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INVARIANT HYPERSURFACES WITH SEMI-SYMMETRIC
METRIC CONNECTION OF F,(K,1)-STRUCTURE MANIFOLD

AYSE CICEK GOZUTOK

ABSTRACT. The aim of this paper is to define induced structure on the tangent
bundle of invariant hypersurface with semi-symmetric metric connection of
a Fg(K,1)—structure manifold and to obtain relations with respect to this
induced structure.

1. INTRODUCTION

A nonzero tensor field F' of the type (1,1) and class C* on an n—dimensional
differentiable manifold M is supposed to satisfy

FK —a?F =0 (1.1)
where @ is a complex number not equal to zero and K > 2 is a positive integer [9].
Let the operators £ and £ on M be defined as [9]:

. pEK-1 . . K-
{=——andi=1-"—3 (1.2)
where I denotes the identity operator on M. From (1.2), we have
ivii fi—iizo, P=i P=f (13)

The equation (1.3) shows that there exist two complementary distributions L
and T in M corresponding to the projection operators ¢ and t, respectively. When
the rank of F is constant and equal to r on M, then L is r—dimensional and 7" is
(n — r)—dimensional. Such a structure is called F, (K, 1)—structure of rank r and
the manifold M with this structure is called a F, (K, 1)—structure manifold [9].

We have the following results [9]

FI=IF=F, Fi=iF=0, (1.4)
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F2U=0F?=F? [?=i{F?=0, (1.5)
FE=20 = jpK-2 = pK-2  PK-2f_ jpK-2_( (1.6)
FE-1 = a2}, FE-1{=0 . (1.7)

Then, FE=1 acts on L as a GF—structure and on 1" as a null operator. Addi-
tionly, if the rank of F' is maximal then F, (K, 1)—structure is a GF—structure.
The Nijenhius tensor of F'is a tensor field of the type (1,2) given by [3]

N(X,Y)=[FX,FY] - F[FX,Y] - F|X,FY]+ F?[X,Y] (1.8)
for any X,YVe X(M). Then, the integrability conditions of F in terms of N follow
from [9]:

Theorem 1.1. A necessary and sufficient condition for the distribution T to be
integrable is that

IN(X,iY) =0
for any X,Y € S§(M).

Theorem 1.2. In order that the distribution L be integrable, it is necessary and
sufficient condition that the equation

N, i7) = 0
is satisfied for any X,Y € S (M).

Theorem 1.3. A necessary and sufficient condition for F to be partially integrable
is that the equation

N({X,0Y) =0
is satisfied for any X,Y € SH(M).

Theorem 1.4. In order that F be integrable, it is necessary and sufficient condition
that the equation

N(X,Y)=0
for any X,Y € S§(M).

2. INVARIANT HYPERSURFACES AND THE INDUCED STRUCTURE

S is a (m — 1)—dimensional imbedded submanifold of M and its imbedding is
denoted by ¢ : S — M [3, 7]. The differential mapping dz is a mapping from
TS into TM, which is called the tangent map of 2, where T'S and T'M are the
tangent bundles of S and M, respectively. The tangent map dz is denoted by B
and B : T'S — T1(S) is an isomorphism. For X,Y € x (9), the following holds:

B[X,Y] = [BX,BY] (2.1)
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Definition 2.1. If the tangent space T,(2(S)) of +(S) is invariant by the linear
mapping F}, at each p € S, then S is called an invariant hypersurface of M, that

is, ' (x (1(5))) € x (2(9)) [2].

In this paper, we shall assume that M is a F,,(K,1)—structure manifold and S
is an invariant hypersurface of M. Since S is an invariant hypersurface, we have

F(BX)=BX (2.2)
for X € x (S), where X is a vector field in S. Thus, we define a tensor field of type
(1,1) in S such that
F:x(S) — x(8),FX =X
From (2.2), we obtain

F(BX) = B(FX). (2.3)

Definition 2.2. The tensor field F' defined by the equation (2.3) is called induced
structure from F' to S [2].

By using the induction method, the equation (2.3) can be generalized as follows:
FK=1(BX) = B(FF7'X) (2.4)

Theorem 2.3. Let N and N be the Nijenhius tensors of F and F, respectively.
Then, we have

N (BX,BY) = BN (X,Y) (2.5)
for X, Y € x(S) [2].

We can easily see that there are two cases for any invariant hypersurface S of
M. Now, we consider these cases.

Case 1. The distribution T' is never tangential to S.

Then, there is no vector field of the type {(BX), where X € x (S). That is, vector
fields of the type BX belong to the distribution L or £(BX) = 0. In contrast to we
assume that with #(BX) # 0. Then, using the equations (1.2) and (2.4), we obtain

1

FK—l) X (2.6)

t(BX)=B (I -

where [ is the identity operator on S. Contrary to the hipothesis, this equation
show that ¢(BX) € T(:(S)). This is a contradiction. Thus, ¢(BX) = 0.

Theorem 2.4. Let the distribution T be never tangential to S. Then, F is a
induced GF—structure in S.
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Proof. From the equation (2.4), we get
B(FE-'X) = FE-Y(BX)

= a/
= @I - 1)(BX)
= a¥(

= B(a*X
for X € x (S). Since B is an isomorphism, FX~1 = @2I. Therefore, F is an induced
G F—structure in S. O

Let § be a Riemann metric on M and V be also the Riemann connection on
the Riemann manifold (M, ). Then, the semi-symmetric metric connection V on
(M, §) is given by
for arbitrary vector fields X and Y in (M, §), where @ is a 1—form in (M, §) and
P is a vector field defined by §(P, X) = w(X) for any vector field X in (M, g) [3)].

Now, we define a tensor field S of the type (1,2) in (M, §) as follows:
S(X,Y)=N(X,Y) - V() - Ve (iX) - {[X,Y] (2.7)
for X,Y e x (M).
Theorem 2.5. Let the distribution T' be never tangential to S. Then, we have
S(BX,BY)= BN (X,Y) (2.8)
for X,Y € x(9).

Proof. If the distribution 7" is never tangential to S, then #(BX) = 0. The proof is
completed from the equations (2.5) and (2.7). O

Definition 2.6. The (K, 1)—structure is said to be normal with respect to v
in M if S =0.

Theorem 2.7. Let the distribution T be never tangential to S. Ifﬁ is normal with
respect to V in M, then F is integrable in S.

Proof. If the distribution 7' be never tangential to S, then {(BX) = 0. Let F be
normal with respect to V in M. Therefore, from Definition 3 and the equation
(2.8), we obtain BN (X,Y) = 0, for X,Y € x(S). Since B is a isomorphism,
N (X,Y) =0, for X,Y € x(5). Then, F is integrable in S. |

Case 2. The distribution T' is always tangential to S.
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By considering (2.6), we can define a tensor field of the type (1,1) on S by
1 _
t=1-— EFK L (2.9)
Therefore, we have
t(BX) = B(tX) (2.10)
for X € x (5).

Theorem 2.8. Let ¢ be a tensor field of the type (1,1) on S, which is defined by
L= ;—QFK*I, Then,

{(BX) = B(X) (2.11)
for X € x ().

Proof. Using the equation (2.4), we obtain

I{(BX) = %FK—l(BX)

1 -
= EB(FK 1X)

1
(e
a

= B((X)
for X € x (5). O

Theorem 2.9. The tensor fields of the type (1,1) t and £ defined by the equations
(2.10) and (2.11) imply
L+t=1, Lt=0

et et (2.12)

Proof. For X € x(95), applying BX to both side of {+i =1, we get B{X+tX) =
X. Since B is an isomorphism, /X +tX = X. Then, £+t = 1.
The other equations can be shown similarly. O

The equation (2.12) show that, ¢t and £ are complementary projection operators
in S. Therefore,

B(FEX) = B(a*FX)
for X € x (S). This implies that
FE —a’F =0. (2.13)

Then, F acts as a F, (K, 1)—structure on S and is called the induced F,(K,1) —
structure on S.
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Theorem 2.10. For the complementary projection operators t and £, satisfying the
equation (2.12) on S, there are the following relations:

BN({X,0Y) = N({BX,IBY),
BN(tX,tY) = N(iBX,{BY),
BtN(X,Y)=iN(BX,BY).

Proof. The proof trivial from the equations (2.3), (2.10) and (2.11). O

For F satisfying the equation (2.13) on S, these exist complementary distrib-
utions 7" and L corresponding to the projection operators ¢ and ¢, respectively.
Hence, the integrability conditions of F' can be given by the following theorems.

Theorem 2.11. The distribution L is integrable in M if and only if L is integrable
in S.
Proof. Let the distribution L be integrable in M. Then, we have {N(BX, BY) =0
for X,Y € x (S). At this point, we get BtN(X,Y) = 0. Since B is an isomorphism,
we obtain tN(X,Y) = 0. Therefore, L is integrable in S.

The other side can be shown similarly. O

Theorem 2.12. The distribution T is integrable in M if and only if T is integrable
in S.
Proof. Let the distribution 7" be integrable in M. Then, we have N ((BX,{BY) =0
for X,Y € x (5).At this point, we get BN (tX,tY) = 0. Since B is an isomorphism,
we obtain N(tX,tY) = 0. Therefore, T' is integrable in S.

The other side can be shown similarly. (I

Theorem 2.13. F is partially integrable in M if and only if F' is partially integrable
in S.
Proof. Let F be partially integrable in M. Then, we have N(éBX, EBY) = 0 for
X,Y € x(S). At this point, we get BN (tX,tY) = 0. Since B is an isomorphism,
we obtain N (¢X,0Y) = 0. Therefore, F' is partially integrable in S.

The other side can be shown similarly. (I

Theorem 2.14. F is integrable in M if and only if F is integrable in S.

Proof. Let F be integrable in M. Then, we have N(BX, BY) = 0 for X,Y € x (5).
At this point, we get BN(X,Y) = 0. Since B is an isomorphism, we obtain
N(X,Y) = 0. Therefore, F' is integrable in S.

The other side can be shown similarly. O

The hypersurface S is a Riemann manifold witlg the induced metric g defined by
9(X,Y) = g(BX,BY), for X,Y € x(S). Then, V is the induced semi-symmetric
metric connection on (5, ¢g) from V, which satisfies the equation

VexBY = B (%XY> +m(X,Y)N (2.14)
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for X, Y € x (5), where m is a tensor field type of (0,2) in S. If m vanishes, then
S is called totally geodesic with respect to V [4].

Now, we define a tensor field S of type (1,2) on S totally geodesic with respect
to V by

S(X,Y) = N(X,Y) 4 Vx(tY) = Vy (tX) — t[X,Y] (2.15)
for X,Y € x (9).
Theorem 2.15. Let S be totally geodesic with respect to V. Then,
S(BX,BY) = BS(X,Y)
for X,Y € x(9).
Proof. Using the equations (2.5) and (2.10), we obtain
BS(X,Y) = BN(X,Y)+ B(VxtY)— B(VytX) — Bt[X,Y]

N(BX,BY) + VpxB(tY) — VpyB(tX) — iB[X,Y]
— N(BX,BY)+ Vpxi(BY) - Vpyi(BX) — {[BX, BY]
— S(BX,BY).

O

Corollary 1. Ifﬁ is normal with respect to V in M, then F is normal with respect
toVin S.

3. THE INDUCED STRUCTURE ON THE TANGENT BUNDLE OF A INVARIANT
HYPERSURFACE

Let TM denote the tangent bundle of M with the projection wp; : TM — M.
According to [5], using the complete lift operation we have the following equalities:

“ " " A\ C
Vf‘(cyc = (VXY> ,
[XC’Y/C] = [Xv?]c’
“ ~ .~ ~N\C
FOX) = (F(X))
FCGC = (FG)°,
FC+G° = (F+@)°,
~ N C
Veve = (Vv
~ n C
NS, = (NF) ,

for X, Y € x(M); F, G € $}(M), where P(t) is a polinomial in one variable ¢.



18 AYSE CICEK GOZUTOK

Theorem 3.1. F is an F,(K,1)—structure in M if and only if the complete lift
FC of I is also an F,(K,1)—structure in TM. Then, F is of rank r if and only if
FC s of rank 2r [10].

Theorem 3.2. Let F' be an F,.(K,1)—structure in M and S be a invariant hyper-
surface of M. Then,

N
(F(X)) = FO(X)° (3.1)
for X € x(+(S)). Here, C denotes the complete lift operation on 7y} (2(S)).

Proof. Since S is an invariant hypersurface, F'(X) belongs to x(z(S)) for X €
x(2(S)). According to [1], we obtain

(FD) = #(F(5)° = #5O(X)° = F(R)C.

Then, FC(X)C belongs to x(T%(S)). Here, # denotes the operation of restriction
to w7 (1(S)). O

Theorem 3.3. Let F' be a F,(K,1)—structure in M. Then, S is a invariant
hypersurface of M if and only if TS is a invariant submanifold of TM .

Proof. Since S is an invariant hypersurface, F(X) belongs to x(z(S)) for X €
x(2(S)). From the equation (3.1), F¢(X)C belongs to x(T%(S)). Also, X is
in x(T¢(S)). Then, FC is invariant on x (T (S)). Therefore, T'S is an invariant
submanifold of T'M.

The other side can be shown similarly. (I

The tangent map of B is denoted by B, where B : T (T'S) — T (T%(S)) is an
isomorphism.

Definition 3.4. The tensor field F of type (1,1) satisfies
FC(BXY) = B(FX©) (3.2)
for X € x(S), is called induced structure from F€ to T'S.

Similarly to (2.4), the equation (3.2) can be generalized as follows:
L NK-1 Lo
(FC) (BXC) = B(FKX©). (3.3)
Theorem 3.5. For X,Y € x (5),
B[X® YY) =[BXY BY"]. (3.4)
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Proof. Using the equation (3.10) in [1] and the equation (2.1), we get

|
<

B[X¢ Y] B[X,Y]¢

(B[X,Y])¢

= [BX,BY]°

= [(BX)%,(BY)“)
[BXC,BY"“].

Theorem 3.6. The induced structure ' on TS is the complete lift of the induced
structure F' on S.

Proof. Using the equation (3.10) in [1] and the equation (3.2), we get

FOBXC) = F°BX)°

for X € x(5). From (3.2), we obtain B(FC¢XC®) = B(FXC). Since B is an
isomorphism, F¢ = F. ([l

Theorem 3.7. Let N and N€ be the Nijenhius tensors of F and F‘C, respectively.
Then,

N¢(BXx©, BY®) = BN (X9,v°) (3.5)

for XY € x(S).
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Proof. Using the equation (3.3), we obtain
NC (BXC, BYC) — [FC(BXC), FC(BYC)] - FC[EC(BXC), BY ]

—FCBXC FC(BY)| + (FO)?[BXY, BY“]

= [B(FX®),B(FY®)] - FC[B(FX®), BY"“]
—FCBXY, B(FY®)| + (F°)?[BX¢,BY "]

= B[FXC FY®] - FCB[FX®, YY)
—FOB[XC FY°] + (FC)?B[X°, Y]

= B[FXY FY®] - BF[FXC Y]
—BF[XY FY®] + BF?X° Y]

= B([FXC FY®) - F[FX° YY)
—FIXC FY°) + F?[X° YY)

= BN(XY YY)

Theorem 3.8. Let NC be the Nijenhius tensors of FO. Then,

for X, Y € x (1(S)).
Proof. From the equation (2.5), N (
e} C
(FEn) = #(¥(x7))
= #NO(X,Y)
NE(XC Y.

Y') belongs to x (2(S)). Therefore, we have

O

Corollary 2. Let N and N be the Nijenhius tensors of F and F, respectively.
Then, N is the complete lift of N.

Proof. From Theorem 23, NC(BXC BYC) = (N(BX,BY))C for X,Y € x(9).
Then, we get

(N(BX, BY))®
— (BN(X,))°

= B(N(X,Y))¢
= BNYX°, YY),

N¢(BX®, BY©)
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Note that the equation (3.5), we obtain BN (X¢,Y¢) = BN (X,Y°). Since B
is a isomorphism, N = N, O

Theorem 3.9. The distribution T' never tangential to S if and only if the distrib-
ution TC never tangential to TS.

Proof. Let the distribution 7' be never tangential to S. Then, t(BX) = 0 for
X € x(S). Since ({(BX))C = i°(BXC), we obtain {°(BX) = 0. Therefore, the
distribution 7°C never tangential to T'S.

The other side can be shown similarly. |

Theorem 3.10. Let the distribution TC be never tangential to T'S. Then, F s
induced GF—structure in T'S.

Proof. Similar to proof of the Theorem 6, we get the desired result. O

Theorem 3.11. Let V be a semi-symmetric metric connection with respect to
V Riemann connection in (M,§). Then, vV s also a semi-symmetric metric

connection with respect to @C Riemann connection in (TM,§%) [11].

Noting that the equation (2.7) we obtain

5¢ (XC.9) = RO(KC,¥9) = 950 (i997) = Ve (i€X9) - ¢ [£°,77]
for X,Y € X (M), on TM.
Theorem 3.12. Let the distribution TC be never tangential to T'S. Then,

5S¢ (BXC, BYC) — BN(X,Y)

for X, Y € x (S).
Proof. Similar to proof of the Theorem 7, we get the desired result. O

Theorem 3.13. F' is normal with respect to NV in M if and only of FC is normal
with respect to v in TM.

Proof. The proof trivial from Definition 3. (]

Theorem 3.14. Let the distribution TC be never tangential to T'S. If FC is normal
with respect to v in TM, then F is integrable in T'S.

Proof. Similar to proof of the Theorem 8, we get the desired result. O

Theorem 3.15. The distribution TC is tangential to T'S if and only of the distri-
bution T s tangential to S.

Proof. Let the distribution 7' be tangential to S. We have {(BX) # 0 for X € x ().
Then, we obtain £©(BXY) # 0. Therefore, the distribution 7 is tangential to T'S.
The other side can be shown similarly. ([l
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If the distribution 7€ is tangential to T'S, then (€ and t© are complementary
projection operators in T'S, for ¢ and ¢ defined by the equations (2.10) and (2.11),
respectively.

Let ¢ and £ be expressed by

(= %FIH and i =1 — %FIH (3.6)
where £ = (¢ and £ = t©.
Theorem 3.16. The operators landt satisfy
i (BXC) - B (ZXC) , i (BXC) = BEXC)
for XY € x(S), on TS.
Proof. From (2.10), we have

ic (BXC) — (#(BX))°
= (B(tx))"
= B(tX)¢
B(t°X°)
= B(X9)
The other equation can be shown similarly. (|

Theorem 3.17. Let the distribution TC be tangential to TS. Then, F is the
induced F,(K,1)—structure on T'S.

Proof. For X € x (S), we obtain
B(FE-1XC) = B(a*XC) = a®B(IXC) = a®i€ (BXC)
= a?EC (BXC) = ®B(FXC®) = B(a*FXC).

Since B is an isomorphism, we get FE-1 _g2F = 0. Then, F is the induced
F,(K,1)—structure on T'S. O

Theorem 3.18. For the complementary projection operators ? and t, which imply
the equation (3.6) on T'S, there are the following relations:

BN({X€ iy€) = NC(i°BXC, I°BY°),

BN(iX€,iY°) = N°({°BX°,i°BY°),

BIN(XC,YC) ={°N¢(BX°,BY©).

Proof. Similar to proof of the Theorem 11, we get the desired result. O
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Let T and L be the distributions corresponding to the projection operators ¢
and [7, respectively. Then, T =TC and L = L€. Therefore, similarly to Theorem
12, Theorem 13, Theorem 14 and Theorem15 the integrability conditions of F are
given in the following theorems.

Theorem 3.19. The distributions T and L are integrable in T'S if and only if the
distributions T and LC are integrable in TM.

Theorem 3.20. F is partially integrable in TS if and only if FC s partially
integrable in TM.

Theorem 3.21. F is integrable in TS if and only if FC is integrable in T M.

For the Riemann metric ¢ in M, the complete lift §© of § is the pseudo-Riemann
metric in TM. Therefore, if we denote the induced metric from ¢ on T'S by g,
then

9(X°,Y9) = ¢“(BX, BY"),
for arbitrary X,V € S§(S). Thus, the complete lift v of the Riemann connection
V in (M, §) is the Riemann connection in the pseudo-Riemann manifold (T M, §©).
Similarly, the complete lift V€ of the induced connection V on (S,g) is also the
Riemann connection in (7'S, g) [1].

. C _
V  is the induced semi-symmetric metric connection from vVetoTS. T hen, we
have

VSyeBYC =B (%C(CYC) +mV (XC,YO)NC + m® (X vyO)NY
for X,Y € x(5) [11].

Theorem 3.22. T'S is totally geodesic with respect to the semi-symmetric metric

- C
connection V  if and only if S is totally geodesic with respect to the semi-symmetric
metric connection V [11].

Let T'S be totally geodesic with respect to %C. Then, we have
_ - ~ /o C
Ve BYC = B (VXC YC)
for X,Y € x (S) [11]. Therefore, we define a tensor field S of type (1,2) by
° ~ o C ~ o C ~ ~
SEUXC YY) = N(XY, YY) + Vye ((YY) — Vye ((X9) — X, V7]
for X, Y € x(S) on T'S.
Theorem 3.23. Let T'S be totally geodesic with respect to ﬁc, Then,
S¢(BXC,BY®) = BSC(x°,Y°)
for XY € x (S).
Proof. Similar to proof of the Theorem 16, we get the desired result. O
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Corollary 3. If FC is normal with respect to ve in TM, then F is normal with

. C
respect to V. in TS.
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