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ESTIMATING THE EARTHQUAKE SOURCE PARAMETERS:
SIMULATED ANNEALING VERSUS NELDER-MEAD SIMPLEX

ALGORITHM

ÖZLEM TÜRKŞEN AND AYŞEN APAYDIN

Abstract. The parameter estimation is an important process in many earth
science problems in order to define the features of ground movement. It is clear
that the model nonlinearity makes the estimation of parameters more diffi cult
and more challenging. In this case, metaheuristic algorithms and derivative
free optimization methods are more proper than classical optimization meth-
ods. In this study, Simulated Annealing (SA), a well known metaheuristic
algorithm, and Nelder-Mead simplex algorithm, a derivative free optimization
method, are used to estimate the earthquake source parameters. The algo-
rithms are applied on a synthetically generated data set. The estimated para-
meter results show that the SA is better than Nelder-Mead simplex method.

1. Introduction

An earthquake is defined by source parameters. Modeling of the source parame-
ters requires wide knowledge of elastic half space theory due to the elastic structure
of the crust. Many past attempts to infer source geometry from deformation fields
have used elasticity theory to find geologically plausible models that fit the major
features of the observed deformation field. The fault plane is used to determine
surface displacements on definite coordinates. The correct estimation of source pa-
rameters gives good predictions for the next earthquake occurance. In this case, the
estimation of the fault plane parameters becomes important as modeling. Many
new methodologies have been developed in the field of estimating the source para-
meters [9, 11, 20, 22]. Derivative based searching algorithms; e.g., a Quasi-Newton
method [6], derivative free optimization algorithms; e.g., Nelder-Mead simplex al-
gorithm [5, 15], heuristic optimization methods; e.g., SA algorithm [2, 3, 7, 21] and
genetic algorithms [8, 18], Monte-Carlo methods [26] are used for the estimation of
crust model parameters.

Received by the editors May 23, 2013; Accepted: Nov. 21, 2013.
2000 Mathematics Subject Classification. 65C60, 49N45, 90C30, 65K10.
Key words and phrases. Simulated Annealing, Nelder-Mead simplex algorithm, parameter es-

timation, fault plane parameters.

c©2013 Ankara University

53



54 ÖZLEM TÜRKŞEN AND AYŞEN APAYDIN

In this study, SA algorithm is used to estimate the earthquake source parame-
ters using analitical solution for deformation. The SA algorithm is a random search
method based on the analogy between cooling and the freezing of the metals and
some liquid materials at crystal structure with minimum energy and researching
the minimum of a general system. The SA is based upon that of [24], which was
originally proposed as a means of finding the equilibrium configurations of a col-
lection of atoms at a given temperature. Kirkpatrick [19] was first proposed the
algorithm basis of an optimization technique for combinatorial problems. The SA
permits the effi cient period for the dispersion of the molecules again by decreasing
the temperature gradually. Thus, the method can be considered as a minimization
algorithm based on natural events and nature. Also the SA is a stochastic computa-
tional method with quick approximations to global solutions for hard optimization
problems in different fields [10, 13, 28, 16, 17, 27, 30, 31]. The SA algorithm has
advantages in dealing with the strong nonlinearities and discontinuities in the hilly
structure of cost function. This paper describes the SA algorithm and explores
its ability to optimize NP-hard functions in geosciences through an effi cient explo-
ration of the parameter space. And also the paper gives a comparison for parameter
estimation with a derivative free optimization method, called Nelder-Mead simplex
method [25]. The synthetically generated data set is used for the application. All
the calculations are done by using Matlab.
The rest of the paper is organized as follows: In Section 2 fault plane geometry

is showed and inverse problem formulation is presented. In the next section the SA
algorithm is briefly reviewed and the implementation of SA algorithm to fault plane
parameter estimation procedure is given. This is followed by simulation results that
illustrates the both proposed approaches via the Monte Carlo simulation. In the
last part, numerical results of the estimations are compared and the performance
of the optimization algorithms is analyzed.

2. Fault Plane Model and Inverse Problem Formulation

2.1. The fault plane geometry. The fault plane parameters play an important
role for defining the characteristics of surface displacements. It is a hard work to
estimate earthquake source parameters and it requires a well defined model. The
most commonly used crustal model is the homogeneous, isotropic, linear, and elastic
half-space. In spite of its limitations, the elastic half space model is widely used
because of the simplicity of the expressions [7]. Figure 1 illustrates the fault plane
geometry in three dimensions.
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Figure 1. The fault geometry and the relocation on the fault

The parameters defined on the fault plane in Figure 1 are
l : the lenght of the fault plane (km),
w : the wideness of the fault plane (km),
d : the depth of the fault plane (km),
δ : dip angle (radian),
α : strike (radian),
(xf, yf) : the coordinates of the fault starting point where xf (km) is

east ofset and yf (km) is north ofset,

SS :
the component of the slip vector (S) in the direction
of the fault (Strike-Slip) (m),

DS :
the component of the slip vector (S) as vertical to
the fault direction (Dip-Slip) (m),

(x0, y0) : the location of the fault center defined on the surface.

In this study, a plate model, which is expressed by Aktuğ [4], is considered
because of its simplicity and speed in computing. In the model surface relocations,
caused by the slip vector, is defined as analitical equations for quadrangular area.
The slip is consist of two components such as “lateral range”in the direction of the
fault plane and the “vertical range” as vertical to lateral range. The both range
functions are given below:
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where the I1, I2, I3, I4, I5 are analitical equations and contain source parameters.
These equations are consist of nonlinear combinations of the fault plane parameters.
The reader is referred to the works by [4] for a detailed description of parameters.
The equation systems, given above with lateral and vertical ranges, show the func-
tional relations between the fault geometry and surface displacements. Because of
the nonlinearity of these complex analitical functions, classical parameter estima-
tion methods may fail. In this case, estimation of fault plane parameters by the
SA algorithm makes certain facilities to get global solutions; e.g. providing suffi -
cient convergence, escaping local traps, easy implementation to real world NP hard
optimization problems.

2.2. Inverse problem formulation. One of the main aim of geophysical inversion
is to identify the all models which give an acceptable loss between predicted and
observed data. In terms of the loss function, a measure of the difference between
observed and synthetic data that varies as a function of solution parameters [23].
In this study, the inversion problem, which describes the geometry and the slip of
the fault plane, is formed with analitical lateral and vertical range equations.
Let p be the nine dimensional vector whose elements pj are the geometrical

source parameters wanted to be estimated denoted by p ≡ [l w d δ α xf yf SS DS].
Let g ≡ g (p) ≡

[
g1 g2 · · · gN

]
be the N -dimensional vector whose ith ele-

ment gi, i = 1, 2, ..., N is the surface relocation vector with three dimensions (x, y, z)
at the ith observation point. Therefore, the observed surface displacements u can
be written as a function g of the fault model parameters p

u = g (p) + e (2.1)
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where e is a vector of observational errors. The surface relocation vector u consists
of two components as in the lateral direction, ul =

[
ulx, u

l
y, u

l
z

]
and in the vertical

direction, uv =
[
uvx, u

v
y, u

v
z

]
. Thus, the equation 2.1 can be written as

uij=gij (p) + eij , i = 1, 2, ..., 50 , j = x, y, z. (2.2)

The surface displacements are related nonlinearly to the fault plane parameters
as seen from the lateral and vertical equations. Hence, the estimation of the fault
plane parameters becomes to a nonlinear optimization problem. Estimating p from
g is formulated as the minimization of the function f given

f (u,g) = ‖u− g (p)‖2 (2.3)

where ‖·‖ is the Euclidean norm. The optimal parameter values p∗ minimize the L2
norm of the loss function given by 2.3, which is considered as an objective function
[29]. Therefore, the nonlinear unconstrained optimization problem can be written
as

min f (u,g)
p ∈ S (2.4)

where S is the domain of parameters.
The analytical solution of the problem seems to be unavailable because of the

nonlinearity of fault plane model. The size of parameter space, the existence of local
minima, the continuity of objective function and the sensitivity of objective function
to each of the model parameters must be considered. In order to solve the inverse
problem commonly used techniques such as simple Monte Carlo methods become
ineffi cient or impractical in very large solution spaces. More recently a number
of guided search techniques from the field of artificial intelligence and heuristic
methods have been developed. In this study, SA is used to estimate the overall
earthquake geometry using the optimization problem given with lateral and vertical
equations.

3. Application of the SA algorithm to the estimation problem

The SA algorithm derives its name from an analogy to the cooling of metals. As
a metal cools, the atoms fluctuate between relatively higher and lower energy levels.
If the temperature is dropped slowly enough, the atoms will all reach their ground
state. This cooling process is called as “annealing”. However, if the temperature is
dropped too quickly, the system will get trapped in a less than optimum configura-
tion. So the temperature is considered as the control parameter in the method. If
the energy function of this physical system is instead replaced by an objective func-
tion, then the progression of this function towards the global minimum is analogous
to the physical progression towards the ground state.
Convenience of application to real world problems and obtainment of good solu-

tions makes the SA algorithm be one of the most powerful and popular heuristics
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to solve many optimization problems. Some factors need to be considered when
designing the SA algorithm. The following elements must be provided for imple-
menting the SA to a problem:

(i) are presentation of possible solutions,
(ii) a generator of random changes in solutions,
(iii) a means of evaluating the probability functions, and
(iv) an annealing schedule, an initial temperature and rules for lowering it

as the search progresses[1].
The optimization problem given in equation 2.4 will be minimized to estimate

the nine fault plane parameters with the SA algorithm. The algorithm has two
cycles, inner and outer. A neighboring parameter set of the current parameter set
is generated, in the inner cycle of the algorithm. If the new state is better than the
current state then the generated solution replaces the current solution, otherwise
the solution is accepted with a criterion probability. The value of the temperature,
control parameter, decreases in each iteration of the outer cycle of the algorithm.
In this regard, the steps of this algorithm are briefly looked into:
Step 1: T0 is chosen as the initial temperature, p0 is chosen arbitrarily as an

initial parameter set on the definition space, n is the dimension of fault parameter
set, Tmin is chosen as the final temperature (stopping criteria of outer cycle), L is
chosen as the number of neighborhood solutions generated at a certain temperature
T to get equilibrium (stopping criteria of inner cycle), a and b are chosen lower
and upper bound sets for parameters respectively. Firstly, the initial temperature
is considered as the system temperature, Tk = T0 for k = 0 and optimal parameter
value p∗ is set to p0, p∗ = p0.
Step 2: Under kth temperature, if the inner loop condition is met, go to Step 3 ;

otherwise the new parameter set is produced at a given temperature as

pj+1= pj + y (b− a) , y ∈ rand (−1, 1) (3.1)

where, p is constrained by p ∈ [a,b] . Later on, the new function value f (pj+1)
= fj+1 and ∆f = fj+1 − fj are computed. If ∆f < 0, the new state is accepted.
Otherwise, the Metropolis criterion is followed to accept pj+1 with a probability of

min
(

1, e
−∆f

Tk

)
and Step 2 continues.

Step 3: The temperature is reduced according to a specified cooling schedule,
Tk = T0c

k , 0 < c < 1, where c is analogous to the Boltzmann’s constant that can
be used to tune the algorithm. If outer loop break condition is met computation
stops and optimal parameter set is reached. Otherwise, Step 2 is repeated.
The definition of the starting temperature, the cooling schedule of the tempera-

ture, the iteration number at each temperature and the definition of the stopping
criteria have great roles in the effi ciency of the algorithm [12]. Various SA algo-
rithms are based on the same principle explained above, e.g., Boltzmann annealing
[19], fast simulated annealing [28], very fast simulated annealing [16], and adap-
tive simulated annealing [17]. These algorithms vary in probability distribution,
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annealing schedule, and the generation methods of random change. In this study,
geometric cooling schedule is chosen and applied to earthquake source parameter
estimation scheme.

4. Numerical Example

In this section, a numerical example is used to investigate the performance of the
SA algorithm. An operation region is defined for performing the simulated data.
The surface relocations, taken as outputs of the estimation scheme, are generated
on the experimental region for defined coordinates using Matlab code. It is tried
to get the optimal values of fault plane parameters. In the conclusion part of the
simulation study, SA and Nelder-Mead simplex algorithm are compared in terms
of their convergency to optimal value of nine source parameters.

4.1. Data. An operation region, a quadrangular area, is defined for performing
simulated data and considered as a definite place of earth surface where earthquake
has been occured. The simulated earthquake area is formed in (−30, 20)×(−50, 20)
coordinates with 50 geodetic points which are signed on the graph given in Figure
2.

Figure 2. Defined 50 coordinates around the fault direction

As can be seen from the Figure 2 that the fault direct, passed along the origin
with a straight line, is formed and 50 random generated coordinate values (x, y)
are fixed around the fault direction. The surface relocations, denoted as [x, y, z],
are generated by using Matlab code taken from the geodynamics laboratory page
(http:// www.gpsg.mit.edu) of the Massachusetts Technology Institute for each
coordinate. The fixed 50 coordinates and the surface relocations are given in Table
1. The fault plane parameters, used for synthetic data set and the lower and the
upper bounds of the parameters are presented in Table 2.
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Table 1. The coordinates of locations and relocations

Coordinates of Surface relocations Coordinates of Surface relocations
Number of the locations on defined Number of the locations on defined
locations on the surface coordinates locations on the surface coordinates

( )00 , yx ( )zyx uuu ,, ( )00 , yx ( )zyx uuu ,,

1 (2 , 34) (0.1275   0.2515 0.1019) 26 (20 , 15) (0.0098   0.1118 0.0765)
2 (3 , 9) (0.0014   0.0541 0.0307) 27 (17 , 20) (0.0128   0.1496 0.1237)
3 (20 , 1) (0.0009   0.0625 0.0362) 28 (15 , 26) (0.0101   0.1950 0.2330)
4 (4 , 1) (0.0044   0.0680 0.0393) 29 (11 , 14) (0.0020   0.0417 0.0222)
5 (18 , 23) (0.0270   0.1681 0.1532) 30 (9 , 39) (0.3500   0.7122 0.2765)
6 (6 , 16) (0.0197   0.1046 0.0600) 31 (4 , 23) (0.0339   0.1756 0.1282)
7 (10 , 18) (0.0008   0.0423 0.0231) 32 (16 , 18) (0.0020   0.0355 0.0183)
8 (10 , 5) (0.0010   0.0611 0.0357) 33 (11 , 45) (0.6662  1.0287 0.1170)
9 (9 , 21) (0.0153   0.1673 0.1380) 34 (2 , 28) (0.0680   0.1887 0.1022)

10 (23 , 17) (0.0001   0.0385 0.0204) 35 (21 , 41) (0.0294 0.7021   1.0330)
11 (14 , 36) (0.1098   0.1485 0.0293) 36 (9 , 42) (0.1974  0.2469 0.0338)
12 (29 , 13) (0.0144   0.0736 0.0367) 37 (12 , 38) (0.4933   0.9630 0.4768)
13 (16 , 15) (0.0218   0.0749 0.0350) 38 (9 , 43) (0.2121   0.2581 0.0308)
14 (2 , 16) (0.0173   0.1154 0.0716) 39 (13 , 13) (0.0001    0.1155 0.0820)
15 (27 , 24) (0.0491   0.1241 0.0519) 40 (9 , 3) (0.0041  0.0562 0.0309)
16 (2 , 14) (0.0139   0.1073 0.0664) 41 (23 , 21) (0.0309   0.1325 0.0877)
17 (8 , 7) (0.0029   0.0515 0.0283) 42 (23 , 8) (0.0005   0.0484 0.0264)
18 (8 , 35) (0.1184   0.1944 0.0574) 43 (2 , 6) (0.0023  0.0569 0.0323)
19 (10 , 23) (0.0405 0.1158 0.0549) 44 (25 , 49) (0.3093 0.1076   0.2482)
20 (3 , 47) (0.5171   0.6714 0.0800) 45 (16 , 5) (0.0100   0.0589 0.0300)
21 (6 , 29) (0.0870   0.2555 0.1988) 46 (6 , 42) (0.3824   0.6424 0.1471)
22 (8 , 7) (0.0011 0.0577 0.0333) 47 (22 , 35) (0.3027   0.7685 0.0648)
23 (1 , 2) (0.0040   0.0729 0.0432) 48 (16 , 14) (0.0005   0.0453 0.0249)
24 (26 , 12) (0.0005   0.0412 0.0217) 49 (23 , 40) (0.1164   0.0907   0.6267)
25 (3 , 44) (0.3982 0.5752 0.0957) 50 (29 , 35) (0.1065   0.1422   0.1135)

Table2. The true values and the definition intervals of the fault plane parameters

Parameters
Parameter

Values
Bounds of

Parameters
Lenght (km) 60 20  100
Width (km) 12 5  15
Depth (km) 1 0  5
Dip (radian) 1.2217 0.8727  2.0944

Strike (radian) 5.4978 4.7124  6.2832
East offset (km) 20 50  0

North offset (km) 40 50  0
Strike Slip (m) 2 5  5
Dip Slip (m) 0.2 5  5

4.2. Results of the SA algorithm. The objective function is analyzed in the
parameter space during the parameter optimization procedure with SA algorithm.
In the absence of any prior information about where the good feasible solutions
might lie, it’s reasonable to set each parameters midway between its lower bound
and upper bound in order to start the search in the middle of the feasible region.
For a sample run, initial parameter set is taken
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p0 = [60 10 2.5 1.48355 4.5978 -25 -25 0 0]. The initial temperature and Boltz-
mann’s constant are considered T0 and c = 0.9, respectively. The inner loop break
condition is taken n×10, where n is the dimension of parameter set. Table 3 shows
the results of SA algorithm for different stopping criteria (Tmin). For each Tmin,
the iteration number and computation time (CPU) are shown together with the
objective function value (f) and estimated values of source parameters (p∗). It can
be seen from the Table 3 that when the Tmin is decreased the loss function value
gets smaller and the calculation period gets longer. The objective function takes
the smallest value when the stopping criteria is choosen 10−12. The change on
temperature and the minimization of loss function value during the search process
of SA are given in Figure 3. It can be seen from Figure 4 that while the tempera-
ture drops constantly from the beginning of the search, the objective function value
given in equation 2.3 reaches the global minimum value.

Table 3. Estimated values of source parameters for T0 = 100 and c = 0.9
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Figure3. Cooling schedule and loss (misfit) function value of SA for Tmin = 10−12

Figure 4. Estimation results of fault plane parameters
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Figure 4 shows the estimation results of source parameters during the search
processes. The broken line illustrates the true values of the parameters. It’s quite
clear that the estimated values of the source parameters are very close to the true
values, given in Table 2, while the algorithm gets the global minimum.
A single run of global converging algorithms is not suffi cient to find the global so-

lutions. The model parameters obtained by several runs may differ from each other
because of the stochastic structure of the algorithm. Since the SA is a probabilistic
search algorithm, different runs may result in dissimilar configurations. Therefore,
several seperate runs are performed to ensure that the true global minimum has
been located. The average results of 100 Monte Carlo simulations for the different
initial values of fault plane parameters and average computation times (ACPU) are
reported in Table 4. The initial temperature, Boltzmann’s constant and stopping
criteria are choosen 100, 0.9, and 10−8 respectively for all test runs. It has been
observed from the simulation results that the average loss function value converges
the global minimum for the arbitrary initials. It can be easily said that SA largely
independent of the initial values and it can escape local minima through selective
uphill moves.

Table 4. The loss function values for the different initials

4.3. Results of the Nelder-Mead simplex method. The tests have been made
on starting points chosen near the optimum and quite far from the optimum gen-
erated inside the parameter interval. Four scalar parameters must be specified to
define a complete Nelder-Mead simplex method; coeffi cients of reflection ρ, expan-
sion χ, contraction γ, and shrinkage σ. These parameters are chosen to satisfy
ρ > 0, χ > 1, 0 < γ < 1, and 0 < σ < 1. In this study, Nelder-Mead simplex
algorithm, composed by [14], is applied to the source parameter estimation scheme.
The coeffi cients of reflection, expansion, contraction and shrinkage are choosen
ρ = 1, χ = 2, γ = 1

2 , and σ = 1
2 , respectively. The stopping criteria is considered

ε = 0.00001. The results of Monte Carlo simulations are given in Table 5. It can
be seen from the results that the Nelder-Mead simplex method requires stringent
initial estimates for the model parameters. The method is only advantageous when
a good initial estimate is provided. If the initial vertices are generated far from
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optimum, the loss function (f) can not reach the global minimum and CPU time
gets large.

Table 5. The simulation results of Nelder-Mead simplex algorithm

5. Conclusions

Estimation of fault plane parameters using classical optimization methods, e.g.,
derivative-nonderivative based optimization methods, Monte-Carlo methods, Least
Squares methods, etc. is often diffi cult because of the nonlinearity of the problem.
These methods need some assumptions to implement on problems and also may
fail to get global solutions of optimization problems. In this paper, SA algorithm is
presented and compared with a derivative-free optimization method, Nelder-Mead
simplex method, for estimating the source parameters. The SA algorithm has
many advantages over other optimization methods. The method has advantages in
dealing with strong nonlinearities and discontiniuties. The SA algorithm sometimes
goes uphill as well as downhill unlike other direct optimization methods. This is
an ability to avoid becoming trapped at local minima.
During the Monte Carlo simulation study, it’s realized that assessing the per-

formance of the Nelder-Mead simplex method is generally problematic due to the
nonconverge of optimal parameter values even if it is more effi cient than other direct
search optimization methods. The simplex method requires strict initial conditions,
whereas the SA algorithm is able to explore the parameter space and focus on the
most promising area without prior knowledge of its location. The simulation results
show that the SA algorithm is an effi cient derivative-free optimization algorithm
with respect to Nelder-Mead simplex method. However, the SA has some draw-
backs. The most remarkable disadvantages of the SA algorithm are (i) spending
much computing time to find the optimum solution and (ii) determining the proper
cooling schedule. In order to obtain better results, the various tunable parameters
used (e.g. initial temperature, final temperature, cooling rate etc.) needed to be
chosen carefully depending on the problem variety.
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Due to its versatility and independence on prior knowledge of the parameter
values, the SA algorithm is particularly applicable to estimate the parameters of
fault plane model that are not solvable using analytical methods. It can be said that
the SA algorithm is a promising tool for estimation of parameters in geosciences.
However, the utility of this procedure to estimate fault plane parameters from real
data has yet to be proven. In the later studies, it’s possible to improve the algorithm
by using different cooling schedules. Using a hybrid optimization strategy based on
SA and gradient based or direct optimization algoritm can provide more effi cient
and accurate estimation of parameters. On the other hand as there are other
well-established heuristics, such as genetic algorithms, Bee and Ant Colony, etc., a
discussion of how good the estimation can be achieved by using them, may lead to
a better estimation procedure.
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doğan, Ankara,TURKEY
E-mail address : turksen@ankara.edu.tr, apaydin@ankara.edu.tr
URL: http://communications.science.ankara.edu.tr/index.php?series=A1


