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PRINCIPAL FUNCTIONS OF NON-SELFADJOINT MATRIX
STURM —LIOUVILLE OPERATORS WITH BOUNDARY

CONDITIONS DEPENDENT ON THE SPECTRAL PARAMETER

CAFER COSKUN, DENIZ KATAR AND MURAT OLGUN

Abstract. Let L denote operator generated in L2(R+, E) by the differential
expression

l(y) = −y′′ +Q(x)y, x ∈ R+ := [0,∞) ,
and the boundary condition Y ′ (0, λ)−(β0+β1λ+β2λ2)Y (0, λ) = 0 , where Q
is a non-selfadjoint matrix-valued function and β0, β1, β2 are non-selfadjoint
matrices, also β2 is invertible. In this paper, we investigate the principal func-
tions correspending to the eigenvalues and the spectral singularities of L.

1. Introduction

Let us consider the boundary value problem (BVP)

−y′′ + q (x) y = λ2y , x ∈ R+ , (1.1)

y (0) = 0 , (1.2)

in L2 (R+) , where q is a complex-valued function. The spectral theory of the BVP
(1.1)—(1.2) with continuous and point spectrum was investigated by Naimark [1].
He showed the existence of the spectral singularities in the continuous spectrum
of the BVP (1.1)—(1.2) . Note that the eigenfunctions and the associated functions
(principal functions) correspending to the spectral singularities are not the elements
of L2 (R+). Also, the spectral singularities belong to the continuous spectrum and
are the poles of the resolvent’s kernel, but are not the eigenvalues of the BVP
(1.1)—(1.2). The spectral singularities in the spectral expansion of the BVP (1.1)—
(1.2) in terms of the principal functions have been investigated in [2]. The spectral
analysis of the quadratic pencil of Schrödinger, Dirac and Klein-Gordon operators
with spectral singularities were studied in [3, 4, 5, 6, 7, 8, 9]. The spectral analysis
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of the non-selfadjoint operator, generated in L2 (R+) by (1.1) and the boundary
condition

y′ (0)

y (0)
= α0 + α1λ+ α2λ

2,

where αi ∈ C, i = 0, 1, 2 with α2 6= 0 was investigated by Bairamov et al.
[20]. The properties of the principal functions corresponding to the eigenvalues and
the spectral singularities were studied in [14, 20, 21, 22]. Spectral analysis of the
selfadjoint differential and difference equations with matrix coeffi cients are studied
in [10, 11, 12, 13].
Let E be an n-dimensional (n <∞) Euclidian space with the norm ‖.‖ and let us

introduce the Hilbert space L2 (R+, E) consisting of vector-valued functions with
the values in E. We will consider the BVP

−y′′ +Q (x) y = λ2y , x ∈ R+ , (1.3)

y (0) = 0, (1.4)

in L2 (R+, E) , where Q is a non-selfadjoint matrix-valued function (i. e., Q 6= Q∗).
It is clear that, the BVP (1.3)—(1.4) is non-selfadjoint. In [15, 16] discrete spec-
trum of the non-selfadjoint matrix Sturm—Liouville operator and properties of the
principal functions correspending to the eigenvalues and the spectral singularities
was investigated.
Let us consider the BVP in L2(R+, E)

−y′′ +Q(x)y = λ2y, x ∈ R+, (1.5)

y′ (0, λ)− (β0 + β1λ+ β2λ
2)y(0, λ) = 0, (1.6)

whereQ is a non-selfadjoint matrix-valued function and β0, β1, β2 are non-selfadjoint
matrices also β2 is invertible. In this paper, which is an extention of [23], we aim to
investigate the properties of the principal functions corresponding to the eigenvalues
and the spectral singularities of the BVP (1.5)-(1.6) .

2. Jost Solution of (1.5)

We will denote the solution of (1.5) satisfying the condition

lim
x→∞

y(x, λ)e−iλx = I, λ ∈ C+ := {λ : λ ∈ C, Imλ ≥ 0} , (2.1)

by E(x, λ). The solution E(x, λ) is called the Jost solution of (1.5).
Under the condition

∞∫
0

x ‖Q(x)‖ dx <∞, (2.2)

the Jost solution has a representation

E(x, λ) = eiλxI +

∞∫
x

K(x, t)eiλtdt (2.3)
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for λ ∈ C̄+, where the kernel matrix function K(x, t) satisfies

K(x, t) =
1

2

∞∫
x+ t

2

Q(s)ds+
1

2

x+ t

2∫
x

t+s−x∫
t+x−s

Q(s)K(s, v)dvds

+
1

2

∞∫
x+ t

2

t+s−x∫
s

Q(s)K(s, v)dvds (2.4)

Moreover, K(x, t) is continuously differentiable with respect to its arguments and

‖K(x, t)‖ ≤ cσ(
x+ t

2
), (2.5)

‖Kx(x, t)‖ ≤ 1

4

∥∥∥∥Q(
x+ t

2
)

∥∥∥∥+ cσ(
x+ t

2
), (2.6)

‖Kt(x, t)‖ ≤
1

4

∥∥∥∥Q(
x+ t

2
)

∥∥∥∥+ cσ(
x+ t

2
), (2.7)

where σ(x) =

∞∫
x

‖Q(s)‖ ds and c > 0 is a constant. Therefore, E (x, λ) is analytic

with respect to λ in C+ := {λ : λ ∈ C, Imλ > 0} and continuous on the real axis
([17; chp.1]).
Let Ê±(x, λ) denote the solutions of (1.5) subject to the conditions

lim
x→∞

Ê±(x, λ)e±iλx = I, lim
x→∞

Ê±x (x, λ)e±iλx = ±iλI, λ ∈ C̄±. (2.8)

Then

W
[
E(x, λ), Ê±(x, λ)

]
= ∓2iλI, λ ∈ C±, (2.9)

W [E(x, λ), E(x,−λ)] = −2iλI, λ ∈ R, (2.10)

where W [f1, f2] is the Wronskian of f1 and f2.
Let ϕ(x, λ) denote the solution of (1.5) subject to the initial conditions ϕ(0, λ) =

I, ϕ′(0, λ) = β0 + β1λ+ β2λ
2. Therefore ϕ(x, λ) is an entire function of λ.

Let us define the following functions:

A±(λ) = ϕ(0, λ)Ex (0,±λ)− ϕ′(0, λ)E(0,±λ) λ ∈ C̄±, (2.11)

where C̄± = {λ : λ ∈ C, ± Imλ ≥ 0} . It is obvious that the functions A+(λ) and
A−(λ) are analytic in C+ and C− respectively and continuous on the real axis. The
functions A+ and A− are called Jost functions of L.
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3. Eigenvalues and Spectral Singularities of L

The resolvent of L defined by

Rλ(L)f =

∞∫
0

G(x, t;λ)g(t)dt, g ∈ L2(R+, E), (3.1)

where

G(x, t;λ) =

{
G+(x, t;λ), λ ∈ C+
G−(x, t;λ), λ ∈ C−

. (3.2)

and

G±(x, t;λ) =

{
−E(x,±λ)A−1± (λ)ϕT (t, λ), 0 ≤ t ≤ x

−ϕ(x, λ)
[
AT±(λ)

]−1
ET (t,±λ), x ≤ t <∞

(3.3)

We will show the set of eigenvalues and the set of spectral singularities of the
operator L by σd and σss respectively.
Let us suppose that

H±(λ) = detA±(λ). (3.4)

From (2.3) and (3.1)—(3.4)

σd = {λ : λ ∈ C+, H+(λ) = 0} ∪ {λ : λ ∈ C−, H−(λ) = 0}
σss = {λ : λ ∈ R∗, H+(λ) = 0} ∪ {λ : λ ∈ R∗, H−(λ) = 0} , (3.5)

where R∗ = R\ {0} .
We see from that, the functions

K+(λ) =
Â+(λ)

2iλ
E(x, λ)− A+(λ)

2iλ
Ê+(x, λ), λ ∈ C+, (3.6)

K−(λ) =
Â−(λ)

2iλ
E(x,−λ)− A−(λ)

2iλ
Ê−(x, λ), λ ∈ C−, (3.7)

K(λ) =
A+(λ)

2iλ
E(x,−λ)− A−(λ)

2iλ
E(x, λ), λ ∈ R∗, (3.8)

are the solutions of the boundary problem (1.5)—(1.6) where

Â±(λ) = Ê±x (0, λ)− (β0 + β1λ+ β2λ
2)Ê±(0, λ). (3.9)

Now let us assume that

Q ∈ AC(R+) , lim
x→∞

Q(x) = 0, sup
x∈R+

[
eε
√
x ‖Q′(x)‖

]
<∞, ε > 0. (3.10)

Theorem 3.1. Under the condition (3.10), the operator L has a finite number of
eigenvalues and spectral singularities, and each of them is of finite multiplicity.
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4. Principal Functions of L

Under the condition (3.10), let λ1, ..., λj and λj+1, ..., λk denote the zeros H+ in
C+ and H− in C− (which are the eigenvalues of L) with multiplicitiesm1,...,mj and
mj+1,...,mk, respectively. It is obvious that from the definiton of the Wronskian{

dn

dλn
W
[
K+(x, λ), E(x, λ)

]}
λ=λp

=

{
dn

dλn
A+(λ)

}
λ=λp

= 0 (4.1)

for n = 0, 1, ...,mp − 1, p = 1, 2, ..., j, and{
dn

dλn
W
[
K−(x, λ), E(x,−λ)

]}
λ=λp

=

{
dn

dλn
A−(λ)

}
λ=λp

= 0 (4.2)

for n = 0, 1, ...,mp − 1, p = j + 1, ..., k.

Theorem 4.1. The following formulae:{
∂n

∂λn
K+(x, λ)

}
λ=λp

=

n∑
m=0

Fm(λp)

{
∂m

∂λm
E(x, λ)

}
λ=λp

, (4.3)

n = 0, 1, ...,mp − 1, p = 1, 2, ..., j, where

Fm(λp) =

(
n

m

){
∂n−m

∂λn−m
Â+(λ)

}
λ=λp

, (4.4)

{
∂n

∂λn
K−(x, λ)

}
λ=λp

=

n∑
m=0

Nm(λp)

{
∂m

∂λm
E(x,−λ)

}
λ=λp

, (4.5)

n = 0, 1, ...,mp − 1, p = j + 1, ..., k, where

Nm(λp) =

(
n

m

){
∂n−m

∂λn−m
Â−(λ)

}
λ=λp

(4.6)

hold.

Proof. We will prove only (4.3) using the method induction, because the case of
(4.5) is similar. Let be n = 0. Since K+(x, λ) and E(x, λ) are linearly dependent
from (4.1), we get

K+(x, λp) = f0(λp)E(x, λp) (4.7)

where f0(λp) 6= 0. Let us assume that 1 ≤ n0 ≤ mp − 2, (4.3) holds; that is,{
∂n0

∂λn0
K+(x, λ)

}
λ=λp

=

n0∑
m=0

Fm(λp)

{
∂m

∂λm
E(x, λ)

}
λ=λp

. (4.8)

We will prove that (4.3) holds for n0 + 1. If Y (x, λ) is a solution of (1.5), then
∂n

∂λnY (x, λ) satisfies[
− d2

dx2 +Q(x)− λ2
]
∂n

∂λnY (x, λ) = 2λn ∂n−1

∂λn−1
Y (x, λ)+n(n−1) ∂n−2

∂λn−2
Y (x, λ). (4.9)
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Writing for (4.9) K+(x, λ) and E(x, λ), and using (4.8), we find[
− d2

dx2
+Q(x)− λ2

]
gn0+1(x, λp) = 0, (4.10)

where

gn0+1(x, λp) =
{
∂n0+1

∂λn0+1
K+(x, λ)

}
λ=λp

−
n0+1∑
m=0

Fm(λp)
{
∂m

∂λmE(x, λ)
}
λ=λp

. (4.11)

From (4.1), we have

W [gn0+1(x, λp), E(x, λp)] =

{
dn0+1

dλn0+1
W
[
K+(x, λ), E(x, λ)

]}
λ=λp

= 0. (4.12)

Hence there exists a constant fn0+1(λp) such that

g
n0+1

(x, λp) = f
n0+1

(λp)E(x, λp). (4.13)

This shows that (4.3) holds for n = n0 + 1. �

Using (4.3) and (4.5), define the functions

Un,p(x) =

{
∂n

∂λn
K+(x, λ)

}
λ=λp

=

n∑
m=0

Fm(λp)

{
∂m

∂λm
E(x, λ)

}
λ=λp

, (4.14)

n = 0, 1, ...,mp − 1, p = 1, 2, ..., j and

Un,p(x) =

{
∂n

∂λn
K−(x, λ)

}
λ=λp

=

n∑
m=0

Nm(λp)

{
∂m

∂λm
E(x,−λ)

}
λ=λp

, (4.15)

n = 0, 1, ...,mp − 1, p = j + 1, ..., k.
Then for λ = λp, p = 1, 2, ..., j, j + 1, ..., k,

l(U0,p) = 0,

l(U1,p) +
1

1!

∂

∂λ
l(U0,p) = 0, (4.16)

l(Un,p) +
1

1!

∂

∂λ
l(Un−1,p) +

1

2!

∂2

∂λ2
l(Un−2,p) = 0,

n = 2, 3, ...,mp − 1,

hold, where l(u) = −u′′ + Q(x)u − λ2u and ∂m

∂λm l(u) denote the differential ex-
pressions whose coeffi cients are the m-th derivatives with respect to λ of the cor-
responding coeffi cients of the differential expression l(u). (4.16) shows that U0,p is
the eigenfunction corresponding to the eigenvalue λ = λp; U1,p, U2,p, ...Ump−1,p are
the associated functions of U0,p [18, 19].
U0,p, U1,p, ...Ump−1,p, p = 1, 2, ..., j, j + 1, ..., k are called the principal functions

corresponding to the eigenvalue λ = λp, p = 1, 2, ..., j, j + 1, ..., k of L.
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Theorem 4.2.

Un,p ∈ L2(R+, E), n = 0, 1, ...mp − 1, p = 1, 2, ..., j, j + 1, ..., k. (4.17)

Proof. Let be 0 ≤ n ≤ mp − 1 and 1 ≤ p ≤ j. Using (2.2), (3.10) and (4.14) we
obtain that

‖K(x, t)‖ ≤ ce−ε
√

x+t
2 . (4.18)

From (2.3) we get∥∥∥∥∥
{
∂n

∂λn
E(x, λ)

}
λ=λp

∥∥∥∥∥ ≤ xne−x Imλp + c

∞∫
x

tne−ε
√

x+t
2 e−t Imλpdt, (4.19)

where c > 0 is a constant. Since Imλp > 0 for the eigenvalues λp, p = 1, 2, ..., j, of
L, (4.19) implies that{

∂n

∂λn
E(x, λ)

}
λ=λp

∈ L2(R+, E), n = 0, 1, ...mp − 1, p = 1, 2, ..., j. (4.20)

So we get Un,p ∈ L2(R+, E). Similarly we prove the results for 0 ≤ n ≤ mp − 1,
j + 1 ≤ p ≤ k. This completes the proof. �

Let µ1, ..., µv and µv+1, ..., µl be the zeros of A+ and A− in R∗ with multiplicities
n1, ..., nv and nv+1, ..., nl, respectively.
We can show {

∂n

∂λn
K(x, λ)

}
λ=µp

=

n∑
m=0

Cm(λp)

{
∂m

∂λm
E(x, λ)

}
λ=µp

(4.21)

n = 0, 1, ..., np − 1, p = 1, 2, ..., v,
where

Cm(µp) = −
(
n

m

){
∂n−m

∂λn−m
A−(λ)

}
λ=µp

, (4.22)

{
∂n

∂λn
K(x, λ)

}
λ=µp

=

n∑
m=0

Rm(µp)

{
∂m

∂λm
E(x,−λ)

}
λ=µp

,

n = 0, 1, ..., np − 1, p = v + 1, ..., l,
where

Rm(µp) =

(
n

m

){
∂n−m

∂λn−m
A+(λ)

}
λ=µp

. (4.23)

Now define the generalized eigenfunctions and generalized associated functions
corresponding to the spectral singularities of L by the following :

Vn,p(x) =

{
∂n

∂λn
K(x, λ)

}
λ=µp

=

n∑
m=0

Cm(µp)

{
∂m

∂λm
E(x, λ)

}
λ=µp

(4.24)
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n = 0, 1, ..., np − 1, p = 1, 2, ..., v,

Vn,p(x) =

{
∂n

∂λn
K(x, λ)

}
λ=µp

=

n∑
m=0

Rm(µp)

{
∂m

∂λm
E(x,−λ)

}
λ=µp

,

n = 0, 1, ..., np − 1, p = v + 1, ..., l.
Then Vn,p, n = 0, 1, ..., np−1, p = 1, 2, ..., v, v+ 1, ..., l, also satisfy the equations

analogous to (4.16).
V0,p, V1,p, ..., Vnp−1,p, p = 1, 2, ..., v, v + 1, ..., l are called the principal functions

corresponding to the spectral singularities λ = µp, p = 1, 2, ..., v, v + 1, ..., l of L.

Theorem 4.3.

Vn,p /∈ L2(R+, E), n = 0, 1, ...np − 1, p = 1, 2, ..., v, v + 1, ..., l.

Proof. For 0 ≤ n ≤ np − 1 and 1 ≤ p ≤ v using (2.3), we obtain∥∥∥∥∥∥
{
∂n

∂λn
E(x, λ)

}
λ=µp

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥(ix)

n
eiµpxI +

∞∫
x

(it)
n
K(x, t)eiµptdt

∥∥∥∥∥∥ ,
since Imµp = 0, p = 1, 2, ..., v, we find that

∞∫
0

∥∥(ix)
n
eiµpxI

∥∥2 dx =

∞∫
0

x2ndx =∞.

So we obtain Vn,p /∈ L2(R+, E), n = 0, 1, ...np − 1, p = 1, 2, ..., v. Using the similar
way, we may also prove the results for 0 ≤ n ≤ np − 1, v + 1 ≤ p ≤ l. �
Now define the Hilbert spaces of vector-valued functions with values in E by

Hn : =

f :

∞∫
0

(1 + |x|)2n ‖f(x)‖2 dx <∞

 , n = 1, 2, ..., (4.25)

H−n : =

g :

∞∫
0

(1 + |x|)−2n ‖g(x)‖2 dx <∞

 , n = 1, 2, ..., (4.26)

with the norms

‖f‖2n :=

∞∫
0

(1 + |x|)2n ‖f(x)‖2 dx

and

‖g‖2n :=

∞∫
0

(1 + |x|)−2n ‖g(x)‖2 dx

respectively. Then

Hn+1 $ Hn $ L2(R+, E) $ H−n $ H−(n+1), n = 1, 2, ...,
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and H−n is isomorphic to the dual of Hn.

Theorem 4.4.

Vn,p ∈ H−(n+1), n = 0, 1, ...np − 1, p = 1, 2, ..., v, v + 1, ..., l.

Proof. For 0 ≤ n ≤ np − 1 and 1 ≤ p ≤ v using (2.3) and (4.24), we get

∞∫
0

(1 + |x|)−2(n+1) ‖Vn,p‖2 dx ≤M
∞∫
0

(1 + |x|)−2(n+1)


{
‖E(x, λ)‖2

}
λ=µp

+ ...

+
{∥∥ ∂n

∂λnE(x, λ)
∥∥2}

λ=µp

 dx,

where M > 0 is a constant. Using (2.3), we have
∞∫
0

(1 + |x|)−2(n+1)
∥∥(ix)

n
eiµpxI

∥∥2 dx <∞
and

∞∫
0

(1 + |x|)−2(n+1)
∥∥∥∥∥∥
∞∫
x

(it)
n
K(x, t)eiµptdt

∥∥∥∥∥∥
2

dx <∞.

Consequently Vn,p ∈ H−(n+1) for 0≤ n ≤ np − 1 and 1 ≤ p ≤ v. Similarly, we
obtain Vn,p ∈ H−(n+1) for 0 ≤ n ≤ np − 1 and v + 1 ≤ p ≤ l. �

Theorem 4.5.

Vn,p ∈ H−n0 , n = 0, 1, ...np − 1, p = 1, 2, ..., v, v + 1, ..., l.
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