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INVARIANT HYPERSURFACES WITH SEMI-SYMMETRIC
METRIC CONNECTION OF Fa(K, 1)−STRUCTURE MANIFOLD

AYŞE ÇIÇEK GÖZÜTOK

Abstract. The aim of this paper is to define induced structure on the tangent
bundle of invariant hypersurface with semi-symmetric metric connection of
a Fa(K, 1)−structure manifold and to obtain relations with respect to this
induced structure.

1. Introduction

A nonzero tensor field F̂ of the type (1, 1) and class C∞ on an n−dimensional
differentiable manifold M is supposed to satisfy

F̂K − a2F̂ = 0 (1.1)
where a is a complex number not equal to zero and K > 2 is a positive integer [9].
Let the operators ˆ̀ and t̂ on M be defined as [9]:

ˆ̀=
F̂K−1

a2
and t̂ = Î − F̂K−1

a2
(1.2)

where Î denotes the identity operator on M . From (1.2), we have

ˆ̀+ t̂ = Î , ˆ̀̂t = t̂ˆ̀= 0, ˆ̀2 = ˆ̀, t̂2 = t̂. (1.3)

The equation (1.3) shows that there exist two complementary distributions L̂
and T̂ in M corresponding to the projection operators ˆ̀ and t̂, respectively. When
the rank of F̂ is constant and equal to r on M , then L̂ is r−dimensional and T̂ is
(n − r)−dimensional. Such a structure is called Fa(K, 1)−structure of rank r and
the manifold M with this structure is called a Fa(K, 1)−structure manifold [9].
We have the following results [9]

F̂ ˆ̀= ˆ̀F̂ = F̂ , F̂ t̂ = t̂F̂ = 0 , (1.4)
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F̂ 2 ˆ̀= ˆ̀F̂ 2 = F̂ 2, F̂ 2t̂ = t̂F̂ 2 = 0 , (1.5)

F̂K−2 ˆ̀= ˆ̀F̂K−2 = F̂K−2, F̂K−2t̂ = t̂F̂K−2 = 0 , (1.6)

F̂K−1 ˆ̀= a2 ˆ̀, F̂K−1t̂ = 0 . (1.7)

Then, F̂K−1 acts on L̂ as a GF−structure and on T̂ as a null operator. Addi-
tionly, if the rank of F̂ is maximal then Fa(K, 1)−structure is a GF−structure.
The Nijenhius tensor of F̂ is a tensor field of the type (1, 2) given by [3]

N̂(X̂, Ŷ ) = [F̂ X̂, F̂ Ŷ ]− F̂ [F̂ X̂, Ŷ ]− F̂ [X̂, F̂ Ŷ ] + F̂ 2[X̂, Ŷ ] (1.8)

for any X̂, Ŷ ∈ χ(M). Then, the integrability conditions of F̂ in terms of N̂ follow
from [9]:

Theorem 1.1. A necessary and suffi cient condition for the distribution T̂ to be
integrable is that

ˆ̀N̂(t̂X̂, t̂Ŷ ) = 0

for any X̂, Ŷ ∈ =1
0(M).

Theorem 1.2. In order that the distribution L̂ be integrable, it is necessary and
suffi cient condition that the equation

t̂N̂(ˆ̀X̂, ˆ̀Ŷ ) = 0

is satisfied for any X̂, Ŷ ∈ =1
0(M).

Theorem 1.3. A necessary and suffi cient condition for F̂ to be partially integrable
is that the equation

N̂(ˆ̀X̂, ˆ̀Ŷ ) = 0

is satisfied for any X̂, Ŷ ∈ =1
0(M).

Theorem 1.4. In order that F̂ be integrable, it is necessary and suffi cient condition
that the equation

N̂(X̂, Ŷ ) = 0

for any X̂, Ŷ ∈ =1
0(M).

2. Invariant Hypersurfaces and The Induced Structure

S is a (m − 1)−dimensional imbedded submanifold of M and its imbedding is
denoted by ı : S −→ M [3, 7]. The differential mapping dı is a mapping from
TS into TM , which is called the tangent map of ı, where TS and TM are the
tangent bundles of S and M , respectively. The tangent map dı is denoted by B
and B : TS → T ı(S) is an isomorphism. For X,Y ∈ χ (S), the following holds:

B[X,Y ] = [BX,BY ] (2.1)
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Definition 2.1. If the tangent space Tp(ı (S)) of ı(S) is invariant by the linear
mapping F̂p at each p ∈ S, then S is called an invariant hypersurface of M , that
is, F̂ (χ (ı (S))) ⊂ χ (ı (S)) [2].

In this paper, we shall assume that M is a Fa(K, 1)−structure manifold and S
is an invariant hypersurface of M . Since S is an invariant hypersurface, we have

F̂ (BX) = BX́ (2.2)

for X ∈ χ (S), where X́ is a vector field in S. Thus, we define a tensor field of type
(1, 1) in S such that

F : χ(S)→ χ(S), FX = X́

From (2.2), we obtain

F̂ (BX) = B(FX). (2.3)

Definition 2.2. The tensor field F defined by the equation (2.3) is called induced
structure from F̂ to S [2].

By using the induction method, the equation (2.3) can be generalized as follows:

F̂K−1 (BX) = B(FK−1X) (2.4)

Theorem 2.3. Let N̂ and N be the Nijenhius tensors of F̂ and F , respectively.
Then, we have

N̂ (BX,BY ) = BN (X,Y ) (2.5)

for X,Y ∈ χ (S) [2].

We can easily see that there are two cases for any invariant hypersurface S of
M . Now, we consider these cases.

Case 1. The distribution T̂ is never tangential to S.

Then, there is no vector field of the type t̂(BX), whereX ∈ χ (S). That is, vector
fields of the type BX belong to the distribution L̂ or t̂(BX) = 0. In contrast to we
assume that with t̂(BX) 6= 0. Then, using the equations (1.2) and (2.4), we obtain

t̂(BX) = B

(
I − 1

a2
FK−1

)
X (2.6)

where I is the identity operator on S. Contrary to the hipothesis, this equation
show that t̂(BX) ∈ T (ı(S)). This is a contradiction. Thus, t̂(BX) = 0.

Theorem 2.4. Let the distribution T̂ be never tangential to S. Then, F is a
induced GF−structure in S.
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Proof. From the equation (2.4), we get

B(FK−1X) = F̂K−1(BX)

= a2 ˆ̀(BX)

= a2(Î − t̂)(BX)

= a2(BX)

= B(a2X)

for X ∈ χ (S). Since B is an isomorphism, FK−1 = a2I. Therefore, F is an induced
GF−structure in S. �

Let ĝ be a Riemann metric on M and ∇̂ be also the Riemann connection on
the Riemann manifold (M, ĝ). Then, the semi-symmetric metric connection ∇̄ on
(M, ĝ) is given by

∇̄X̂ Ŷ = ∇̂X̂ Ŷ + ŵ(Ŷ )X̂ − ĝ(X̂, Ŷ )P̂

for arbitrary vector fields X̂ and Ŷ in (M, ĝ), where ŵ is a 1−form in (M, ĝ) and
P̂ is a vector field defined by ĝ(P̂ , X̂) = ŵ(X̂) for any vector field X̂ in (M, ĝ) [3].

Now, we define a tensor field S̄ of the type (1, 2) in (M, ĝ) as follows:

S̄(X̂, Ŷ ) = N̂(X̂, Ŷ )− ∇̄X̂(t̂Ŷ )− ∇̄Ŷ (t̂X̂)− t̂[X̂, Ŷ ] (2.7)

for X̂, Ŷ ∈ χ (M).

Theorem 2.5. Let the distribution T̂ be never tangential to S. Then, we have

S̄ (BX,BY ) = BN (X,Y ) (2.8)

for X,Y ∈ χ (S).

Proof. If the distribution T̂ is never tangential to S, then t̂(BX) = 0. The proof is
completed from the equations (2.5) and (2.7). �

Definition 2.6. The Fa(K, 1)−structure is said to be normal with respect to ∇̄
in M if S̄ = 0.

Theorem 2.7. Let the distribution T̂ be never tangential to S. If F̂ is normal with
respect to ∇̄ in M , then F is integrable in S.

Proof. If the distribution T̂ be never tangential to S, then t̂(BX) = 0. Let F̂ be
normal with respect to ∇̄ in M . Therefore, from Definition 3 and the equation
(2.8), we obtain BN (X,Y ) = 0, for X,Y ∈ χ (S). Since B is a isomorphism,
N (X,Y ) = 0, for X,Y ∈ χ (S). Then, F is integrable in S. �

Case 2. The distribution T̂ is always tangential to S.
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By considering (2.6), we can define a tensor field of the type (1, 1) on S by

t = I − 1

a2
FK−1. (2.9)

Therefore, we have

t̂(BX) = B(tX) (2.10)

for X ∈ χ (S).

Theorem 2.8. Let ` be a tensor field of the type (1, 1) on S, which is defined by
` = 1

a2F
K−1. Then,

ˆ̀(BX) = B(`X) (2.11)

for X ∈ χ (S).

Proof. Using the equation (2.4), we obtain

ˆ̀(BX) =
1

a2
F̂K−1(BX)

=
1

a2
B(FK−1X)

= B

(
1

a2
FK−1X

)
= B (`X)

for X ∈ χ (S). �

Theorem 2.9. The tensor fields of the type (1, 1) t and ` defined by the equations
(2.10) and (2.11) imply

`+ t = I, `t = 0
`2 = `, t2 = t

. (2.12)

Proof. For X ∈ χ (S) , applying BX to both side of ˆ̀+ t̂ = Î, we get B(`X+ tX) =
X. Since B is an isomorphism, `X + tX = X. Then, `+ t = I.
The other equations can be shown similarly. �

The equation (2.12) show that, t and ` are complementary projection operators
in S. Therefore,

B(FKX) = B(a2FX)

for X ∈ χ (S). This implies that

FK − a2F = 0. (2.13)

Then, F acts as a Fa(K, 1)−structure on S and is called the induced Fa(K, 1) −
structure on S.
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Theorem 2.10. For the complementary projection operators t and `, satisfying the
equation (2.12) on S, there are the following relations:

BN(`X, `Y ) = N̂(ˆ̀BX, ˆ̀BY ),

BN(tX, tY ) = N̂(t̂BX, t̂BY ),

BtN(X,Y ) = t̂N̂(BX,BY ).

Proof. The proof trivial from the equations (2.3), (2.10) and (2.11). �
For F satisfying the equation (2.13) on S, these exist complementary distrib-

utions T and L corresponding to the projection operators t and `, respectively.
Hence, the integrability conditions of F can be given by the following theorems.

Theorem 2.11. The distribution L̂ is integrable in M if and only if L is integrable
in S.

Proof. Let the distribution L̂ be integrable in M . Then, we have t̂N̂(BX,BY ) = 0
for X,Y ∈ χ (S). At this point, we get BtN(X,Y ) = 0. Since B is an isomorphism,
we obtain tN(X,Y ) = 0. Therefore, L is integrable in S.
The other side can be shown similarly. �

Theorem 2.12. The distribution T̂ is integrable in M if and only if T is integrable
in S.

Proof. Let the distribution T̂ be integrable inM . Then, we have N̂(t̂BX, t̂BY ) = 0
for X,Y ∈ χ (S).At this point, we get BN(tX, tY ) = 0. Since B is an isomorphism,
we obtain N(tX, tY ) = 0. Therefore, T is integrable in S.
The other side can be shown similarly. �

Theorem 2.13. F̂ is partially integrable inM if and only if F is partially integrable
in S.

Proof. Let F̂ be partially integrable in M . Then, we have N̂(ˆ̀BX, ˆ̀BY ) = 0 for
X,Y ∈ χ (S). At this point, we get BN(tX, tY ) = 0. Since B is an isomorphism,
we obtain N(`X, `Y ) = 0. Therefore, F is partially integrable in S.
The other side can be shown similarly. �

Theorem 2.14. F̂ is integrable in M if and only if F is integrable in S.

Proof. Let F̂ be integrable inM . Then, we have N̂(BX,BY ) = 0 for X,Y ∈ χ (S).
At this point, we get BN(X,Y ) = 0. Since B is an isomorphism, we obtain
N(X,Y ) = 0. Therefore, F is integrable in S.
The other side can be shown similarly. �
The hypersurface S is a Riemann manifold with the induced metric g defined by

g(X,Y ) = ĝ(BX,BY ), for X,Y ∈ χ (S). Then, ∇̊ is the induced semi-symmetric
metric connection on (S, g) from ∇̄, which satisfies the equation

∇̄BXBY = B
(
∇̊XY

)
+m(X,Y )N (2.14)
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for X,Y ∈ χ (S), where m is a tensor field type of (0, 2) in S. If m vanishes, then
S is called totally geodesic with respect to ∇̊ [4].
Now, we define a tensor field S̊ of type (1, 2) on S totally geodesic with respect

to ∇̊ by
S̊(X,Y ) = N(X,Y ) + ∇̊X(tY )− ∇̊Y (tX)− t[X,Y ] (2.15)

for X,Y ∈ χ (S).

Theorem 2.15. Let S be totally geodesic with respect to ∇̊. Then,
S̄(BX,BY ) = BS̊(X,Y )

for X,Y ∈ χ (S).

Proof. Using the equations (2.5) and (2.10), we obtain

BS̊(X,Y ) = BN(X,Y ) +B(∇̊XtY )−B(∇̊Y tX)−Bt[X,Y ]

= N̂(BX,BY ) + ∇̄BXB(tY )− ∇̄BYB(tX)− t̂B[X,Y ]

= N̂(BX,BY ) + ∇̄BX t̂(BY )− ∇̄BY t̂(BX)− t̂[BX,BY ]

= S̄(BX,BY ).

�

Corollary 1. If F̂ is normal with respect to ∇̄ in M , then F is normal with respect
to ∇̊ in S.

3. The Induced Structure on The Tangent Bundle of A Invariant
Hypersurface

Let TM denote the tangent bundle of M with the projection πM : TM → M .
According to [5], using the complete lift operation we have the following equalities:

∇̂CX̂C Ŷ C =
(
∇̂X̂ Ŷ

)C
,

[X̂C , Ŷ C ] = [X̂, Ŷ ]C ,

F̂C(X̂C) =
(
F̂ (X̂)

)C
,

F̂CĜC = (F̂ Ĝ)C ,

F̂C + ĜC = (F̂ + Ĝ)C ,

∇̂CXCY C =
(
∇̂XY

)C
N̂C
F̂C =

(
N̂F̂

)C
,(

P (F̂ )
)C

= P (F̂C)

for X̂, Ŷ ∈ χ (M); F̂ , Ĝ ∈ =1
1(M), where P (t) is a polinomial in one variable t.
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Theorem 3.1. F̂ is an Fa(K, 1)−structure in M if and only if the complete lift
F̂C of F̂ is also an Fa(K, 1)−structure in TM . Then, F̂ is of rank r if and only if
F̂C is of rank 2r [10].

Theorem 3.2. Let F̂ be an Fa(K, 1)−structure in M and S be a invariant hyper-
surface of M . Then, (

F̂ (X̄)
)C̄

= F̂C(X̄)C̄ (3.1)

for X̄ ∈ χ(ı (S)). Here, C̄ denotes the complete lift operation on π−1
M (ı(S)).

Proof. Since S is an invariant hypersurface, F̂ (X̄) belongs to χ(ı (S)) for X̄ ∈
χ(ı (S)). According to [1], we obtain(

F̂ (X̄)
)C̄

= #(F̂ (X̂))C = #F̂C(X̂)C = F̂C(X̄)C̄ .

Then, F̂C(X̄)C̄ belongs to χ(T ı (S)). Here, # denotes the operation of restriction
to π−1

M (ı(S)). �

Theorem 3.3. Let F̂ be a Fa(K, 1)−structure in M . Then, S is a invariant
hypersurface of M if and only if TS is a invariant submanifold of TM .

Proof. Since S is an invariant hypersurface, F̂ (X̄) belongs to χ(ı (S)) for X̄ ∈
χ(ı (S)). From the equation (3.1), F̂C(X̄)C̄ belongs to χ(T ı (S)). Also, X̄C̄ is
in χ(T ı (S)). Then, F̂C is invariant on χ(T ı (S)). Therefore, TS is an invariant
submanifold of TM .
The other side can be shown similarly. �

The tangent map of B is denoted by B̃, where B̃ : T (TS) → T (T ı(S)) is an
isomorphism.

Definition 3.4. The tensor field F̃ of type (1, 1) satisfies

F̂C(B̃XC) = B̃(F̃XC) (3.2)

for X ∈ χ(S), is called induced structure from F̂C to TS.

Similarly to (2.4), the equation (3.2) can be generalized as follows:(
F̂C
)K−1

(B̃XC) = B̃(F̃KXC). (3.3)

Theorem 3.5. For X,Y ∈ χ (S),

B̃[XC , Y C ] = [B̃XC , B̃Y C ]. (3.4)
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Proof. Using the equation (3.10) in [1] and the equation (2.1), we get

B̃[XC , Y C ] = B̃[X,Y ]C

= (B[X,Y ])C̄

= [BX,BY ]C̄

= [(BX)C̄ , (BY )C̄ ])

= [B̃XC , B̃Y C ].

�

Theorem 3.6. The induced structure F̃ on TS is the complete lift of the induced
structure F on S.

Proof. Using the equation (3.10) in [1] and the equation (3.2), we get

F̂C(B̃XC) = F̂C(BX)C̄

= (F̂ (BX))C̄

= (B(FX))C̄

= B̃(FX)C

= B̃(FCXC)

for X ∈ χ(S). From (3.2), we obtain B̃(FCXC) = B̃(F̃XC). Since B̃ is an
isomorphism, FC = F̃ . �

Theorem 3.7. Let Ñ and N̂C be the Nijenhius tensors of F̃ and F̂C , respectively.
Then,

N̂C
(
B̃XC , B̃Y C

)
= B̃Ñ

(
XC , Y C

)
(3.5)

for X,Y ∈ χ (S).
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Proof. Using the equation (3.3), we obtain

N̂C
(
B̃XC , B̃Y C

)
= [F̂C(B̃XC), F̂C(B̃Y C)]− F̂C [F̂C(B̃XC), B̃Y C ]

−F̂C [B̃XC , F̂C(B̃Y C)] + (F̂C)2[B̃XC , B̃Y C ]

= [B̃(F̃XC), B̃(F̃ Y C)]− F̂C [B̃(F̃XC), B̃Y C ]

−F̂C [B̃XC , B̃(F̃ Y C)] + (F̂C)2[B̃XC , B̃Y C ]

= B̃[F̃XC , F̃ Y C ]− F̂CB̃[F̃XC , Y C ]

−F̂CB̃[XC , F̃ Y C ] + (F̂C)2B̃[XC , Y C ]

= B̃[F̃XC , F̃ Y C ]− B̃F̃ [F̃XC , Y C ]

−B̃F̃ [XC , F̃ Y C ] + B̃F̃ 2[XC , Y C ]

= B̃([F̃XC , F̃ Y C ]− F̃ [F̃XC , Y C ]

−F̃ [XC , F̃ Y C ] + F̃ 2[XC , Y C ])

= B̃Ñ(XC , Y C).

�

Theorem 3.8. Let N̂C be the Nijenhius tensors of F̂C . Then,(
N̂
(
X̄, Ȳ

))C̄
= N̂C

(
X̄C̄ , Ȳ C̄

)
for X̄, Ȳ ∈ χ (ı(S)).

Proof. From the equation (2.5), N̂
(
X̄, Ȳ

)
belongs to χ (ı(S)). Therefore, we have(

N̂
(
X̄, Ȳ

))C̄
= #

(
N̂
(
X̂, Ŷ

))C
= #N̂C(X̂C , Ŷ C)

= N̂C(X̄C̄ , Ȳ C̄).

�

Corollary 2. Let Ñ and N be the Nijenhius tensors of F̃ and F , respectively.
Then, Ñ is the complete lift of N .

Proof. From Theorem 23, N̂C(B̃XC , B̃Y C) = (N̂(BX,BY ))C̄ for X,Y ∈ χ(S).
Then, we get

N̂C(B̃XC , B̃Y C) = (N̂(BX,BY ))C̄

= (BN(X,Y ))C̄

= B̃(N(X,Y ))C

= B̃NC(XC , Y C).
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Note that the equation (3.5), we obtain B̃NC(XC , Y C) = B̃Ñ
(
XC , Y C

)
. Since B̃

is a isomorphism, Ñ = NC . �

Theorem 3.9. The distribution T̂ never tangential to S if and only if the distrib-
ution T̂C never tangential to TS.

Proof. Let the distribution T̂ be never tangential to S. Then, t̂(BX) = 0 for
X ∈ χ(S). Since (t̂(BX))C̄ = t̂C(B̃XC), we obtain t̂C(B̃XC) = 0. Therefore, the
distribution T̂C never tangential to TS.
The other side can be shown similarly. �

Theorem 3.10. Let the distribution T̂C be never tangential to TS. Then, F̃ is
induced GF−structure in TS.

Proof. Similar to proof of the Theorem 6, we get the desired result. �
Theorem 3.11. Let ∇̄ be a semi-symmetric metric connection with respect to
∇̂ Riemann connection in (M, ĝ). Then, ∇̄C is also a semi-symmetric metric

connection with respect to ∇̂C Riemann connection in (TM, ĝC) [11].

Noting that the equation (2.7) we obtain

S̄C
(
X̂C , Ŷ C

)
= N̂C(X̂C , Ŷ C)− ∇̄CX̂C

(
t̂C Ŷ C

)
− ∇̄CŶ C (t̂CX̂C)− t̂C

[
X̂C , Ŷ C

]
for X̂, Ŷ ∈ χ (M), on TM .

Theorem 3.12. Let the distribution T̂C be never tangential to TS. Then,

S̄C
(
B̃XC , B̃Y C

)
= B̃Ñ(X̃, Ỹ )

for X,Y ∈ χ (S).

Proof. Similar to proof of the Theorem 7, we get the desired result. �

Theorem 3.13. F̂ is normal with respect to ∇̄ in M if and only of F̂C is normal
with respect to ∇̄C in TM .

Proof. The proof trivial from Definition 3. �

Theorem 3.14. Let the distribution T̂C be never tangential to TS. If F̂C is normal
with respect to ∇̄C in TM , then F̃ is integrable in TS.

Proof. Similar to proof of the Theorem 8, we get the desired result. �

Theorem 3.15. The distribution T̂C is tangential to TS if and only of the distri-
bution T̂ is tangential to S.

Proof. Let the distribution T̂ be tangential to S. We have t̂(BX) 6= 0 forX ∈ χ (S).
Then, we obtain t̂C(B̃XC) 6= 0. Therefore, the distribution T̂C is tangential to TS.
The other side can be shown similarly. �
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If the distribution T̂C is tangential to TS, then `C and tC are complementary
projection operators in TS, for ` and t defined by the equations (2.10) and (2.11),
respectively.
Let ˜̀ and t̃ be expressed by

˜̀=
1

a2
F̃K−1 and t̃ = I − 1

a2
F̃K−1 (3.6)

where ˜̀= `C and t̃ = tC .

Theorem 3.16. The operators ˜̀ and t̃ satisfy

ˆ̀C
(
B̃XC

)
= B̃

(
˜̀XC

)
, t̂C

(
B̃XC

)
= B̃(t̃XC)

for X,Y ∈ χ (S), on TS.

Proof. From (2.10), we have

t̂C
(
B̃XC

)
= (t̂(BX))C̄

= (B(tX))C̄

= B̃(tX)C

= B̃(tCXC)

= B̃(t̃XC).

The other equation can be shown similarly. �

Theorem 3.17. Let the distribution T̂C be tangential to TS. Then, F̃ is the
induced Fa(K, 1)−structure on TS.

Proof. For X ∈ χ (S), we obtain

B̃(F̃K−1XC) = B̃(a2 ˜̀XC) = a2B̃(˜̀XC) = a2 ˆ̀C
(
B̃XC

)
= a2F̂C

(
B̃XC

)
= a2B̃(F̃XC) = B̃(a2F̃XC).

Since B̃ is an isomorphism, we get F̃K−1 − a2F̃ = 0. Then, F̃ is the induced
Fa(K, 1)−structure on TS. �

Theorem 3.18. For the complementary projection operators ˜̀ and t̃, which imply
the equation (3.6) on TS, there are the following relations:

B̃Ñ(˜̀XC , ˜̀Y C) = N̂C(ˆ̀CB̃XC , ˆ̀CB̃Y C),

B̃Ñ(t̃XC , t̃Y C) = N̂C(t̂CB̃XC , t̂CB̃Y C),

B̃t̃Ñ(XC , Y C) = t̂CN̂C(B̃XC , B̃Y C).

Proof. Similar to proof of the Theorem 11, we get the desired result. �
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Let T̃ and L̃ be the distributions corresponding to the projection operators t̃
and ˜̀, respectively. Then, T̃ = TC and L̃ = LC . Therefore, similarly to Theorem
12, Theorem 13, Theorem 14 and Theorem15 the integrability conditions of F̃ are
given in the following theorems.

Theorem 3.19. The distributions T̃ and L̃ are integrable in TS if and only if the
distributions T̂C and L̂C are integrable in TM .

Theorem 3.20. F̃ is partially integrable in TS if and only if F̂C is partially
integrable in TM .

Theorem 3.21. F̃ is integrable in TS if and only if F̂C is integrable in TM .

For the Riemann metric ĝ inM , the complete lift ĝC of ĝ is the pseudo-Riemann
metric in TM . Therefore, if we denote the induced metric from ĝC on TS by g̃,
then

g̃(XC , Y C) = ĝC(B̃XC , B̃Y C),

for arbitrary X,Y ∈ =1
0(S). Thus, the complete lift ∇̂C of the Riemann connection

∇̂ in (M, ĝ) is the Riemann connection in the pseudo-Riemann manifold (TM, ĝC).
Similarly, the complete lift ∇C of the induced connection ∇ on (S, g) is also the
Riemann connection in (TS, g̃) [1].

∇̊C is the induced semi-symmetric metric connection from ∇̄C to TS. Then, we
have

∇̄CB̃XC B̃Y C = B̃
(
∇̊CXCY C

)
+mV (XC , Y C)N C̄ +mC(XC , Y C)N V̄

for X,Y ∈ χ (S) [11].

Theorem 3.22. TS is totally geodesic with respect to the semi-symmetric metric
connection ∇̊C if and only if S is totally geodesic with respect to the semi-symmetric
metric connection ∇̊ [11].

Let TS be totally geodesic with respect to ∇̊C . Then, we have

∇̄CB̃XC B̃Y C = B̃
(
∇̊CXCY C

)
for X,Y ∈ χ (S) [11]. Therefore, we define a tensor field S̊C of type (1, 2) by

S̊C(XC , Y C) = Ñ(XC , Y C) + ∇̊CXC

(
t̃Y C

)
− ∇̊CY C

(
t̃XC

)
− t̃[XC , Y C ]

for X,Y ∈ χ (S) on TS.

Theorem 3.23. Let TS be totally geodesic with respect to ∇̊C . Then,
S̄C(B̃XC , B̃Y C) = B̃S̊C(XC , Y C)

for X,Y ∈ χ (S).

Proof. Similar to proof of the Theorem 16, we get the desired result. �
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Corollary 3. If F̂C is normal with respect to ∇̄C in TM , then F̃ is normal with

respect to ∇̊C in TS.
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