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ON THE PROPERTIES OF QUASI-QUATERNION ALGEBRA

MEHDI JAFARI

Abstract. We study some fundamental properties of the quasi-quaternions
and derive the De Moivre’s and Euler’s formulae for matrices associated with
these quaternions. Furthermore, with the aid of the De-Moivre’s formula, any
powers of these matrices can be obtained.

1. Introduction

Quaternions are an effi cient way understanding many aspects of physics and
kinematics. Today, quaternions are used especially in the area of computer vision,
computer graphics, animation, and to solve optimization problems involving the
estimation of rigid body transformations [11]. The Euler’s and De-Moivre’s formulae
for the complex numbers are generalized for quaternions [3]. These formulae are also
investigated for the cases of split and dual quaternions in [7, 9].
Some algebraic properties of Hamilton operators are considered in [2] where real

quaternions have been expressed in terms of 4 × 4 matrices by means of these
operators. The theory of quaternion matrices has been applied in quaternionic
mechanics and quantum fields [1]. Also, Yayli has considered homothetic motions
with aid of the Hamilton operators in four-dimensional Euclidean space E4 [13].
Eigenvalues, eigenvectors and the others algebraic properties of these matrices are
studied by several authors [5, 15]. Recently, we have derived the De-Moivre’s and
Euler’s formulae for matrices associated with real quaternion and every power of
these matrices are obtained [6]. A brief introduction of the quasi-quaternions is
provided in [10]. Special Galilean transformation in terms of the quasi-quaternions
considered in [9, 15] and De Moivre’s and Euler’s formula for these quaternions are
given in [4].
Here, we investigate some algebraic properties of quasi-quaternions. De-Moivre’s

and Euler’s formulae for these quaternions are given. Also, we derive the nth root
of quasi-quaternions. By the Hamilton operators, these quaternions have been
expressed in terms of 4 × 4 matrices. With the aid of the De-Moivre’s formula,
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we obtain any power of these matrices. Finally, we give some examples for more
clarification.

2. Preliminaries

In this section, we give a brief summary of the real quaternions. For detailed
information about these concepts, we refer the reader to [12].

Definition 2.1. A real quaternion is defined as

q = a◦ + a1i+ a2j + a3k

where a◦, a1, a2 and a3 are real numbers and 1, i, j, k of q may be interpreted as
the four basic vectors of Cartesian set of coordinates; and they satisfy the non-
commutative multiplication rules

i2 = j2 = k2 = ijk = −1
ij = k = −ji, jk = i = −kj

and

ki = j = −ik.

A quaternion may be defined as a pair (Sq, Vq) , where Sq = a◦ ∈ R is scalar part
and Vq = a1i+a2j+a3k ∈ R3 is the vector part of q. The quaternion product of two
quaternions p and q is defined as

pq = SpSq − 〈Vp, Vq〉+ SpVq + SqVp + Vp ∧ Vq

where”〈, 〉”and ”∧” are the inner and vector products in R3, respectively. The
norm of a quaternion is given by the sum of the squares of its components: Nq =
a2◦ + a21 + a22 + a23, Nq ∈ R. It can also be obtained by multiplying the quaternion
by its conjugate, in either order since a quaternion and its conjugate commute:
Nq = qq = qq. Every non-zero quaternion has a multiplicative inverse given by its
conjugate divided by its norm: q−1 = q

Nq
. The quaternion algebra H is a normed

division algebra, meaning that for any two quaternions p and q, Npq = NpNq,
and the norm of every non-zero quaternion is non-zero (and positive) and therefore
the multiplicative inverse exists for any non-zero quaternion. Of course, as is well
known, multiplication of quaternions is not commutative, so that in general for any
two quaternions p and q, pq 6= qp. This can have subtle ramifications, for example:
(pq)

2
= pqpq 6= p2q2.
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3. quasi-quaternions

We introduce a type of quaternion, the quasi-quaternion, which is called 1
4 -

quaternion in [10] and dual quaternion in [4, 8, 14].

Definition 3.1. A quasi-quaternion is defined as

q = a◦ + a1i+ a2j + a3k

where a◦, a1, a2 and a3 are real numbers and 1, i, j, k of q may be interpreted
as the four basic vectors of cartesian set of coordinates; and they satisfy the
rules

i2 = j2 = k2 = 0

ij = ji = jk = kj = ki = ik = 0.

The set of all quasi-quaternions are denoted by H◦. A quasi-quaternion may be
defined as a pair (Sq, Vq) , where Sq = a◦ ∈ R is scalar part and Vq = a1i+a2j+a3k
is the vector part of q.

The addition rule for quasi-quaternions is component-wise addition:

q + p = (a◦ + a1i+ a2j + a3k) + (b◦ + b1i+ b2j + b3k)

= (a◦ + b◦) + (a1 + b1)i + (a2 + b2)j + (a3 + b3)k.

This rule preserves the associativity and commutativity properties of addition. The
product of scalar and a quasi-quaternion is defined in a straightforward manner. If
c is a scaler and q ∈ H◦,

cq = cSq + cVq = (ca◦)1 + (ca1)i+ (ca2)j + (ca3)k.

The quasi-quaternion product of two quaternions q and p is defined as

qp = SqSp + SqVp + SpVq = pq.

Also, this can be written as

qp =


a◦ 0 0 0
a1 a◦ 0 0
a2 0 a◦ 0
a3 0 0 a◦



b◦
b1
b2
b3

 .
Corollary 1. In general case, quaternion multiplication is associative and distrib-
utive with respect to addition and subtraction, but the commutative law does not
hold. For quasi-quaternion multiplication it hold.
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4. some properties of quasi-quaternions

1) The conjugate of q = a◦ + a1i+ a2j + a3k = Sq + Vq is

q = a◦ − (a1i+ a2j + a3k) = Sq − Vq.
It is clear the scalar and vector part of q is denoted by Sq =

q+q
2 and Vq =

q−q
2 .

2) The norm of q is defined as Nq = qq = qq = a2◦. If Nq = 1, then q is called a

unit quasi-quaternion.

Proposition 1. Let p, q ∈ H◦ and λ, δ ∈ R. The conjugate and norm of quasi-
quaternions satisfies the following properties;

i) q = q, ii) pq = q p, iii) λq + δp = λq + δp,

iv) Nqp = NqNp, v) Nλq = λ2Nq.

3) The inverse of q is defined as q−1 = q
Nq
, Nq 6= 0, with the following properties;

i) (qp)−1 = p−1q−1, ii) (λq)−1 = 1
λq
−1, iii) Nq−1 =

1
Nq
.

4) To divide a semi-quaternion p by the semi-quaternion q( 6= 0), one simply has
to resolve the equation

xq = p or qy = p,

with the respective solutions

x = pq−1 = p
q

Nq
,

y = q−1p =
q

Nq
p,

and the relation Nx = Ny =
Np

Nq
.

Theorem 4.1. The algebra H◦ is isomorphic to the subalgebra of the algebra D2

consisting of the (2× 2)-matrices

Ã =

[
A B
0 A

]
.

Proof. The proof can be found in [10]. �

Theorem 4.2. Let q = 1 + a1i+ a2j + a3k be a unit quasi-quaternion. Then q is
a Galilean transformation in G4.
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Proof. Since q = 1 + a1i+ a2j + a3k, we have

qx = (1 + a1i+ a2j + a3k)(x◦ + x1i+ x2j + x3k)

= x◦ + (a1x◦ + x1)i+ (b1x◦ + x2)j + (c1x◦ + x3)k,

and

‖qx‖ = ‖x‖ .

Thus q is a Galilean transformation [8]. �

5. De Moivre’s formula for quasi-qauternions

Every nonzero quasi-quaternion q = a◦ + a1i+ a2j + a3k can be written in the
polar form

q = r(cosϕ+−→w sinϕ), 0 ≤ ϕ ≤ 2π

where r =
√
Nq and

cosϕ =
a◦
r
, sinϕ = ϕ =

√
a21 + a

2
2 + a

2
3

r
.

and the unit vector −→w is given by

−→w =
a1i+ a2j + a3j√
a21 + a

2
2 + a

2
3

.

Since −→w 2 = 0, we have a natural generalization of Euler’s formula for quasi-
quaternions

e
−→wϕ = 1 +−→wϕ+ (

−→wϕ)2
2!

+ ...

= 1 +−→wϕ = cosϕ+−→w sinϕ.

for any real number ϕ. For detalied information about Euler’s formula, see [4].

Theorem 5.1. (De-Moivre’s formula) Let q = e
−→wϕ = cosϕ + −→w sinϕ be a unit

quasi-quaternion. Then for every integer n;

qn = cosnϕ+−→w sinnϕ.

Proof. The proof follows immediately from the induction (see [4]). �
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The formula holds for all integer n since;

q−1 = cosϕ−−→w sinϕ,
q−n = cos(−nϕ) +−→w sin(−nϕ)

= cosnϕ−−→w sinnϕ.

Example 5.2. Let q = 3+2i− 2j+k = 3(cosϕ+−→w sinϕ) be a quasi-quaternion.
Every powers of this quaternion are found to be with the aid of theorem 5.1, for
example, 9-th power is

q9 = 39(cos 9ϕ+−→w sin 9ϕ)
= 39(1 + 9−→w ).
= 39(1 + 6i− 6j + k).

Corollary 2. The equation qn = 1 does not have solution for a general unit quasi-
quaternion.

Example 5.3. Let q = 1 + (1, 1, 1) be a unit quasi-quaternion. There is no n
(n > 0) such that qn = 1.

Theorem 5.4. Let q = r(cosϕ + −→w sinϕ) be a quasi-quaternion. The equation
xn = q has one root and this is

x = n
√
r(cos

ϕ

n
+−→w sin ϕ

n
).

Proof. If xn = q, q will have the same unit vector as x. So, assume that x =
N(cosκ +−→w sinκ) is a root of the equation xn = q. From theorem 5.1, we have

xn = Nn(cosnκ +−→w sinnκ).
Thus, Nn = r and κ = ϕ

n . Therefore, x =
n
√
r(cos ϕn +

−→w sin ϕn ) is a root of the
equation xn = q. �

Example 5.5. Let q = 8+ i− 2j+2k = 8(cosϕ+−→w sinϕ) be a quasi-quaternion.
The equation x3 = q has a root and this is

x = 2(1 +
1

8
−→w ).
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6. De Moivre’s Formula for Matrices of quasi-Qauternions

In this section, we introduce the R-linear transformations representing left multi-
plication in H◦ and look for also the De-Moiver’s formula for corresponding matrix
representation. Let q be a quasi-quaternion, then ϕl : H

◦ → H◦ defined as follows:

ϕl(x) = qx, x ∈ H◦.

The Hamilton’s operator ϕl, could be represented as the matrices;

Aϕl =


a◦ 0 0 0
a1 a◦ 0 0
a2 0 a◦ 0
a3 0 0 a◦

 .
We can express the matrix Aϕl in polar form. Let q be a unit quasi-quaternion.
Since

q = a◦ + a1i+ a2j + a3k

= cosϕ+−→w sinϕ
= cosϕ+ (w1, w2, w3) sinϕ

= cosϕ+ (w1 sinϕ,w2 sinϕ,w3 sinϕ)

we have 
a◦ 0 0 0
a1 a◦ 0 0
a2 0 a◦ 0
a3 0 0 a◦

 =


cosϕ 0 0 0
w1 sinϕ cosϕ 0 0
w2 sinϕ 0 cosϕ 0
w3 sinϕ 0 0 cosϕ

 .

Theorem 6.1. (De-Moivre’s formula) Let q = e
−→wϕ = cosϕ + −→w sinϕ be a unit

quasi-quaternion. For an integer n

A =


cosϕ 0 0 0
w1 sinϕ cosϕ 0 0
w2 sinϕ 0 cosϕ 0
w3 sinϕ 0 0 cosϕ

 (1.1)

the n-th power of the matrix A reads

An =


cosnϕ 0 0 0
w1 sinnϕ cosnϕ 0 0
w2 sinnϕ 0 cosnϕ 0
w3 sinnϕ 0 0 cosnϕ

 .
Proof. The proof follows immediately from the induction.

�
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Example 6.2. Let q = 3+2i− 2j + k = 3(cosϕ+−→w sinϕ) be a quasi-quaternion.
The matrix corresponding to this quaternion is

A =


3 0 0 0
2 3 0 0
−2 0 3 0
1 0 0 3

 = 3


cosϕ 0 0 0
w1 sinϕ cosϕ 0 0
w2 sinϕ 0 cosϕ 0
w3 sinϕ 0 0 cosϕ


every powers of this matix are found to be with the aid of theorem 6.1, for example,
15-th power is

A15 = 315


1 0 0 0
10 1 0 0
−10 0 1 0
5 0 0 1

 .

7. Euler’s Formula for matrices accosiated quasi-quaternions

Let A be a matrix. We choose

A =


0 0 0 0
u1 0 0 0
u2 0 0 0
u3 0 0 0


then one immediately finds A2 = 0. We have a netural generalization of Euler’s
formula for matrix A;

eAθ = I4 +Aϕ+
(Aϕ)2

2!
+
(Aϕ)3

3!
+
(Aϕ)4

4!
+ ...

= I4 +Aϕ

= cosϕ+A sinϕ,

=


cosϕ 0 0 0
w1 sinϕ cosϕ 0 0
w2 sinϕ 0 cosϕ 0
w3 sinϕ 0 0 cosϕ

 .

8. n− th Root of Matrices of quasi-quaternions

The matrix accossiated with the quasi-quaternion q is of the form (1.1). The
equation xn = A has one root. Thus

A
1
n =


cos ϕn 0 0 0
w1 sin

ϕ
n cos ϕn 0 0

w2 sin
ϕ
n 0 cos ϕn 0

w3 sin
ϕ
n 0 0 cos ϕn

 .
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Example 8.1. Let q = 1 − i + 2j + 2k be a unit quasi-quaternion. The matrix
corresponding to this quaternion is

A =


1 0 0 0
−1 1 0 0
2 0 1 0
2 0 0 1


The cube roots of the matrix A can be achieved

A
1
3 =


1 0 0 0
− 13 1 0 0
2
3 0 1 0
2
3 0 0 1

 .

9. conclusion

In this paper, we gave some of algebraic properties of the quasi-quaternions and
investigated the Euler’s and De Moivre’s formulae for these quaternions and also for
the matrices associated with quasi-quaternions. The n−th root of these matrices
are obtained.
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