{
u′′ + 3u4

10(1+u2) sin t+ e−2t cos(1 + t) = 0 , 0 < t < 1

u (0) =
∫ 1
0
u (t) dt , u (1) =

∫ 1
0
tu (t) dt.

(3.7)

We have f (t, u) = 3u4

10(1+u3) sin t + e−2t cos(1 + t), so |f (t, u)| ≤ k(t) |u|2 + h(t),

α = 2, k(t) = 3 sin t
10 , h(t) = e−2t cos(1 + t). M =

∫ 1
0

sin sds = 0.45970 < 1
2 and

N = 10
3

∫ 1
0
e−2s cos(1 + s)ds = 0.316 55 < 1

2 . Hence, from Theorem 3.4, we deduce
that the BVP (3.7) has at least one nontrivial solution u∗ in E.
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