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PRINCIPAL FUNCTIONS OF NON-SELFADJOINT MATRIX
STURM - LIOUVILLE OPERATORS WITH BOUNDARY
CONDITIONS DEPENDENT ON THE SPECTRAL PARAMETER

CAFER COSKUN, DENIZ KATAR AND MURAT OLGUN

ABSTRACT. Let L denote operator generated in L2(R4, F) by the differential
expression

l(y) = 7?/” + Q(w)yv z €Ry = [0’ 00)7
and the boundary condition Y’ (0, A) — (8o + 81 A+ 8222)Y (0,A) = 0, where Q
is a non-selfadjoint matrix-valued function and 3y, 81, B9 are non-selfadjoint
matrices, also 8 is invertible. In this paper, we investigate the principal func-
tions correspending to the eigenvalues and the spectral singularities of L.

1. INTRODUCTION
Let us consider the boundary value problem (BVP)
~y' +al@)y=rNy, zeRy, (1.1)

y(0) =0, (1.2)
in L? (R,), where q is a complex-valued function. The spectral theory of the BVP
(1.1)—(1.2) with continuous and point spectrum was investigated by Naimark [1].
He showed the existence of the spectral singularities in the continuous spectrum
of the BVP (1.1)—(1.2) . Note that the eigenfunctions and the associated functions
(principal functions) correspending to the spectral singularities are not the elements
of L? (R4). Also, the spectral singularities belong to the continuous spectrum and
are the poles of the resolvent’s kernel, but are not the eigenvalues of the BVP
(1.1)—(1.2). The spectral singularities in the spectral expansion of the BVP (1.1)-
(1.2) in terms of the principal functions have been investigated in [2]. The spectral
analysis of the quadratic pencil of Schrédinger, Dirac and Klein-Gordon operators
with spectral singularities were studied in [3, 4, 5, 6, 7, 8, 9]. The spectral analysis
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of the non-selfadjoint operator, generated in L? (R;) by (1.1) and the boundary
condition )
y' (0)

y (0)
where o; € C, 1 = 0, 1, 2 with as # 0 was investigated by Bairamov et al.
[20]. The properties of the principal functions corresponding to the eigenvalues and
the spectral singularities were studied in [14, 20, 21, 22]. Spectral analysis of the
selfadjoint differential and difference equations with matrix coefficients are studied
in [10, 11, 12, 13).

Let E be an n-dimensional (n < co) Euclidian space with the norm ||.|| and let us
introduce the Hilbert space L? (R,, E) consisting of vector-valued functions with
the values in £. We will consider the BVP

" +Q(z)y = Ny, ze R, , (1.3)

y(0) =0, (1.4)
in L2 (R,, E), where Q is a non-selfadjoint matrix-valued function (i. e., Q # Q).
It is clear that, the BVP (1.3)—(1.4) is non-selfadjoint. In [15, 16] discrete spec-
trum of the non-selfadjoint matrix Sturm-Liouville operator and properties of the
principal functions correspending to the eigenvalues and the spectral singularities

was investigated.
Let us consider the BVP in Ly(R4, E)

-y +Qx)y =Ny, =z€Ry, (1.5)

Y (0,0) = (Bo + Brd + B22%)y(0,A) =0, (1.6)
where () is a non-selfadjoint matrix-valued function and 8, 5, 55 are non-selfadjoint
matrices also 3, is invertible. In this paper, which is an extention of [23], we aim to
investigate the properties of the principal functions corresponding to the eigenvalues
and the spectral singularities of the BVP (1.5)-(1.6).

=+ a1+ 0[2)\2,

2. Jost Solution of (1.5)
We will denote the solution of (1.5) satisfying the condition
lim y(z,\)e ™ =1, A€ Cy :={A: A€ C,Im\ > 0}, (2.1)

by E(z,A). The solution E(z, ) is called the Jost solution of (1.5).

Under the condition
oo

[ela@lds < . (2.2

0
the Jost solution has a representation

E(z,\) = T + /K(m,t)ei)‘tdt (2.3)



MATRIX STURM-LIOUVILLE OPERATORS 27

for A € C,, where the kernel matrix function K (z,t) satisfies

T+t
00 2 tts—=m
K(z,t) = % / Q(s)ds + % / / Q(s)K (s,v)dvds
T+t T ttz—s
2
0o ths—z
+ % / / Q(s)K (s,v)dvds (2.4)
T+t s
2
Moreover, K (x,t) is continuously differentiable with respect to its arguments and
1K@l < (2, (25)
Kol < g+ e, (26)
ol < e h)|+ e, (2.7

where o(z) = / |Q(s)||ds and ¢ > 0 is a constant. Therefore, E (z, A) is analytic

with respect to A in C; := {A: XA € C,Im A > 0} and continuous on the real axis
([17; chp.1]).
Let E*(x,)\) denote the solutions of (1.5) subject to the conditions
ot

lim E¥ (2, et =1, lim Ef(z, et ==id, AeCi  (28)
Then

W |E(z,\), E¥(z,\)| = T2\, X\eCy, (2.9)

W [E(z,\), E(x,~-\)] = —2M, MER, (2.10)

where W [f1, f2] is the Wronskian of f; and fs.

Let ¢(z, A) denote the solution of (1.5) subject to the initial conditions ¢(0, \) =
I, ¢'(0,N) = By + B\ + By)\2. Therefore o(x, \) is an entire function of \.

Let us define the following functions:

AL(N) = 0(0,\)E, (0,£X) — ¢'(0,\)E(0,£)) X € Cyg, (2.11)

where C+ = {A: A € C, £Im\ > 0}. It is obvious that the functions A, ()\) and
A_(\) are analytic in C; and C_ respectively and continuous on the real axis. The
functions A, and A_ are called Jost functions of L.
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3. Eigenvalues and Spectral Singularities of L

The resolvent of L defined by

RAD)f = [ Gla tNg(0)dt, g € La(®s, ) (3.1)
0
where
. — G+(.’E,t;)\), )‘EC+
G(z,t; \) = { G (o)), AeC. - (3.2)
and

—E(z,+MNAT V)T (t,N), 0<t <z
—o(@, \) [AZN)] T ET (8, 4N, 2 <t < o
We will show the set of eigenvalues and the set of spectral singularities of the

operator L by o4 and o5 respectively.
Let us suppose that

Gi(z,t; ) = { (3.3)

Hi(\) =det AL(N). (3.4)
From (2.3) and (3.1)—(3.4)
ca={A:AeCy, HL(N)=0}Uu{A: e C_, H_(\) =0}

Gos = {A:AERY, H (\) =0} U{\: \€R*, H_()) =0}, (3.5)
where R* = R\ {0}.
We see from that, the functions
AL AL (M) 2
i = A+ AN
KT(\) = 20\ E(z,\) 27X E™(z,)), AeCy, (3.6)
_ AW A-(N)
AW A-() ,
K(\) = 27\ E(x,—)\) ) E(z,)\), AeR", (3.8)
are the solutions of the boundary problem (1.5)—(1.6) where
AL (N) = BZ (0,0) = (By + Bid + B2X*) EF(0, 1), (3.9)
Now let us assume that
Qe ACR;), lim Q(z) =0, sup {eaﬁ ||Q'(m)||] < o0, €>0. (3.10)
T—00 zeRy

Theorem 3.1. Under the condition (3.10), the operator L has a finite number of
etgenvalues and spectral singularities, and each of them is of finite multiplicity.
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4. Principal Functions of L

Under the condition (3.10), let Aq,...,A; and A\j11, ..., Ay denote the zeros H in
C4 and H~ in C_ (which are the eigenvalues of L) with multiplicities m;....,m; and
Mjy1,..., My, respectively. It is obvious that from the definiton of the Wronskian

{dd:nW (Kt (z,)\), E(, )\)]}A_Ap = {;f\nnfhr()\)}A k =0 (4.1)

—p

forn=0,1,...,m, -1, p=1,2,..., 4, and

{dd:”W (K™ (@A), E(z, =) }H,, = {XHA_(A)}H =0 (42)

o

forn=0,1,...m,—1,p=35+1,.. k.
Theorem 4.1. The following formulae:

{88)\WK+(:E )\)} = Z F,, {a;;E(x )\)} , (4.3)

A=Xp A=Ap

n=0,1,..mp,—1,p=1,2,.., 4, where

Faly) = (;){ 88:"‘2A*(A)}A=Q (4.9

=Xp A=2p

n=01,..m,—1,p=75+1,..,k, where

Nin(Ny) = (:L) {;;:n;/l_ (A)}H (4.6)

—p

hold.

Proof. We will prove only (4.3) using the method induction, because the case of
(4.5) is similar. Let be n = 0. Since K+ (z,\) and E(z,\) are linearly dependent
from (4.1), we get

K*(2,2p) = fo(A\p) E(2, Ap) (4.7)
where fo(\,) # 0. Let us assume that 1 < ng < m, — 2, (4.3) holds; that is,
gno " om
{a)\ng K (J?,)\)}/\/\ - Z FT)’L {a)\m,E(x /\)}A/\ . (48)

We will prove that (4.3) holds for ng + 1. If Y(z, ) is a solution of (1.5), then

88/\WY(x A) satisfies

[+ QM) = X] Y (@) = 200 Y (@, ) Fa(n—1) Fos Y (2, 1), (4.9)
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Writing for (4.9) K*(z,\) and E(x, ), and using (4.8), we find

d2
|:_d£L'2 + Q(l‘) - /\2:| gn0+1($7 )\p) = 0, (410)
where
— no+1
no m
Inos1 (@, Ap) = {%KW’A)}A - > PO { & B@ N} . (@11
=p m=0
From (4.1), we have
d’n()+1 4
w [gn0+1(513, )‘I))a E('T7 /\p)] = {WW [K (:Kv )‘)7 E(%, )‘)] })\_)\ =0. (412)
Hence there exists a constant f, ., (Ap) such that
gnOH(x, Ap) = fnO+1 (Ap)E(z, Ap). (4.13)
This shows that (4.3) holds for n = ng + 1. O
Using (4.3) and (4.5), define the functions
n n gm
Up.p() {WK+(z,A)} = Fn(\) {8)\mE(:c,)\)} . (4.14)
A=Ap m=0 A=Xp
n=0,1,...,m,—1,p=1,2,..,75 and
o = am
Unp(2) = § g K~ (2. ) =D NuW) gym B -Np . (415)
A=2p m=0 A=Xp
n=01,...m,—1Lp=7+1,..,k
Then for A\ =Xy, p=1,2,....5,5+1,...k,
I(Uop) = 0,
(o L 9 (U, =0 4.16
( 1,p)+ﬁﬁ ( 0,p) - ) ( : )
19 1 92
W(Unp) + ﬂal(Unfl’p) + iWZ(Uan,p) = 0
n=223,..m,—1,
hold, where I(u) = —u” + Q(z)u — A\?u and aa/\%l(u) denote the differential ex-

pressions whose coefficients are the m-th derivatives with respect to A of the cor-
responding coefficients of the differential expression I(u). (4.16) shows that Uy , is
the eigenfunction corresponding to the eigenvalue A = A\y; Uy, Uz p, ...Upn,—1,p are

the associated functions of Uy, [18, 19].

Uop, Urp, -Un,—1p,0 = 1,2,...,5,7 + 1,...,k are called the principal functions

corresponding to the eigenvalue A= X,, p=1,2,...,5,5 +1,....k of L.
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Theorem 4.2.
Unp € Ls(RL,E), n=0,1,.m,—1, p=1,2,...,4,5+1,...k (4.17)

Proof. Let be 0 <n <m,—1and 1 <p < j. Using (2.2), (3.10) and (4.14) we
obtain that

1K (z,8)]| < ce™ V5", (4.18)
From (2.3) we get
o0
H —nE x, \) } < glemTImAr 4 t"eié\/@e%lm%dt, (4.19)
OA N

x

where ¢ > 0 is a constant. Since Im A, > 0 for the eigenvalues A\,, p=1,2,..., 5, of
L, (4.19) implies that

{aa/\n (, )\)} €Ly(R,E), n=0,1,..m,—1, p=1,2,....5. (4.20)
A=A

So we get Uy p € Lo(Ry, E). Similarly we prove the results for 0 < n < m, — 1,
j+ 1 <p<k. This completes the proof. (]

Let gy, ..., pt,, and fi,, ¢, ..., it be the zeros of Ay and A_ in R* with multiplicities
N1, .oy Ny aNd Ny 1, ..., 1y, Tespectively.
We can show

{38:" (z, /\)}; = Z Cm {ax" (z, A)}A (4.21)

bp m=0

n=01..,n,—1,p=12,..,v,

where
Gty = (o) {Gmma- ) (122)

=up

{eren} = 3 R {gmEe )

A=pp m=0 =pp

n=01,...,n,—Lp=v+1,..,1[

where
Rt = (1) { om0 f (1.23)

—pp
Now define the generalized eigenfunctions and generalized associated functions
corresponding to the spectral singularities of L by the following :

Vip(x) = { 38; (z, A)}A = Z Crn(py) { aim (z, /\)} (4.24)

=pp A=pyp
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n=01..n,—1,p=12,..,v,

Vorl) = { gk | = 2 Rl { grwBle -0 |

A=pp m=0 A=pp

n

n=01,..,n—-1Lp=v+1,..,L

Then V, ,, n=0,1,....,n,—1,p=1,2,...,v,v+1,...,1, also satisfy the equations
analogous to (4.16).

Voo, Vigpsoos Vip—1p:0 = 1,2,...,v,0 + 1,..., [ are called the principal functions
corresponding to the spectral singularities A = p,,,p =1,2,...,v,v + 1, ..., of L.

Theorem 4.3.
Vap & La(Ry, E),  n=0,1,mp =1, p=1,2, 0,0+ 1., 1.
Proof. For 0 <n <n,—1and 1 <p < v using (2.3), we obtain
o 4 < 4
{WE(:B’A)} < ||(z)" ewpr-i-/(it)n K (z,t)e»tdt|

A=pp

since Imp,, =0, p=1,2,...,v, we find that

/ | (i)™ ei“PzIH2 dr = /xQ"dx = 00.

0 0
So we obtain V,, , ¢ Lo(R4, E), n =0,1,..np, — 1, p=1,2,...,v. Using the similar
way, we may also prove the results for 0 <n <n, -1, v+1<p <L O

Now define the Hilbert spaces of vector-valued functions with values in E by

H, . — f:/(l+|x\)2n If@)|Pde <00 b, n=1,2., (425
0
H, : = g:/(1—|—|x|)_2n lg(a)|Pdz < 00 ) n=1,2,..., (4.26)
0
with the norms -
912 = [ @ el 5@ do
0
and -
ol i= [ (141 lo@)] da
0

respectively. Then

Hn+1 ; Hn ; LQ(R+,E) - H,n ; H—(n+1)7 n = 1,2, ceny

Z
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and H_,, is isomorphic to the dual of H,.
Theorem 4.4.

Vap €E H_(ny1y, m=0,1,.np, =1, p=1,2, .. ,v,0+1,...,1.
Proof. For 0 <n <mn, —1and 1 <p <wv using (2.3) and (4.24), we get

- - {||E )| } + o
/ 1+ |2)) —2(n+1) ||Vn,p||2dfv < M/(1—|— |x|)72(n+1) r=ug
0

{Hd)\"E z M| }

A=rp
where M > 0 is a constant. Using (2.3), we have
o0
/ (1 + |2) 2 | )" e || da < oo
0
and
(oo} (oo} 2
/ (14 o) 20+ / ()" K (2, )t dt|| dw < oo.
0 T
Consequently V,, ,, € H_(ny1) for 0<n <np —1and 1 < p < v. Similarly, we
obtain V,, , € H 41y for0<n<n,—-landv+1<p<I. O

Theorem 4.5.
Vap€H_pny, n=0,1,.mn,—1Lp=12..v,0+1,..,L
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