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WEAK CONVERGENCE THEOREM BY A NEW
EXTRAGRADIENT METHOD FOR FIXED POINT PROBLEMS

AND VARIATIONAL INEQUALITY PROBLEMS

İBRAHIM KARAHAN AND MURAT ÖZDEMIR

Abstract. We introduce a new extragradient iterative process, motivated
and inspired by [S. H. Khan, A Picard-Mann Hybrid Iterative Process, Fixed
Point Theory and Applications, doi:10.1186/1687-1812-2013-69], for finding a
common element of the set of fixed points of a nonexpansive mapping and the
set of solutions of a variational inequality for an inverse strongly monotone
mapping in a Hilbert space. Using this process, we prove a weak convergence
theorem for the class of nonexpansive mappings in Hilbert spaces. Finally, as
an application, we give some theorems by using resolvent operator and strictly
pseudocontractive mapping.

1. Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖·‖,
respectively. Let C be a nonempty closed convex subset of H, I be the idendity
mapping on C, and PC be the metric projection from H onto C.
Recall that a mapping T : C → C is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ , ∀x, y ∈ C.
We denote by F (T ) the set of fixed points of T , i.e., F (T ) = {x ∈ C : Tx = x}.
For a mapping A : C → H, it is called monotone if

〈Ax−Ay, x− y〉 ≥ 0,

L-Lipschitzian if there exists a constant L > 0 such that

‖Ax−Ay‖ ≤ L ‖x− y‖ , ∀x, y ∈ C;

and α-inverse strongly monotone if

〈Ax−Ay, x− y〉 ≥ α ‖Ax−Ay‖2 ,
for all x, y ∈ C.
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Remark 1.1. It is obvious that any α-inverse strongly monotone mapping A is
monotone and 1

α -Lipschitz continuous.

Monotonicity conditions in the context of variational methods for nonlinear op-
erator equations were used by Vainberg and Kacurovskii [1] and then many authors
have studied on this subject.
In this paper, we consider the following variational inequality problem V I (C,A):

find a x ∈ C such that
〈Ax, y − x〉 ≥ 0, ∀y ∈ C.

The set of solutions of V I (C,A) is denoted by Ω, i.e.,

Ω = {x ∈ C : 〈Ax, y − x〉 ≥ 0, ∀y ∈ C} .
In the context of the variational inequality problem it is easy to check that

x ∈ Ω⇔ x ∈ F (PC (I − λA)) , ∀λ > 0.

Variational inequalities were initially studied by Stampacchia [2], [3]. Such a prob-
lem is connected with convex minimization problem, the complementarity problem,
the problem of finding point x ∈ C satisfying 0 ∈ A and etc. Fixed point problems
are also closely related to the variational inequality problems.
For finding an element of F = F (T ) ∩ Ω, many authors have studied widely

under suitable assumptions (see [4, 5, 6, 7, 8, 9]). For example, in 2006, Takahashi
and Toyoda [10] introduced following iterative process:{

x0 ∈ C
xn+1 = αnxn + (1− αn)TPC (I − λnA)xn, ∀n ≥ 0,

(1.1)

where C is a nonempty closed convex subset of a real Hilbert space H, A : C → H
is an α-inverse strongly monotone mapping, PC : H → C is a metric projection,
T : C → C is a nonexpansive mapping, {αn} ⊂ [a, b] for some a, b ∈ (0, 1) , and
{λn} ⊂ [c, d] for some c, d ∈ (0, 2α) . They proved that if F = F (T )∩Ω is nonempty,
then the sequence {xn} generated by (1.1) converges weakly to some z ∈ F where
z = limn→∞ PFxn. In the same year, Nadezkhina and Takahashi [11] generalized
the iterative process (1.1) and motivated by this process they introduced following
iterative scheme for nonexpansive mapping S and monotone k-Lipschitzian mapping
A  x0 ∈ C

xn+1 = αnxn + (1− αn)SPC (xn − λnyn)
yn = PC (I − λnA)xn, ∀n ≥ 0.

(1.2)

They proved the weak convergence of {xn} under the suitable conditions. Re-
cently, independetly from the above processes, Khan [12] and Sahu [13], individually,
introduced the following iterative process which Khan referred to as Picard-Mann
hybrid iterative process: x0 ∈ C

xn+1 = Tyn
yn = αnxn + (1− αn)Txn, ∀n ≥ 0,

(1.3)
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where {αn} is a sequence in (0, 1) . Khan proved a strong and a weak convergence
theorems in a Banach space for iterative process (1.3) under the suitable conditions
where T is a nonexpansive mapping. Also, he proved that the iterative process
given by (1.3) converges faster than the Picard, Mann and Ishikawa processes for
the contraction mappings.
In this paper, motivated and inspired by the idea of extragradient method and

the above processes, we introduce the following process: x0 ∈ C
xn+1 = TPC (I − λnA) yn
yn = αnxn + (1− αn)TPC (I − λnA)xn, ∀n ≥ 0,

(1.4)

where T is a nonexpansive mapping and PC is a metric projection from H onto C.
Our iterative process is independent from all of the above processes. Also, under
the suitable conditions, we establish a weak convergence theorem.

2. Preliminaries

In this section, we collect some useful lemmas that will be used for our main
result in the next section. We write xn ⇀ x to indicate that the sequence {xn}
converges weakly to x, and xn → x for the strong convergence. It is well known
that for any x ∈ H, there exists a unique point y0 ∈ C such that

‖x− y0‖ = inf {‖x− y‖ : y ∈ C} .

We denote y0 by PCx, where PC is called the metric projection of H onto C. It is
known that PC has the following properties:

(i) ‖PCx− PCy‖ ≤ ‖x− y‖ , for all x, y ∈ H,
(ii) ‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2 , for all x ∈ H, y ∈ C,
(iii) 〈x− PCx, y − PCx〉 ≤ 0, for all x ∈ H, y ∈ C,
On the other hand, it is known that a Hilbert space H satisfies the Opial condi-

tion that, for any sequence {xn} with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for every y ∈ H with y 6= x.

Lemma 2.1. [10] Let C be a nonempty closed convex subset of a real Hilbert space
H and {xn} be a sequence in H. Suppose that, for all z ∈ C,

‖xn+1 − z‖ ≤ ‖xn − z‖

for every n = 0, 1, 2, . . . . Then, {PCxn} converges strongly to some u ∈ C.

Lemma 2.2. [10] Let C be a nonempty closed convex subset of a real Hilbert space
H and let A be an α-inverse strongly monotone mapping of C into H. Then the set
of solutions of V I (C,A), Ω, is nonempty.
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For a set-valued mapping S : H → 2H , if the inequality

〈f − g, u− v〉 ≥ 0

holds for all u, v ∈ C, f ∈ Su, g ∈ Sv, then S is called monotone mapping. A
monotone mapping S : H → 2H is maximal if the graph G (S) of S is not
properly contained in the graph of any other monotone mappings. It is known
that a monotone mapping S is maximal if and only if, for (u, f) ∈ H × H,
〈u− v, f − w〉 ≥ 0 for every (v, w) ∈ G (S) implies f ∈ Su. Let A be an inverse
strongly monotone mapping of C into H, let NCv be the normal cone to C at v ∈ C,
i.e.,

NCv = {w ∈ H : 〈v − u,w〉 ≥ 0,∀u ∈ C} ,
and define

Sv =

{
Av +NCv v ∈ C
∅ v /∈ C.

Then S is maximal monotone and 0 ∈ Sv if and only if v ∈ Ω.

Lemma 2.3. [14] Let C be a nonempty closed convex subset of a real Hilbert
space H, and T be a nonexpansive self-mapping of C. If F (T ) 6= ∅, then I − T
is demiclosed; that is whenever {xn} is a sequence in C weakly converging to some
x ∈ C and the sequence {(I − T )xn} strongly converges to some y, it follows that
(I − T )x = y. Here I is the identity operator of H.

Lemma 2.4. [15] Let H be a real Hilbert space, let {αn} be a sequence of real
numbers such that 0 < a ≤ αn ≤ b < 1 for all n = 0, 1, 2, . . . , and let {xn} and
{yn} be sequences of H such that

lim sup
n→∞

‖xn‖ ≤ c, lim sup
n→∞

‖yn‖ ≤ c and lim
n→∞

‖αnxn + (1− αn) yn‖ = c,

for some c > 0. Then,

lim
n→∞

‖xn − yn‖ = 0.

3. Main result

In this section, we introduced a new extragradient method and proved that the
sequence generated by this iteration method converges weakly to a fixed point of
nonexpansive mapping and to a solution of variational inequality V I(C,A).

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let A : C → H be an α-inverse strongly monotone mapping and T : C → C
be a nonexpansive mapping such that F = F (T ) ∩ Ω 6= ∅. For arbitrary initial
value x0 ∈ H, let {xn} be a sequence defined by (1.4) where {λn} ⊂ [a, b] for some
a, b ∈ (0, 2α) and {αn} ⊂ [c, d] for some c, d ∈ (0, 1). Then, the sequence {xn}
converges weakly to a point p ∈ F , where p = limn→∞ PFxn.
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Proof. We devide our proof into four steps.
Step 1. Let tn = PC (I − λnA)xn. First, we show that {xn} and {tn} are

bounded sequences. Let z ∈ F (T ) ∩ Ω, then, we have

‖tn − z‖2 = ‖PC (I − λnA)xn − z‖2

≤ ‖(I − λnA)xn − (I − λnA) z‖2

= ‖xn − z − λn (Axn −Az)‖2

≤ ‖xn − z‖2 − 2λn 〈xn − z,Axn −Az〉+ λ2
n ‖Axn −Az‖

2

≤ ‖xn − z‖2 + λn (λn − 2α) ‖Axn −Az‖2

≤ ‖xn − z‖2 (3.1)

and from (3.1) we get

‖xn+1 − z‖2 = ‖TPC (I − λnA) yn − z‖2

= ‖TPC (I − λnA) yn − TPC (I − λnA) z‖2

≤ ‖yn − z‖2

= ‖αn (xn − z) + (1− αn) (Ttn − z)‖2

≤ αn ‖xn − z‖2 + (1− αn) ‖Ttn − z‖2

≤ αn ‖xn − z‖2 + (1− αn) ‖tn − z‖2

≤ αn ‖xn − z‖2

+ (1− αn)
[
‖xn − z‖2 + λn (λn − 2α) ‖Axn −Az‖2

]
= ‖xn − z‖2 + (1− αn)λn (λn − 2α) ‖Axn −Az‖2

≤ ‖xn − z‖2 + (1− d) a (b− 2α) ‖Axn −Az‖2

≤ ‖xn − z‖2 .
Therefore, there exists limn→∞ ‖xn − z‖ and Axn −Az → 0. Hence {xn} and {tn}
are bounded.
Step 2. We will show that limn→∞ ‖xn − yn‖ = 0. Before that, we shall show

limn→∞ ‖Ttn − xn‖ = 0. From Step 1, we know that limn→∞ ‖xn − z‖ exists for
all z ∈ F (T ) ∩ Ω. Let limn→∞ ‖xn − z‖ = c. Since

‖xn+1 − z‖ ≤ ‖yn − z‖ ≤ ‖xn − z‖ ,
we get

lim
n→∞

‖yn − z‖ = c. (3.2)

On the other hand, since

‖Ttn − z‖ ≤ ‖tn − z‖ ≤ ‖xn − z‖ ,
we have

lim sup
n→∞

‖Ttn − z‖ ≤ c. (3.3)
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Also, we know that

lim sup
n→∞

‖xn − z‖ ≤ c (3.4)

and

lim
n→∞

‖yn − z‖ = lim
n→∞

‖αn (xn − z) + (1− αn) (Ttn − z)‖ = c. (3.5)

Hence, from (3.3), (3.4), (3.5), and Lemma 2.4 , we get that

lim
n→∞

‖xn − Ttn‖ = 0. (3.6)

We have also

‖xn − yn‖ = ‖xn − αnxn − (1− αn)Ttn‖
= (1− αn) ‖xn − Ttn‖ .

So, from (3.6) we obtain that

lim
n→∞

‖xn − yn‖ = 0. (3.7)

Since A is Lipschitz continuous, we have Axn −Ayn → 0.
Step 3. Next, we show that limn→∞ ‖Txn − xn‖ = 0. Using the properties of

metric projections, since

‖tn − z‖2 = ‖PC (I − λnA)xn − PC (I − λnA) z‖2

≤ 〈tn − z, (I − λnA)xn − (I − λnA) z〉

=
1

2

[
‖tn − z‖2 + ‖(I − λnA)xn − (I − λnA) z‖2

−‖tn − z − [(I − λnA)xn − (I − λnA) z]‖2
]

≤ 1

2

[
‖tn − z‖2 + ‖xn − z‖2 − ‖(tn − xn) + λn (Axn −Az)‖2

]
=

1

2

[
‖tn − z‖2 + ‖xn − z‖2 − ‖tn − xn‖2

−2λn 〈tn − xn, Axn −Az〉 − λ2
n ‖Axn −Az‖

2
]
,

it follows that

‖tn − z‖2 ≤ ‖xn − z‖2 − ‖tn − xn‖2

−2λn 〈tn − xn, Axn −Az〉 − λ2
n ‖Axn −Az‖

2
. (3.8)
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So, using the inequality (3.8) we get

‖xn+1 − z‖2 = ‖TPC (I − λnA) yn − z‖2

= ‖TPC (I − λnA) yn − TPC (I − λnA) z‖2

≤ ‖yn − z‖2

= ‖αn (xn − z) + (1− αn) (Ttn − z)‖2

≤ αn ‖xn − z‖2 + (1− αn) ‖Ttn − z‖2

≤ αn ‖xn − z‖2 + (1− αn) ‖tn − z‖2

≤ ‖xn − z‖2 − (1− αn) ‖tn − xn‖2

−2λn (1− αn) 〈tn − xn, Axn −Az〉
−λ2

n (1− αn) ‖Axn −Az‖2

≤ ‖xn − z‖2 − (1− d) ‖tn − xn‖2

−2λn (1− αn) 〈tn − xn, Axn −Az〉
−λ2

n (1− αn) ‖Axn −Az‖2 .
Since limn→∞ ‖xn+1 − z‖ = limn→∞ ‖xn − z‖ and Axn −Az → 0, we obtain

lim
n→∞

‖xn − tn‖ = 0. (3.9)

On the other hand, we have

‖Txn − xn‖ ≤ ‖Txn − Ttn‖+ ‖Ttn − xn‖
≤ ‖xn − tn‖+ ‖Ttn − xn‖ .

So, it follows from (3.6) and (3.9) that

lim
n→∞

‖Txn − xn‖ = 0. (3.10)

Step 4. Finally, we show that {xn} converges weakly to a p ∈ F. Since {xn} is a
bounded sequence, there is a subsequence {xni} of {xn} such that {xni} converges
weakly to p.We need to show that p belongs to F. First, we show that p ∈ Ω. From
(3.9), we have tni ⇀ p. Let

Sv =

{
Av +NCv , v ∈ C,
∅ , v /∈ C.

Then S is maximal monotone mapping. Let (v, w) ∈ G (S) . Since w − Av ∈ NCv
and tn ∈ C, we get

〈v − tn, w −Av〉 ≥ 0. (3.11)
On the other hand, from the definiton of tn, we have that

〈xn − λnAxn − tn, tn − v〉 ≥ 0

and hence, 〈
v − tn,

tn − xn
λn

+Axn

〉
≥ 0.
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Therefore, using (3.11), we get

〈v − tni , w〉 ≥ 〈v − tni , Av〉

≥ 〈v − tni , Av〉 −
〈
v − tni ,

tni − xni
λni

+Axni

〉
=

〈
v − tni , Av −Axni −

tni − xni
λni

〉
= 〈v − tni , Av −Atni〉+ 〈v − tni , Atni −Axni〉

−
〈
v − tni ,

tni − xni
λni

〉
≥ 〈v − tni , Atni −Axni〉 −

〈
v − tni ,

tni − xni
λni

〉
.

Hence, for i→∞ we have

〈v − p, w〉 ≥ 0.

Since S is maximal monotone, we have p ∈ S−10 and hence p ∈ Ω. Next, we show
that p ∈ F (T ) . From (3.10), Lemma 2.3 and by using xni ⇀ p, we have that
p ∈ F (T ) . So desired conclusion (p ∈ F ) is obtained.
Now it remains to show that {xn} converges weakly to p ∈ F and p = limn→∞ PFxn.

Let assume that there exists an another subsequence
{
xnj
}
of {xn} and xnj ⇀ p0 ∈

F. We shall show that p = p0. Conversely, let suppose that p 6= p0. By using Opial
condition, we obtain that

lim
n→∞

‖xn − p‖ = lim inf
i→∞

‖xni − p‖

< lim inf
i→∞

‖xni − p0‖

= lim
n→∞

‖xn − p0‖

= lim inf
j→∞

∥∥xnj − p0

∥∥
< lim inf

j→∞

∥∥xnj − p∥∥
= lim

n→∞
‖xn − p‖ .

This is a contradiction, so we get p = p0. This implies that xn ⇀ p ∈ F.
Finally, we need to show p = limn→∞ PFxn. Since p ∈ F, we have

〈p− PFxn, PFxn − xn〉 ≥ 0.

By Lemma 2.1, {PFxn} converges strongly to u0 ∈ F. Then, we get

〈p− u0, u0 − p〉 ≥ 0,

and hence p = u0. So, proof is completed. �
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Corollary 1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let A : C → H be an α-inverse strongly monotone mapping such that Ω 6= ∅. For
arbitrary initial value x0 ∈ H, let {xn} be a sequence defined by{

xn+1 = PC (I − λnA) yn
yn = αnxn + (1− αn)PC (I − λnA)xn,∀n ≥ 0,

where {λn} ⊂ [a, b] for some a, b ∈ (0, 2α) and {αn} ⊂ [c, d] for some c, d ∈
(0, 1). Then, the sequence {xn} converges weakly to a point p ∈ Ω where p =
limn→∞ PΩxn.

4. Applications

Let B : H → 2H be a maximal monotone mapping. The resolvent of B of order
r > 0 is the single valued mapping JBr : H → H defined by

JBr x = (I + rB)
−1
x

for any x ∈ H. It is easy to check that F
(
JBr
)

= B−10. Moreover, the resolvent
JBr is a nonexpansive mapping. So, we can give the following theorem.

Theorem 4.1. Let H be a real Hilbert space. Let α > 0, A : H → H be an
α-inverse strongly monotone mapping and B : H → 2H be a maximal monotone
mapping such that A−10 ∩ B−10 6= ∅. For arbitrary initial value x0 ∈ H, let {xn}
be a sequence defined by{

xn+1 = JBr (yn − λnAyn)
yn = αnxn + (1− αn) JBr (xn − λnAxn) ,∀n ≥ 0,

where {λn} ⊂ [a, b] for some a, b ∈ (0, 2α) and {αn} ⊂ [c, d] for some c, d ∈ (0, 1).
Then the sequence {xn} converges weakly to a point p ∈ A−10 ∩ B−10 where p =
limn→∞ PA−10∩B−10xn.

Proof. We have A−10 = V I (H,A), F
(
JBr
)

= B−10 and PH = I. Since the
resolvent JBr is a nonexpansive mapping, we obtain the desired conclusion. �

Now, we give a theorem for a pair of nonexpansive mapping and strictly pseudo-
contractive mapping. A mapping S : C → C is called k- strictly pseudocontractive
mapping if there exists k with 0 ≤ k < 1 such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + k ‖(I − S)x− (I − S) y‖2

for all x, y ∈ C. Let A = I − S. Then, it is known that the mapping A is inverse
strongly monotone mapping with (1− k) /2, i.e.,

〈Ax−Ay, x− y〉 ≥ 1− k
2
‖Ax−Ay‖2 .
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Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C → C be a nonexpansive mapping and S : C → C be a k- strictly
pseudocontractive mapping such that F (T ) ∩ F (S) 6= ∅. For arbitrary initial value
x0 ∈ H, let {xn} be a sequence defined by{

xn+1 = T ((I − λn) yn + λnSyn)
yn = αnxn + (1− αn)T ((I − λn)xn + λnSxn) ,∀n ≥ 0,

where {λn} ⊂ [a, b] for some a, b ∈ (0, 1 − k) and {αn} ⊂ [c, d] for some c, d ∈
(0, 1). Then the sequence {xn} converges weakly to a point p ∈ F (T )∩F (S) where
p = limn→∞ PF (T )∩F (S)xn.

Proof. Let A = I−S. Then, we know that A is inverse strongly monotone mapping.
Also, It is clear that F (S) = V I (C,A) . Since, A is a mapping from C into itself,
we get

(I − λn)xn + λnSxn = xn − λn (I − S)xn = PC (xn − λnAxn) .

So, from Theorem 3.1, we obtain the desired conclusion. �
Theorem 4.3. Let H be a real Hilbert space. Let α > 0, A : H → H be an α-inverse
strongly monotone mapping and T : H → H be a nonexpansive mapping such that
F (T )∩A−10 6= ∅. For arbitrary initial value x0 ∈ H, let {xn} be a sequence defined
by {

xn+1 = T (yn − λnAyn)
yn = αnxn + (1− αn)T (xn − λnAxn) ,∀n ≥ 0,

where {λn} ⊂ [a, b] for some a, b ∈ (0, 2α) and {αn} ⊂ [c, d] for some c, d ∈ (0, 1).
Then the sequence {xn} converges weakly to a point p ∈ V I (F (T ) , A) where p =
limn→∞ PF (T )∩A−10xn.

Proof. We have A−10 = V I (H,A) and PH = I. Also, it is clear that F (S)∩A−10 ⊂
V I (F (S) , A). So, by Theorem 3.1, we get the desired conclusion. �
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