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ON THE PROPERTIES OF QUASI-QUATERNION ALGEBRA

MEHDI JAFARI

ABSTRACT. We study some fundamental properties of the quasi-quaternions
and derive the De Moivre’s and Euler’s formulae for matrices associated with
these quaternions. Furthermore, with the aid of the De-Moivre’s formula, any
powers of these matrices can be obtained.

1. INTRODUCTION

Quaternions are an efficient way understanding many aspects of physics and
kinematics. Today, quaternions are used especially in the area of computer vision,
computer graphics, animation, and to solve optimization problems involving the
estimation of rigid body transformations [11]. The Euler’s and De-Moivre’s formulae
for the complex numbers are generalized for quaternions [3]. These formulae are also
investigated for the cases of split and dual quaternions in [7,9].

Some algebraic properties of Hamilton operators are considered in [2] where real
quaternions have been expressed in terms of 4 X 4 matrices by means of these
operators. The theory of quaternion matrices has been applied in quaternionic
mechanics and quantum fields [1]. Also, Yayli has considered homothetic motions
with aid of the Hamilton operators in four-dimensional Euclidean space E* [13].
Eigenvalues, eigenvectors and the others algebraic properties of these matrices are
studied by several authors [5,15]. Recently, we have derived the De-Moivre’s and
Euler’s formulae for matrices associated with real quaternion and every power of
these matrices are obtained [6]. A brief introduction of the quasi-quaternions is
provided in [10]. Special Galilean transformation in terms of the quasi-quaternions
considered in [9,15] and De Moivre’s and Euler’s formula for these quaternions are
given in [4].

Here, we investigate some algebraic properties of quasi-quaternions. De-Moivre’s
and Euler’s formulae for these quaternions are given. Also, we derive the nth root
of quasi-quaternions. By the Hamilton operators, these quaternions have been
expressed in terms of 4 x 4 matrices. With the aid of the De-Moivre’s formula,
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we obtain any power of these matrices. Finally, we give some examples for more
clarification.

2.  PRELIMINARIES

In this section, we give a brief summary of the real quaternions. For detailed
information about these concepts, we refer the reader to [12].

Definition 2.1. A real quaternion is defined as
q = 0o + a1t + azj + ask

where a,,a1,as and ag are real numbers and 1,4, j, k of ¢ may be interpreted as
the four basic vectors of Cartesian set of coordinates; and they satisfy the non-
commutative multiplication rules

i? = 2=k =ijk=-1
ij = k=—ji, jk=1i=—kj
and
ki = j=—ik

A quaternion may be defined as a pair (S,, V;) , where S; = a, € R is scalar part
and V, = ayi+azj+ask € R? is the vector part of . The quaternion product of two
quaternions p and ¢ is defined as

pqg = SpSq— Vo, Vo) + SpVy + SV + Vi AV

where”(,)”and ”A” are the inner and vector products in R3, respectively. The
norm of a quaternion is given by the sum of the squares of its components: N, =
a? + a3 + a3+ a%, N, € R. It can also be obtained by multiplying the quaternion
by its conjugate, in either order since a quaternion and its conjugate commute:
N4 = qq = qq. Every non-zero quaternion has a multiplicative inverse given by its
conjugate divided by its norm: ¢~ ! = qu The quaternion algebra H is a normed
division algebra, meaning that for any two quaternions p and ¢, Np; = NpNg,
and the norm of every non-zero quaternion is non-zero (and positive) and therefore
the multiplicative inverse exists for any non-zero quaternion. Of course, as is well
known, multiplication of quaternions is not commutative, so that in general for any
two quaternions p and ¢, pg # gp. This can have subtle ramifications, for example:

2
(pq)” = papq # P*¢°.
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3. QUASI-QUATERNIONS

We introduce a type of quaternion, the quasi-quaternion, which is called %-
quaternion in [10] and dual quaternion in [4, 8, 14].

Definition 3.1. A quasi-quaternion is defined as
q = a0+ aii + azj + azk

where a.,a1,as and ag are real numbers and 1,4,7, k of ¢ may be interpreted
as the four basic vectors of cartesian set of coordinates; and they satisfy the
rules

i = 2=k*=0
ij = ji= jk=kj=ki= ik=0.

The set of all quasi-quaternions are denoted by H°. A quasi-quaternion may be
defined as a pair (Sg, V;) , where S; = a, € R is scalar part and V; = a1i+azj+ask
is the vector part of gq.

The addition rule for quasi-quaternions is component-wise addition:
q+p = (a0 +aii+azj+azk)+ (bo + bii+ baj + bsk)
= (o +bo) + (a1 +b1)i + (a2 +b2)j + (a3 + b3)k.

This rule preserves the associativity and commutativity properties of addition. The
product of scalar and a quasi-quaternion is defined in a straightforward manner. If
cis a scaler and g € H®,

cq = Sy + cVy = (cao)l + (car)i + (caz)j + (cas)k.

The quasi-quaternion product of two quaternions ¢ and p is defined as
ap = S¢Sp + S¢Vp + SpVq = pg.

Also, this can be written as

a 0 0 O bo
o a1 Ao 0 0 b1
w = a9 0 Qo 0 bg

as O 0 Ao b3

Corollary 1. In general case, quaternion multiplication is associative and distrib-
utive with respect to addition and subtraction, but the commutative law does not
hold. For quasi-quaternion multiplication it hold.
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4. SOME PROPERTIES OF QUASI-QUATERNIONS
1) The conjugate of ¢ = ao + a1% + asj + ask = Sq + V, is
G=ao— (a1t +azj +ask) =S, — V.

It is clear the scalar and vector part of g is denoted by S; = 49 and Vo = 4=

2) The norm of ¢ is defined as N, = qg = gq = a2. If N, = 1, then ¢ is called a
unit quasi-quaternion.
Proposition 1. Let p,q € H° and A\, 0 € R. The conjugate and norm of quasi-
quaternions satisfies the following properties;

i) §=q. i) pq = D, iii) A + 0p = AG + 0P,

w) Ngp = NyNp,  v) Nyg = N°N,.

1

3) The inverse of ¢ is defined as ¢+ = quv Ny # 0, with the following properties;

i) (ap)" =p7tat i) (N)T = %a7h i) Np= g

4) To divide a semi-quaternion p by the semi-quaternion ¢(# 0), one simply has
to resolve the equation
rg=p or qy=p,
with the respective solutions

Ng
y = ¢ 'p= Nip,
q
and the relation N, = N, = %—Z

Theorem 4.1. The algebra H® is isomorphic to the subalgebra of the algebra D4
consisting of the (2 X 2)-matrices

P A
i[

Proof. The proof can be found in [10]. O

ey

Theorem 4.2. Let g =14 ait + asj + ask be a unit quasi-quaternion. Then q is
a Galilean transformation in G,.
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Proof. Since ¢q =1+ a1t + azj + azk, we have

gr = (14 a1i+ asj + ask)(zo + z17 + 27 + 23k)
= Zo+ (@120 + 1)t + (D16 + x2)j + (126 + 3)K,
and
llgz|l = =l
Thus g is a Galilean transformation [8]. O

5. DE MOIVRE’S FORMULA FOR QUASI-QAUTERNIONS

Every nonzero quasi-quaternion q¢ = a. + a1i + asj + ask can be written in the
polar form

q=r(cosp+ wWsiny), 0 < p < 27
where r = /N, and

ao . V a2 +a3+ a3
cosp=—, sinp=p=-——"——-,
r r
and the unit vector w is given by
—  aritazjtazjf
o = —— T 2] T =3/

Va2 + a3+ a?

Since W? = 0, we have a natural generalization of Euler’s formula for quasi-
quaternions

(Wy)?

2!

- 1 - — .
= + W = Ccos Y + W sin Y.

€ = 1+ We+

+ ..

for any real number ¢. For detalied information about Euler’s formula, see [4].

Theorem 5.1. (De-Moivre’s formula) Let ¢ = eWe = cos  + W sing be a unit
quasi-quaternion. Then for every integer n;

q" = cosny + W sin nep.

Proof. The proof follows immediately from the induction (see [4]). O
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The formula holds for all integer n since;
— .
q = cosyp — W sinp,
q = cos(—ny) + W sin(—nyp)

— .
= cosny — W sinng.

Example 5.2. Let ¢ = 3+2i —2j+k = 3(cos o+ W sing) be a quasi-quaternion.
Every powers of this quaternion are found to be with the aid of theorem 5.1, for
example, 9-th power is
¢ = 3%cos9yp + W sin9yp)
39(1 + 9).
39(1 +6i — 65 + k).

Corollary 2. The equation ¢ = 1 does not have solution for a general unit quasi-
quaternion.

Example 5.3. Let ¢ = 1+ (1,1,1) be a unit quasi-quaternion. There is no n
(n > 0) such that ¢" =

[t

Theorem 5.4. Let ¢ = 7(cosp + W sinp) be a quasi-quaternion. The equation
x"™ = q has one root and this is
x = {r(cos ? | Wsin f).
n n
Proof. If 2™ = q, q will have the same unit vector as x. So, assume that x =

N (cos > + w sin ») is a root of the equation 2™ = ¢. From theorem 5.1, we have
z" = N"(cosns + W sin nx).

Thus, N" = r and » = £. Therefore, x = {/r(cos £ + W sin £) is a root of the

equation z™ = q. (I

Example 5.5. Let ¢ = 8 +14 —2j +2k = 8(cos ¢+ W sing) be a quasi-quaternion.
The equation 3 = g has a root and this is

1
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6. DE MOIVRE’S FORMULA FOR MATRICES OF QUASI-QAUTERNIONS

In this section, we introduce the R-linear transformations representing left multi-
plication in H° and look for also the De-Moiver’s formula for corresponding matrix
representation. Let ¢ be a quasi-quaternion, then ¢; : H° — H*° defined as follows:

¢(x) =qx, € H".

The Hamilton’s operator ¢;, could be represented as the matrices;

aw 0 0 O
| a1 a 0 O
Aipl - an 0 Ao 0

as 0 0 QAo

We can express the matrix Ay, in polar form. Let ¢ be a unit quasi-quaternion.
Since

g = ao+aii+aj+ask

cos p + W sin ¢

= cosp+ (w1, ws, w3)sine

cos ¢ + (w sin p, weq sin @, w3 sin @)

we have
a 0 0 0 cos ¢ 0 0 0
a a 0 0 | wising cose 0 0
az 0 a 0 | | wesing 0 Cos ¢ 0
az 0 0 ao w3 sin 0 0 cos ¢

Theorem 6.1. (De-Moivre’s formula) Let ¢ = eWe = cos ¢ + W sing be a unit
quasi-quaternion. For an integer n

cos ¢ 0 0 0
| wising cose 0 0
A= wasing 0 cosp 0 (1.1)
w3 sin ¢ 0 0 cos ¢
the n-th power of the matriz A reads
coS 1 0 0 0
n wy sinne cosny 0 0
A" = .
we SIN NY 0 COs N 0
w3 sin N 0 0 cos Ny

Proof. The proof follows immediately from the induction.
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Example 6.2. Let ¢ = 3+ 2i —2j 4+ k = 3(cos ¢ + w sin ¢) be a quasi-quaternion.
The matrix corresponding to this quaternion is

3 0 0 0 [ cos 0 0 0
A= 2 3 00 _3| w sinp cos 0 0
-2 0 3 0 wo Sin ¢ 0 cos ¢ 0

1 0 0 3 | wssing 0 0 CoSs

every powers of this matix are found to be with the aid of theorem 6.1, for example,
15-th power is

1 0 00
A =3 -10 0 1 O
5 0 0 1

7. EULER’'S FORMULA FOR MATRICES ACCOSIATED QUASI-QUATERNIONS

Let A be a matrix. We choose

0 00 0
w00 0
A=l 4 00 0
us 0 0 0

then one immediately finds A2 = 0. We have a netural generalization of Euler’s
formula for matrix A;

(Ap)* | (Ap)®  (Ap)!

et = I +Ap+ TR T
= I4+ Ap
cos p + Asinp,
cos ¢ 0 0 0
B w1 sSing cos 0 0
wa sin ¢ 0 cos ¢ 0
w3 sin ¢ 0 0 coS ¢

8. n—th ROOT OF MATRICES OF QUASI-QUATERNIONS

The matrix accossiated with the quasi-quaternion ¢ is of the form (1.1). The
equation z" = A has one root. Thus

cos £ 0 0 0
AL | W sin £ cos £ 0 0
" ne 0 £
wy sin £ cos £
in @ L
wgsin = 0 0 cos £
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Example 8.1. Let ¢ = 1— 17+ 25 + 2k be a unit quasi-quaternion. The matrix
corresponding to this quaternion is

1 0 0 O

-1 1 0 0

A= 2 01 0

2 0 01

The cube roots of the matrix A can be achieved
1 0 0 O
1 -1 00
r 3

As = § 01 0
5 001

9. CONCLUSION

In this paper, we gave some of algebraic properties of the quasi-quaternions and

investigated the Euler’s and De Moivre’s formulae for these quaternions and also for
the matrices associated with quasi-quaternions. The n—th root of these matrices
are obtained.
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