INVARIANT HYPERSURFACES WITH SEMI-SYMMETRIC METRIC CONNECTION OF $F_{a}(K, 1)$-STRUCTURE MANIFOLD

AYŞE ÇIÇEK GÖZÜTOK

Abstract

The aim of this paper is to define induced structure on the tangent bundle of invariant hypersurface with semi-symmetric metric connection of a $F_{a}(K, 1)$-structure manifold and to obtain relations with respect to this induced structure.

1. Introduction

A nonzero tensor field \hat{F} of the type $(1,1)$ and class C^{∞} on an n-dimensional differentiable manifold M is supposed to satisfy

$$
\begin{equation*}
\hat{F}^{K}-a^{2} \hat{F}=0 \tag{1.1}
\end{equation*}
$$

where a is a complex number not equal to zero and $K>2$ is a positive integer [9].
Let the operators $\hat{\ell}$ and \hat{t} on M be defined as [9]:

$$
\begin{equation*}
\hat{\ell}=\frac{\hat{F}^{K-1}}{a^{2}} \text { and } \hat{t}=\hat{I}-\frac{\hat{F}^{K-1}}{a^{2}} \tag{1.2}
\end{equation*}
$$

where \hat{I} denotes the identity operator on M. From (1.2), we have

$$
\begin{equation*}
\hat{\ell}+\hat{t}=\hat{I}, \quad \hat{\ell} \hat{t}=\hat{t} \hat{\ell}=0, \quad \hat{\ell}^{2}=\hat{\ell}, \quad \hat{t}^{2}=\hat{t} \tag{1.3}
\end{equation*}
$$

The equation (1.3) shows that there exist two complementary distributions \hat{L} and \hat{T} in M corresponding to the projection operators $\hat{\ell}$ and \hat{t}, respectively. When the rank of \hat{F} is constant and equal to r on M, then \hat{L} is r-dimensional and \hat{T} is $(n-r)$-dimensional. Such a structure is called $F_{a}(K, 1)$-structure of rank r and the manifold M with this structure is called a $F_{a}(K, 1)$-structure manifold [9].

We have the following results [9]

$$
\begin{equation*}
\hat{F} \hat{\ell}=\hat{\ell} \hat{F}=\hat{F}, \quad \hat{F} \hat{t}=\hat{t} \hat{F}=0 \tag{1.4}
\end{equation*}
$$

[^0]\[

$$
\begin{gather*}
\hat{F}^{2} \hat{\ell}=\hat{\ell} \hat{F}^{2}=\hat{F}^{2}, \quad \hat{F}^{2} \hat{t}=\hat{t} \hat{F}^{2}=0 \tag{1.5}\\
\hat{F}^{K-2} \hat{\ell}=\hat{\ell} \hat{F}^{K-2}=\hat{F}^{K-2}, \quad \hat{F}^{K-2} \hat{t}=\hat{t} \hat{F}^{K-2}=0, \tag{1.6}\\
\hat{F}^{K-1} \hat{\ell}=a^{2} \hat{\ell}, \quad \hat{F}^{K-1} \hat{t}=0 \tag{1.7}
\end{gather*}
$$
\]

Then, \hat{F}^{K-1} acts on \hat{L} as a $G F$-structure and on \hat{T} as a null operator. Additionly, if the rank of \hat{F} is maximal then $F_{a}(K, 1)$-structure is a $G F$-structure.

The Nijenhius tensor of \hat{F} is a tensor field of the type $(1,2)$ given by [3]

$$
\begin{equation*}
\hat{N}(\hat{X}, \hat{Y})=[\hat{F} \hat{X}, \hat{F} \hat{Y}]-\hat{F}[\hat{F} \hat{X}, \hat{Y}]-\hat{F}[\hat{X}, \hat{F} \hat{Y}]+\hat{F}^{2}[\hat{X}, \hat{Y}] \tag{1.8}
\end{equation*}
$$

for any $\hat{X}, \hat{Y} \in \chi(M)$. Then, the integrability conditions of \hat{F} in terms of \hat{N} follow from [9]:

Theorem 1.1. A necessary and sufficient condition for the distribution \hat{T} to be integrable is that

$$
\hat{\ell} \hat{N}(\hat{t} \hat{X}, \hat{t} \hat{Y})=0
$$

for any $\hat{X}, \hat{Y} \in \Im_{0}^{1}(M)$.
Theorem 1.2. In order that the distribution \hat{L} be integrable, it is necessary and sufficient condition that the equation

$$
\hat{t} \hat{N}(\hat{\ell} \hat{X}, \hat{\ell} \hat{Y})=0
$$

is satisfied for any $\hat{X}, \hat{Y} \in \Im_{0}^{1}(M)$.
Theorem 1.3. A necessary and sufficient condition for \hat{F} to be partially integrable is that the equation

$$
\hat{N}(\hat{\ell} \hat{X}, \hat{\ell} \hat{Y})=0
$$

is satisfied for any $\hat{X}, \hat{Y} \in \Im_{0}^{1}(M)$.
Theorem 1.4. In order that \hat{F} be integrable, it is necessary and sufficient condition that the equation

$$
\hat{N}(\hat{X}, \hat{Y})=0
$$

for any $\hat{X}, \hat{Y} \in \Im_{0}^{1}(M)$.

2. Invariant Hypersurfaces and The Induced Structure

S is a $(m-1)$-dimensional imbedded submanifold of M and its imbedding is denoted by $\imath: S \longrightarrow M[3,7]$. The differential mapping $d \imath$ is a mapping from $T S$ into $T M$, which is called the tangent map of \imath, where $T S$ and $T M$ are the tangent bundles of S and M, respectively. The tangent map d_{\imath} is denoted by B and $B: T S \rightarrow T \imath(S)$ is an isomorphism. For $X, Y \in \chi(S)$, the following holds:

$$
\begin{equation*}
B[X, Y]=[B X, B Y] \tag{2.1}
\end{equation*}
$$

Definition 2.1. If the tangent space $T_{p}(\imath(S))$ of $\imath(S)$ is invariant by the linear mapping \hat{F}_{p} at each $p \in S$, then S is called an invariant hypersurface of M, that is, $\hat{F}(\chi(\imath(S))) \subset \chi(\imath(S))[2]$.

In this paper, we shall assume that M is a $F_{a}(K, 1)$-structure manifold and S is an invariant hypersurface of M. Since S is an invariant hypersurface, we have

$$
\begin{equation*}
\hat{F}(B X)=B \dot{X} \tag{2.2}
\end{equation*}
$$

for $X \in \chi(S)$, where X is a vector field in S. Thus, we define a tensor field of type $(1,1)$ in S such that

$$
F: \chi(S) \rightarrow \chi(S), F X=\dot{X}
$$

From (2.2), we obtain

$$
\begin{equation*}
\hat{F}(B X)=B(F X) \tag{2.3}
\end{equation*}
$$

Definition 2.2. The tensor field F defined by the equation (2.3) is called induced structure from \hat{F} to S [2].

By using the induction method, the equation (2.3) can be generalized as follows:

$$
\begin{equation*}
\hat{F}^{K-1}(B X)=B\left(F^{K-1} X\right) \tag{2.4}
\end{equation*}
$$

Theorem 2.3. Let \hat{N} and N be the Nijenhius tensors of \hat{F} and F, respectively. Then, we have

$$
\begin{equation*}
\hat{N}(B X, B Y)=B N(X, Y) \tag{2.5}
\end{equation*}
$$

for $X, Y \in \chi(S)[2]$.
We can easily see that there are two cases for any invariant hypersurface S of M. Now, we consider these cases.

Case 1. The distribution \hat{T} is never tangential to S.
Then, there is no vector field of the type $\hat{t}(B X)$, where $X \in \chi(S)$. That is, vector fields of the type $B X$ belong to the distribution \hat{L} or $\hat{t}(B X)=0$. In contrast to we assume that with $\hat{t}(B X) \neq 0$. Then, using the equations (1.2) and (2.4), we obtain

$$
\begin{equation*}
\hat{t}(B X)=B\left(I-\frac{1}{a^{2}} F^{K-1}\right) X \tag{2.6}
\end{equation*}
$$

where I is the identity operator on S. Contrary to the hipothesis, this equation show that $\hat{t}(B X) \in T(\imath(S))$. This is a contradiction. Thus, $\hat{t}(B X)=0$.

Theorem 2.4. Let the distribution \hat{T} be never tangential to S. Then, F is a induced $G F$-structure in S.

Proof. From the equation (2.4), we get

$$
\begin{aligned}
B\left(F^{K-1} X\right) & =\hat{F}^{K-1}(B X) \\
& =a^{2} \hat{\ell}(B X) \\
& =a^{2}(\hat{I}-\hat{t})(B X) \\
& =a^{2}(B X) \\
& =B\left(a^{2} X\right)
\end{aligned}
$$

for $X \in \chi(S)$. Since B is an isomorphism, $F^{K-1}=a^{2} I$. Therefore, F is an induced $G F$-structure in S.

Let \hat{g} be a Riemann metric on M and $\hat{\nabla}$ be also the Riemann connection on the Riemann manifold (M, \hat{g}). Then, the semi-symmetric metric connection $\bar{\nabla}$ on (M, \hat{g}) is given by

$$
\bar{\nabla}_{\hat{X}} \hat{Y}=\hat{\nabla}_{\hat{X}} \hat{Y}+\hat{w}(\hat{Y}) \hat{X}-\hat{g}(\hat{X}, \hat{Y}) \hat{P}
$$

for arbitrary vector fields \hat{X} and \hat{Y} in (M, \hat{g}), where \hat{w} is a 1 -form in (M, \hat{g}) and \hat{P} is a vector field defined by $\hat{g}(\hat{P}, \hat{X})=\hat{w}(\hat{X})$ for any vector field \hat{X} in (M, \hat{g}) [3].

Now, we define a tensor field \bar{S} of the type $(1,2)$ in (M, \hat{g}) as follows:

$$
\begin{equation*}
\bar{S}(\hat{X}, \hat{Y})=\hat{N}(\hat{X}, \hat{Y})-\bar{\nabla}_{\hat{X}}(\hat{t} \hat{Y})-\bar{\nabla}_{\hat{Y}}(\hat{t} \hat{X})-\hat{t}[\hat{X}, \hat{Y}] \tag{2.7}
\end{equation*}
$$

for $\hat{X}, \hat{Y} \in \chi(M)$.
Theorem 2.5. Let the distribution \hat{T} be never tangential to S. Then, we have

$$
\begin{equation*}
\bar{S}(B X, B Y)=B N(X, Y) \tag{2.8}
\end{equation*}
$$

for $X, Y \in \chi(S)$.
Proof. If the distribution \hat{T} is never tangential to S, then $\hat{t}(B X)=0$. The proof is completed from the equations (2.5) and (2.7).

Definition 2.6. The $F_{a}(K, 1)$-structure is said to be normal with respect to $\bar{\nabla}$ in M if $\bar{S}=0$.

Theorem 2.7. Let the distribution \hat{T} be never tangential to S. If \hat{F} is normal with respect to $\bar{\nabla}$ in M, then F is integrable in S.

Proof. If the distribution \hat{T} be never tangential to S, then $\hat{t}(B X)=0$. Let \hat{F} be normal with respect to $\bar{\nabla}$ in M. Therefore, from Definition 3 and the equation (2.8), we obtain $B N(X, Y)=0$, for $X, Y \in \chi(S)$. Since B is a isomorphism, $N(X, Y)=0$, for $X, Y \in \chi(S)$. Then, F is integrable in S.

Case 2. The distribution \hat{T} is always tangential to S.

By considering (2.6), we can define a tensor field of the type $(1,1)$ on S by

$$
\begin{equation*}
t=I-\frac{1}{a^{2}} F^{K-1} \tag{2.9}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\hat{t}(B X)=B(t X) \tag{2.10}
\end{equation*}
$$

for $X \in \chi(S)$.
Theorem 2.8. Let ℓ be a tensor field of the type $(1,1)$ on S, which is defined by $\ell=\frac{1}{a^{2}} F^{K-1}$. Then,

$$
\begin{equation*}
\hat{\ell}(B X)=B(\ell X) \tag{2.11}
\end{equation*}
$$

for $X \in \chi(S)$.
Proof. Using the equation (2.4), we obtain

$$
\begin{aligned}
\hat{\ell}(B X) & =\frac{1}{a^{2}} \hat{F}^{K-1}(B X) \\
& =\frac{1}{a^{2}} B\left(F^{K-1} X\right) \\
& =B\left(\frac{1}{a^{2}} F^{K-1} X\right) \\
& =B(\ell X)
\end{aligned}
$$

for $X \in \chi(S)$.
Theorem 2.9. The tensor fields of the type $(1,1) t$ and ℓ defined by the equations (2.10) and (2.11) imply

$$
\begin{array}{cc}
\ell+t=I, & \ell t=0 \\
\ell^{2}=\ell, & t^{2}=t \tag{2.12}
\end{array}
$$

Proof. For $X \in \chi(S)$, applying $B X$ to both side of $\hat{\ell}+\hat{t}=\hat{I}$, we get $B(\ell X+t X)=$ X. Since B is an isomorphism, $\ell X+t X=X$. Then, $\ell+t=I$.

The other equations can be shown similarly.
The equation (2.12) show that, t and ℓ are complementary projection operators in S. Therefore,

$$
B\left(F^{K} X\right)=B\left(a^{2} F X\right)
$$

for $X \in \chi(S)$. This implies that

$$
\begin{equation*}
F^{K}-a^{2} F=0 \tag{2.13}
\end{equation*}
$$

Then, F acts as a $F_{a}(K, 1)$-structure on S and is called the induced $F_{a}(K, 1)$ structure on S.

Theorem 2.10. For the complementary projection operators t and ℓ, satisfying the equation (2.12) on S, there are the following relations:

$$
\begin{aligned}
B N(\ell X, \ell Y) & =\hat{N}(\hat{\ell} B X, \hat{\ell} B Y) \\
B N(t X, t Y) & =\hat{N}(\hat{t} B X, \hat{t} B Y) \\
B t N(X, Y) & =\hat{t} \hat{N}(B X, B Y)
\end{aligned}
$$

Proof. The proof trivial from the equations (2.3), (2.10) and (2.11).
For F satisfying the equation (2.13) on S, these exist complementary distributions T and L corresponding to the projection operators t and ℓ, respectively. Hence, the integrability conditions of F can be given by the following theorems.
Theorem 2.11. The distribution \hat{L} is integrable in M if and only if L is integrable in S.
Proof. Let the distribution \hat{L} be integrable in M. Then, we have $\hat{t} \hat{N}(B X, B Y)=0$ for $X, Y \in \chi(S)$. At this point, we get $B t N(X, Y)=0$. Since B is an isomorphism, we obtain $t N(X, Y)=0$. Therefore, L is integrable in S.

The other side can be shown similarly.
Theorem 2.12. The distribution \hat{T} is integrable in M if and only if T is integrable in S.
Proof. Let the distribution \hat{T} be integrable in M. Then, we have $\hat{N}(\hat{t} B X, \hat{t} B Y)=0$ for $X, Y \in \chi(S)$.At this point, we get $B N(t X, t Y)=0$. Since B is an isomorphism, we obtain $N(t X, t Y)=0$. Therefore, T is integrable in S.

The other side can be shown similarly.
Theorem 2.13. \hat{F} is partially integrable in M if and only if F is partially integrable in S.
Proof. Let \hat{F} be partially integrable in M. Then, we have $\hat{N}(\hat{\ell} B X, \hat{\ell} B Y)=0$ for $X, Y \in \chi(S)$. At this point, we get $B N(t X, t Y)=0$. Since B is an isomorphism, we obtain $N(\ell X, \ell Y)=0$. Therefore, F is partially integrable in S.

The other side can be shown similarly.
Theorem 2.14. \hat{F} is integrable in M if and only if F is integrable in S.
Proof. Let \hat{F} be integrable in M. Then, we have $\hat{N}(B X, B Y)=0$ for $X, Y \in \chi(S)$. At this point, we get $B N(X, Y)=0$. Since B is an isomorphism, we obtain $N(X, Y)=0$. Therefore, F is integrable in S.

The other side can be shown similarly.
The hypersurface S is a Riemann manifold with the induced metric g defined by $g(X, Y)=\hat{g}(B X, B Y)$, for $X, Y \in \chi(S)$. Then, ∇° is the induced semi-symmetric metric connection on (S, g) from $\bar{\nabla}$, which satisfies the equation

$$
\begin{equation*}
\bar{\nabla}_{B X} B Y=B\left(\stackrel{\circ}{\nabla}_{X} Y\right)+m(X, Y) N \tag{2.14}
\end{equation*}
$$

for $X, Y \in \chi(S)$, where m is a tensor field type of $(0,2)$ in S. If m vanishes, then S is called totally geodesic with respect to ∇ [4].

Now, we define a tensor field $\stackrel{\circ}{S}$ of type $(1,2)$ on S totally geodesic with respect to $\stackrel{\circ}{\nabla}$ by

$$
\begin{equation*}
\stackrel{\circ}{S}(X, Y)=N(X, Y)+\stackrel{\circ}{\nabla}_{X}(t Y)-\stackrel{\circ}{\nabla}_{Y}(t X)-t[X, Y] \tag{2.15}
\end{equation*}
$$

for $X, Y \in \chi(S)$.
Theorem 2.15. Let S be totally geodesic with respect to $\stackrel{\circ}{\nabla}$. Then,

$$
\bar{S}(B X, B Y)=B \stackrel{\circ}{S}(X, Y)
$$

for $X, Y \in \chi(S)$.
Proof. Using the equations (2.5) and (2.10), we obtain

$$
\begin{aligned}
B \stackrel{\circ}{S}(X, Y) & =B N(X, Y)+B\left(\stackrel{\circ}{\nabla}_{X} t Y\right)-B\left(\stackrel{\circ}{\nabla}_{Y} t X\right)-B t[X, Y] \\
& =\hat{N}(B X, B Y)+\bar{\nabla}_{B X} B(t Y)-\bar{\nabla}_{B Y} B(t X)-\hat{t} B[X, Y] \\
& =\hat{N}(B X, B Y)+\bar{\nabla}_{B X} \hat{t}(B Y)-\bar{\nabla}_{B Y} \hat{t}(B X)-\hat{t}[B X, B Y] \\
& =\bar{S}(B X, B Y) .
\end{aligned}
$$

Corollary 1. If \hat{F} is normal with respect to $\bar{\nabla}$ in M, then F is normal with respect to $\stackrel{\circ}{\nabla}$ in S.

3. The Induced Structure on The Tangent Bundle of A Invariant Hypersurface

Let $T M$ denote the tangent bundle of M with the projection $\pi_{M}: T M \rightarrow M$. According to [5], using the complete lift operation we have the following equalities:

$$
\begin{aligned}
\hat{\nabla}_{\hat{X}^{C}} \hat{Y}^{C} & =\left(\hat{\nabla} \hat{X}^{\hat{Y}}\right)^{C} \\
{\left[\hat{X}^{C}, \hat{Y}^{C}\right] } & =[\hat{X}, \hat{Y}]^{C} \\
\hat{F}^{C}\left(\hat{X}^{C}\right) & =(\hat{F}(\hat{X}))^{C} \\
\hat{F}^{C} \hat{G}^{C} & =(\hat{F} \hat{G})^{C} \\
\hat{F}^{C}+\hat{G}^{C} & =(\hat{F}+\hat{G})^{C} \\
\hat{\nabla}_{X^{C}}^{C} Y^{C} & =\left(\hat{\nabla}_{X} Y\right)^{C} \\
\hat{N}_{\hat{F}^{C}}^{C} & =\left(\hat{N}_{\hat{F}}\right)^{C} \\
(P(\hat{F}))^{C} & =P\left(\hat{F}^{C}\right)
\end{aligned}
$$

for $\hat{X}, \hat{Y} \in \chi(M) ; \hat{F}, \hat{G} \in \Im_{1}^{1}(M)$, where $P(t)$ is a polinomial in one variable t.

Theorem 3.1. \hat{F} is an $F_{a}(K, 1)$-structure in M if and only if the complete lift \hat{F}^{C} of \hat{F} is also an $F_{a}(K, 1)$-structure in $T M$. Then, \hat{F} is of rank r if and only if \hat{F}^{C} is of rank $2 r$ [10].

Theorem 3.2. Let \hat{F} be an $F_{a}(K, 1)$-structure in M and S be a invariant hypersurface of M. Then,

$$
\begin{equation*}
(\hat{F}(\bar{X}))^{\bar{C}}=\hat{F}^{C}(\bar{X})^{\bar{C}} \tag{3.1}
\end{equation*}
$$

for $\bar{X} \in \chi(\imath(S))$. Here, \bar{C} denotes the complete lift operation on $\pi_{M}^{-1}(\imath(S))$.
Proof. Since S is an invariant hypersurface, $\hat{F}(\bar{X})$ belongs to $\chi(\imath(S))$ for $\bar{X} \in$ $\chi(\imath(S))$. According to [1], we obtain

$$
(\hat{F}(\bar{X}))^{\bar{C}}=\#(\hat{F}(\hat{X}))^{C}=\# \hat{F}^{C}(\hat{X})^{C}=\hat{F}^{C}(\bar{X})^{\bar{C}}
$$

Then, $\hat{F}^{C}(\bar{X})^{\bar{C}}$ belongs to $\chi\left(T_{\imath}(S)\right)$. Here, \# denotes the operation of restriction to $\pi_{M}^{-1}(\imath(S))$.

Theorem 3.3. Let \hat{F} be a $F_{a}(K, 1)$-structure in M. Then, S is a invariant hypersurface of M if and only if $T S$ is a invariant submanifold of $T M$.

Proof. Since S is an invariant hypersurface, $\hat{F}(\bar{X})$ belongs to $\chi(\imath(S))$ for $\bar{X} \in$ $\chi(\imath(S))$. From the equation (3.1), $\hat{F}^{C}(\bar{X})^{\bar{C}}$ belongs to $\chi(T \imath(S))$. Also, $\bar{X}^{\bar{C}}$ is in $\chi(T \imath(S))$. Then, \hat{F}^{C} is invariant on $\chi(T \imath(S))$. Therefore, $T S$ is an invariant submanifold of $T M$.

The other side can be shown similarly.
The tangent map of B is denoted by \tilde{B}, where $\tilde{B}: T(T S) \rightarrow T(T \imath(S))$ is an isomorphism.

Definition 3.4. The tensor field \tilde{F} of type $(1,1)$ satisfies

$$
\begin{equation*}
\hat{F}^{C}\left(\tilde{B} X^{C}\right)=\tilde{B}\left(\tilde{F} X^{C}\right) \tag{3.2}
\end{equation*}
$$

for $X \in \chi(S)$, is called induced structure from \hat{F}^{C} to $T S$.
Similarly to (2.4), the equation (3.2) can be generalized as follows:

$$
\begin{equation*}
\left(\hat{F}^{C}\right)^{K-1}\left(\tilde{B} X^{C}\right)=\tilde{B}\left(\tilde{F}^{K} X^{C}\right) \tag{3.3}
\end{equation*}
$$

Theorem 3.5. For $X, Y \in \chi(S)$,

$$
\begin{equation*}
\tilde{B}\left[X^{C}, Y^{C}\right]=\left[\tilde{B} X^{C}, \tilde{B} Y^{C}\right] \tag{3.4}
\end{equation*}
$$

Proof. Using the equation (3.10) in [1] and the equation (2.1), we get

$$
\begin{aligned}
\tilde{B}\left[X^{C}, Y^{C}\right] & =\tilde{B}[X, Y]^{C} \\
& =(B[X, Y])^{\bar{C}} \\
& =[B X, B Y]^{\bar{C}} \\
& \left.=\left[(B X)^{\bar{C}},(B Y)^{\bar{C}}\right]\right) \\
& =\left[\tilde{B} X^{C}, \tilde{B} Y^{C}\right]
\end{aligned}
$$

Theorem 3.6. The induced structure \tilde{F} on $T S$ is the complete lift of the induced structure F on S.

Proof. Using the equation (3.10) in [1] and the equation (3.2), we get

$$
\begin{aligned}
\hat{F}^{C}\left(\tilde{B} X^{C}\right) & =\hat{F}^{C}(B X)^{\bar{C}} \\
& =(\hat{F}(B X))^{\bar{C}} \\
& =(B(F X))^{\bar{C}} \\
& =\tilde{B}(F X)^{C} \\
& =\tilde{B}\left(F^{C} X^{C}\right)
\end{aligned}
$$

for $X \in \chi(S)$. From (3.2), we obtain $\tilde{B}\left(F^{C} X^{C}\right)=\tilde{B}\left(\tilde{F} X^{C}\right)$. Since \tilde{B} is an isomorphism, $F^{C}=\tilde{F}$.

Theorem 3.7. Let \tilde{N} and \hat{N}^{C} be the Nijenhius tensors of \tilde{F} and \hat{F}^{C}, respectively. Then,

$$
\begin{equation*}
\hat{N}^{C}\left(\tilde{B} X^{C}, \tilde{B} Y^{C}\right)=\tilde{B} \tilde{N}\left(X^{C}, Y^{C}\right) \tag{3.5}
\end{equation*}
$$

for $X, Y \in \chi(S)$.

Proof. Using the equation (3.3), we obtain

$$
\begin{aligned}
\hat{N}^{C}\left(\tilde{B} X^{C}, \tilde{B} Y^{C}\right)= & {\left[\hat{F}^{C}\left(\tilde{B} X^{C}\right), \hat{F}^{C}\left(\tilde{B} Y^{C}\right)\right]-\hat{F}^{C}\left[\hat{F}^{C}\left(\tilde{B} X^{C}\right), \tilde{B} Y^{C}\right] } \\
& -\hat{F}^{C}\left[\tilde{B} X^{C}, \hat{F}^{C}\left(\tilde{B} Y^{C}\right)\right]+\left(\hat{F}^{C}\right)^{2}\left[\tilde{B} X^{C}, \tilde{B} Y^{C}\right] \\
= & {\left[\tilde{B}\left(\tilde{F} X^{C}\right), \tilde{B}\left(\tilde{F} Y^{C}\right)\right]-\hat{F}^{C}\left[\tilde{B}\left(\tilde{F} X^{C}\right), \tilde{B} Y^{C}\right] } \\
& -\hat{F}^{C}\left[\tilde{B} X^{C}, \tilde{B}\left(\tilde{F} Y^{C}\right)\right]+\left(\hat{F}^{C}\right)^{2}\left[\tilde{B} X^{C}, \tilde{B} Y^{C}\right] \\
= & \tilde{B}\left[\tilde{F} X^{C}, \tilde{F} Y^{C}\right]-\hat{F}^{C} \tilde{B}\left[\tilde{F} X^{C}, Y^{C}\right] \\
& -\hat{F}^{C} \tilde{B}\left[X^{C}, \tilde{F} Y^{C}\right]+\left(\hat{F}^{C}\right)^{2} \tilde{B}\left[X^{C}, Y^{C}\right] \\
= & \tilde{B}\left[\tilde{F} X^{C}, \tilde{F} Y^{C}\right]-\tilde{B} \tilde{F}\left[\tilde{F} X^{C}, Y^{C}\right] \\
& -\tilde{B} \tilde{F}\left[X^{C}, \tilde{F} Y^{C}\right]+\tilde{B} \tilde{F}^{2}\left[X^{C}, Y^{C}\right] \\
= & \tilde{B}\left(\left[\tilde{F} X^{C}, \tilde{F} Y^{C}\right]-\tilde{F}\left[\tilde{F} X^{C}, Y^{C}\right]\right. \\
& \left.-\tilde{F}\left[X^{C}, \tilde{F} Y^{C}\right]+\tilde{F}^{2}\left[X^{C}, Y^{C}\right]\right) \\
= & \tilde{B} \tilde{N}\left(X^{C}, Y^{C}\right)
\end{aligned}
$$

Theorem 3.8. Let \hat{N}^{C} be the Nijenhius tensors of \hat{F}^{C}. Then,

$$
(\hat{N}(\bar{X}, \bar{Y}))^{\bar{C}}=\hat{N}^{C}\left(\bar{X}^{\bar{C}}, \bar{Y}^{\bar{C}}\right)
$$

for $\bar{X}, \bar{Y} \in \chi(\imath(S))$.
Proof. From the equation (2.5), $\hat{N}(\bar{X}, \bar{Y})$ belongs to $\chi(\imath(S))$. Therefore, we have

$$
\begin{aligned}
(\hat{N}(\bar{X}, \bar{Y}))^{\bar{C}} & =\#(\hat{N}(\hat{X}, \hat{Y}))^{C} \\
& =\# \hat{N}^{C}\left(\hat{X}^{C}, \hat{Y}^{C}\right) \\
& =\hat{N}^{C}\left(\bar{X}^{\bar{C}}, \bar{Y}^{\bar{C}}\right)
\end{aligned}
$$

Corollary 2. Let \tilde{N} and N be the Nijenhius tensors of \tilde{F} and F, respectively. Then, \tilde{N} is the complete lift of N.

Proof. From Theorem 23, $\hat{N}^{C}\left(\tilde{B} X^{C}, \tilde{B} Y^{C}\right)=(\hat{N}(B X, B Y))^{\bar{C}}$ for $X, Y \in \chi(S)$. Then, we get

$$
\begin{aligned}
\hat{N}^{C}\left(\tilde{B} X^{C}, \tilde{B} Y^{C}\right) & =(\hat{N}(B X, B Y))^{\bar{C}} \\
& =(B N(X, Y))^{\bar{C}} \\
& =\tilde{B}(N(X, Y))^{C} \\
& =\tilde{B} N^{C}\left(X^{C}, Y^{C}\right)
\end{aligned}
$$

Note that the equation (3.5), we obtain $\tilde{B} N^{C}\left(X^{C}, Y^{C}\right)=\tilde{B} \tilde{N}\left(X^{C}, Y^{C}\right)$. Since \tilde{B} is a isomorphism, $\tilde{N}=N^{C}$.
Theorem 3.9. The distribution \hat{T} never tangential to S if and only if the distribution \hat{T}^{C} never tangential to TS.
Proof. Let the distribution \hat{T} be never tangential to S. Then, $\hat{t}(B X)=0$ for $X \in \chi(S)$. Since $(\hat{t}(B X))^{\bar{C}}=\hat{t}^{C}\left(\tilde{B} X^{C}\right)$, we obtain $\hat{t}^{C}\left(\tilde{B} X^{C}\right)=0$. Therefore, the distribution \hat{T}^{C} never tangential to $T S$.

The other side can be shown similarly.
Theorem 3.10. Let the distribution \hat{T}^{C} be never tangential to $T S$. Then, \tilde{F} is induced GF-structure in TS.
Proof. Similar to proof of the Theorem 6, we get the desired result.
Theorem 3.11. Let $\bar{\nabla}$ be a semi-symmetric metric connection with respect to $\hat{\nabla}$ Riemann connection in (M, \hat{g}). Then, $\bar{\nabla}^{C}$ is also a semi-symmetric metric connection with respect to $\hat{\nabla}^{C}$ Riemann connection in $\left(T M, \hat{g}^{C}\right)$ [11].

Noting that the equation (2.7) we obtain

$$
\bar{S}^{C}\left(\hat{X}^{C}, \hat{Y}^{C}\right)=\hat{N}^{C}\left(\hat{X}^{C}, \hat{Y}^{C}\right)-\bar{\nabla}_{\hat{X}^{C}}^{C}\left(\hat{t}^{C} \hat{Y}^{C}\right)-\bar{\nabla}_{\hat{Y}^{C}}^{C}\left(\hat{t}^{C} \hat{X}^{C}\right)-\hat{t}^{C}\left[\hat{X}^{C}, \hat{Y}^{C}\right]
$$

for $\hat{X}, \hat{Y} \in \chi(M)$, on $T M$.
Theorem 3.12. Let the distribution \hat{T}^{C} be never tangential to TS. Then,

$$
\bar{S}^{C}\left(\tilde{B} X^{C}, \tilde{B} Y^{C}\right)=\tilde{B} \tilde{N}(\tilde{X}, \tilde{Y})
$$

for $X, Y \in \chi(S)$.
Proof. Similar to proof of the Theorem 7, we get the desired result.
Theorem 3.13. \hat{F} is normal with respect to $\bar{\nabla}$ in M if and only of \hat{F}^{C} is normal with respect to $\bar{\nabla}^{C}$ in $T M$.
Proof. The proof trivial from Definition 3.
Theorem 3.14. Let the distribution \hat{T}^{C} be never tangential to TS. If \hat{F}^{C} is normal with respect to $\bar{\nabla}^{C}$ in TM, then \tilde{F} is integrable in $T S$.

Proof. Similar to proof of the Theorem 8, we get the desired result.
Theorem 3.15. The distribution \hat{T}^{C} is tangential to $T S$ if and only of the distribution \hat{T} is tangential to S.
Proof. Let the distribution \hat{T} be tangential to S. We have $\hat{t}(B X) \neq 0$ for $X \in \chi(S)$. Then, we obtain $\hat{t}^{C}\left(\tilde{B} X^{C}\right) \neq 0$. Therefore, the distribution \hat{T}^{C} is tangential to $T S$.

The other side can be shown similarly.

If the distribution \hat{T}^{C} is tangential to $T S$, then ℓ^{C} and t^{C} are complementary projection operators in $T S$, for ℓ and t defined by the equations (2.10) and (2.11), respectively.

Let $\tilde{\ell}$ and \tilde{t} be expressed by

$$
\begin{equation*}
\tilde{\ell}=\frac{1}{a^{2}} \tilde{F}^{K-1} \text { and } \tilde{t}=I-\frac{1}{a^{2}} \tilde{F}^{K-1} \tag{3.6}
\end{equation*}
$$

where $\tilde{\ell}=\ell^{C}$ and $\tilde{t}=t^{C}$.
Theorem 3.16. The operators $\tilde{\ell}$ and \tilde{t} satisfy

$$
\hat{\ell}^{C}\left(\tilde{B} X^{C}\right)=\tilde{B}\left(\tilde{\ell} X^{C}\right), \quad \hat{t}^{C}\left(\tilde{B} X^{C}\right)=\tilde{B}\left(\tilde{t} X^{C}\right)
$$

for $X, Y \in \chi(S)$, on $T S$.
Proof. From (2.10), we have

$$
\begin{aligned}
\hat{t}^{C}\left(\tilde{B} X^{C}\right) & =(\hat{t}(B X))^{\bar{C}} \\
& =(B(t X))^{\bar{C}} \\
& =\tilde{B}(t X)^{C} \\
& =\tilde{B}\left(t^{C} X^{C}\right) \\
& =\tilde{B}\left(\tilde{t} X^{C}\right)
\end{aligned}
$$

The other equation can be shown similarly.
Theorem 3.17. Let the distribution \hat{T}^{C} be tangential to $T S$. Then, \tilde{F} is the induced $F_{a}(K, 1)$-structure on $T S$.

Proof. For $X \in \chi(S)$, we obtain

$$
\begin{aligned}
\tilde{B}\left(\tilde{F}^{K-1} X^{C}\right) & =\tilde{B}\left(a^{2} \tilde{\ell} X^{C}\right)=a^{2} \tilde{B}\left(\tilde{\ell} X^{C}\right)=a^{2} \hat{\ell}^{C}\left(\tilde{B} X^{C}\right) \\
& =a^{2} \hat{F}^{C}\left(\tilde{B} X^{C}\right)=a^{2} \tilde{B}\left(\tilde{F} X^{C}\right)=\tilde{B}\left(a^{2} \tilde{F} X^{C}\right)
\end{aligned}
$$

Since \tilde{B} is an isomorphism, we get $\tilde{F}^{K-1}-a^{2} \tilde{F}=0$. Then, \tilde{F} is the induced $F_{a}(K, 1)$-structure on $T S$.

Theorem 3.18. For the complementary projection operators $\tilde{\ell}$ and \tilde{t}, which imply the equation (3.6) on $T S$, there are the following relations:

$$
\begin{gathered}
\tilde{B} \tilde{N}\left(\tilde{\ell} X^{C}, \tilde{\ell} Y^{C}\right)=\hat{N}^{C}\left(\hat{\ell}^{C} \tilde{B} X^{C}, \hat{\ell}^{C} \tilde{B} Y^{C}\right) \\
\tilde{B} \tilde{N}\left(\tilde{t} X^{C}, \tilde{t} Y^{C}\right)=\hat{N}^{C}\left(\hat{t}^{C} \tilde{B} X^{C}, \hat{t}^{C} \tilde{B} Y^{C}\right) \\
\tilde{B} \tilde{t} \tilde{N}\left(X^{C}, Y^{C}\right)=\hat{t}^{C} \hat{N}^{C}\left(\tilde{B} X^{C}, \tilde{B} Y^{C}\right)
\end{gathered}
$$

Proof. Similar to proof of the Theorem 11, we get the desired result.

Let \tilde{T} and \tilde{L} be the distributions corresponding to the projection operators \tilde{t} and $\tilde{\ell}$, respectively. Then, $\tilde{T}=T^{C}$ and $\tilde{L}=L^{C}$. Therefore, similarly to Theorem 12, Theorem 13, Theorem 14 and Theorem15 the integrability conditions of \tilde{F} are given in the following theorems.
Theorem 3.19. The distributions \tilde{T} and \tilde{L} are integrable in $T S$ if and only if the distributions \hat{T}^{C} and \hat{L}^{C} are integrable in $T M$.
Theorem 3.20. \tilde{F} is partially integrable in $T S$ if and only if \hat{F}^{C} is partially integrable in $T M$.
Theorem 3.21. \tilde{F} is integrable in $T S$ if and only if \hat{F}^{C} is integrable in $T M$.
For the Riemann metric \hat{g} in M, the complete lift \hat{g}^{C} of \hat{g} is the pseudo-Riemann metric in $T M$. Therefore, if we denote the induced metric from \hat{g}^{C} on $T S$ by \tilde{g}, then

$$
\tilde{g}\left(X^{C}, Y^{C}\right)=\hat{g}^{C}\left(\tilde{B} X^{C}, \tilde{B} Y^{C}\right)
$$

for arbitrary $X, Y \in \Im_{0}^{1}(S)$. Thus, the complete lift $\hat{\nabla}^{C}$ of the Riemann connection $\hat{\nabla}$ in (M, \hat{g}) is the Riemann connection in the pseudo-Riemann manifold $\left(T M, \hat{g}^{C}\right)$. Similarly, the complete lift ∇^{C} of the induced connection ∇ on (S, g) is also the Riemann connection in (TS, $\tilde{g})$ [1].
$\stackrel{\circ}{\nabla}{ }^{C}$ is the induced semi-symmetric metric connection from $\bar{\nabla}^{C}$ to $T S$. Then, we have

$$
\bar{\nabla}_{\tilde{B} X^{C}}^{C} \tilde{B} Y^{C}=\tilde{B}\left(\stackrel{\circ}{\nabla}_{X^{C}}^{C} Y^{C}\right)+m^{V}\left(X^{C}, Y^{C}\right) N^{\bar{C}}+m^{C}\left(X^{C}, Y^{C}\right) N^{\bar{V}}
$$

for $X, Y \in \chi(S)[11]$.
Theorem 3.22. TS is totally geodesic with respect to the semi-symmetric metric connection $\stackrel{\circ}{\nabla}{ }^{C}$ if and only if S is totally geodesic with respect to the semi-symmetric metric connection $\stackrel{\circ}{\nabla}[11]$.

Let $T S$ be totally geodesic with respect to $\stackrel{\circ}{\nabla}^{C}$. Then, we have

$$
\bar{\nabla}_{\tilde{B} X^{C}}^{C} \tilde{B} Y^{C}=\tilde{B}\left(\stackrel{\circ}{\nabla}_{X^{C}}^{C} Y^{C}\right)
$$

for $X, Y \in \chi(S)[11]$. Therefore, we define a tensor field $\stackrel{\circ}{S}^{C}$ of type $(1,2)$ by

$$
\stackrel{\circ}{S}^{C}\left(X^{C}, Y^{C}\right)=\tilde{N}\left(X^{C}, Y^{C}\right)+\stackrel{\circ}{\nabla}_{X^{C}}^{C}\left(\tilde{t} Y^{C}\right)-\stackrel{\circ}{\nabla}_{Y^{C}}^{C}\left(\tilde{t} X^{C}\right)-\tilde{t}\left[X^{C}, Y^{C}\right]
$$

for $X, Y \in \chi(S)$ on $T S$.
Theorem 3.23. Let $T S$ be totally geodesic with respect to $\stackrel{\circ}{\nabla}^{C}$. Then,

$$
\bar{S}^{C}\left(\tilde{B} X^{C}, \tilde{B} Y^{C}\right)=\tilde{B} \dot{S}^{C}\left(X^{C}, Y^{C}\right)
$$

for $X, Y \in \chi(S)$.
Proof. Similar to proof of the Theorem 16, we get the desired result.

Corollary 3. If \hat{F}^{C} is normal with respect to $\bar{\nabla}^{C}$ in $T M$, then \tilde{F} is normal with respect to $\stackrel{\circ}{\nabla}^{C}$ in $T S$.

References

[1] Tani, M., Prolongations of Hypersurfaces to Tangent Bundles, Kodai Math. Semp. Rep., 21, (1969), 85-96.
[2] Yano, K., Kobayashi, S., Almost Contact Structures İnduced on Hypersurfaces in Complex and Almost Complex Spaces, Kodai Math. Semp. Rep., 18, (1966), 120-160.
[3] Yano, K. On Semi-Symmetric Metric Connections, Rev. Roum. Math. Pures et Appl., 15, (1970), 1579-1586.
[4] Imai, T., Hypersurfaces of A Riemannian Manifold with Semi-Symmetric Metric Connection, Tensor (N.S.), 23, (1972), 300-306.
[5] Yano, K., Ishihara,S., Tangent and Cotangent Bundles, Marcel Dekker Inc., New York., 1973.,
[6] Nakao, Z., Submanifolds of a Riemann Manifold with Semisymmetric Metric Connections, Proc. Amer. Math. Soc., 54, (1976), 261-266.
[7] Chen, Bang-Yen, Geometry of Submanifolds, Marcel Dekker Inc., NewYork., 1973.
[8] Dubey, R., Gupta, V. C., Invariant Submanifolds of f_{λ}-Manifold, Demonstratio Math., 15(2), (1984), 333-342.
[9] Prasad, C. S., Gupta, V. C., Integrability Conditions of $F_{a}(K, 1)$-Structure Satisfying F^{K} $a^{2} F=0$, Demonsratio Math. 35(1), (2002), 147-153.
[10] Prasad, C. S., Chauhan, P. K. S., Horizantal and Complete Lift of $F_{a}(K, 1)-$ Structure in Tangent Bundle, Demonsratio Math., 40(2), (2007), 441-448.
[11] Çiçek Gözütok, A., Esin, E., Tangent Bundle of Hypersurface with Semi-Symmetric Metric Connection, Int. J. Contemp. Math. Sci., 7(6), (2012), 279-289.
Current address: Abant İzzet Baysal University, Bolu Vocational High School, Bolu, TURKEY E-mail address: aysegozutok@ibu.edu.tr
URL: http://communications.science.ankara.edu.tr/index.php?series=A1

[^0]: Received by the editors Agu. 02, 2013; Accepted: March 31, 2014.
 2000 Mathematics Subject Classification. 53C15, 53B05(53B20), 53C40.
 Key words and phrases. $F_{a}(K, 1)$-structure, semi-symmetric metric connection, invariant hypersurface.

