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COMPLEX FACTORIZATION OF SOME TWO-PERIODIC
LINEAR RECURRENCE SYSTEMS

SEMIH YILMAZ AND A.BULENT EKIN

ABSTRACT. In this paper, we define the generalized two-periodic linear recur-
rence systems and find the factorizations of this recurrence systems. We also
solve an open problem given in [3] under certain conditions.

1. INTRODUCTION

Definition 1.1. Let ag, a1, by, by are real numbers. The two-periodic second
order linear recurrence system {v, } is defined by vp :=0, v; € R and for n > 1

Von 1= GoV2n—1 + boV2p—2
Vapt1 1= A1V2p + b1V2p—1.

Also,let A :=aga; +bg+by, B:=byb;, andassume A?—4B #0.

Heleman studied two periodic second order linear recurrence systems and called
it as { f,} in [2]. Curtis and Parry also worked on the same linear recurrence systems
in [3]. If we take vy = 0, v; = 1 then we get the sequence {f,}, so here we study
more general case.

We need the following results of Theorem 6 and Theorem 9 in [1], in the case
r=2.

The generating function of the sequence {v,} is

nz + agviz? — bovyz®
1 — Ax? + Ba?

and the terms of the sequences {v,} satisfy

G(z)=

a™ — 3"

Vop = T_/Baovl (11)
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where
A+ VA2 - 4B 3 A—+A2 - 4B
0= [ A —
2 ’ 2
that is, o and 3 are the roots of the polynomial p (z) = 22— Az+ B. Since A2 —4B #
0 thus a and 3 are distinct.

We also need to define, the following matrix, for a positive integer n,

(%1 bo
0 ap b1
-1 al bo
—1 ao bl
-1 aq bo
T (’I’L) o -1 ag

- nXn

It is easily seen by induction that for n > 1,
vy, =det (T (n)). (1.2)
2. THE FACTORIZATION OF vg,

We give two lemmas to prove our main results, Theorem 2.3 and Theorem 2.4.

Lemma 2.1. Let n > 2, then
k
det (T'(2n)) =0 <= ap =0 orvy =0 or aga; + by + by = 2/bob cos <Tj>

where 1 <k <n-—1.

Proof. By 1.1 and 1.2

det (T'(2n)) = 0 <= vgp = T:ﬁaovl =0
< a=0orvy;=00ra”—p"=0
a n
a" —p" = 0= <) =1
B
Hence, for some 0 < k < n — 1 we have
a\" 2kmi
= — e
(5)
2kmi
<~ =e n .

a
B
We note here that k # 0 since o # 3.
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Let
0 2k i
n
for some 1 < k <n — 1. Then,
o A+ A2 - 4B 0
J— — —_— — e
B A—+/A?2 — 4B
— A+/A2 _4B=¢" (A— VA2 —43).
Next,
VA2 —4Be® + \/A2 — 4B = Ae" — A.
Then,
ei0 -1 ei@ -1 e—i0 + 1 ei@ _ e—i@
VA2 —4B = A— =A— - =A . —,
610 + 1 620 + 1 6—19 + 1 2 + 619 + 6—10
Now, since

e = cos (A) +isin (A) and sin (—6) = —sin (A) , cos (—6) = cos (6)

we have
i0

i .
VA2 _4B=aA-—% € _ g tsin() :Aitan<0>.

2+ e e~ 1+ cos (6) 2
Squaring both sides of this equality and after some simplifications we have
0
A =2vVBcos <2> . (2.1)

Now, substituting the values of A, B and 6 in 2.1, we get

k
agay + by + by = 24/ bgb; cos <7T)
n
for some 1 < k <n — 1. This is what we wanted prove. O

Lemma 2.2. Let n > 2. The eigenvalues of T' (2n) are

2
aop, v1 and 20 +a1i\/(ao ;a1> — (bo 4+ b1) + 24/bgby cos (T) , 1<k<n-1.

2
Proof. Let ¢g9:=0, g1 :=v; —t andforn>1
92n = (ao — t) g2n—1 + bogan—2
92n+1 = (a1 — t) gon + b1g2n—1.
The eigenvalues of T' (2n) are the solutions of det (T (2n) — tIz,) = gon = 0. By

Lemma 2.1,

k
gon =0 < ap—t=0o0r g1 =v1—t =0o0r (ag —t) (a1 — t)+bo+b1 = 24/bgb; cos <7ZT>
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for some 1 < k < n — 1. Therefore, the eigenvalues of T (2n) are ag, v; and the
solutions of the quadratic equation

k
t2 — (ao + al) t —+ aogay =+ bo —+ bl = 2 bobl COS (ﬂ->
n

for some 1 < k < n — 1. Completing the square we have

ap+ a1\’ ao+ a1\’ kT
t27(a0+a1)t+ (01> = ( 0 1> 70,0(117()071)14‘2\/ b0b1 [¢0)] <> .
n

2 2

Therefore, the eigenvalues of T (2n) are ag, v; and

2
— k
ao;al i\/(ao 2&1) —(b0+b1)+2\/b0b1(}0$< ﬂ-)

n
forsome 1 <k<n-—1. O

Theorem 2.3. Let {v,} be the two-periodic second order linear recurrence system,
and n > 2. Then

n—1 2
— k
Van, = QU1 H ao;rch i\/(ao 2a1> — (bo 4+ b1) + 24/bpby cos (;)

k=1

Proof. The result follows from Lemma 2.2, vy, = det (T (2n)) and the fact that the
determinant of a matrix is the product of the eigenvalues of the matrix. O

Theorem 2.4. Let {v,} be the two-periodic second order linear recurrence system,
n>2 and by :=0. Then
Vamg1 = agay vy (agay + b)" '
Proof. If we take b; = 0 in Definition 1, we get v9 =0, v; € R and forn > 1
V2 = aQU2n—1 + bov2n—2

Von+1 = G10U2p.

By Theorem 2.3, we have

e ta ap — ar \>
Vo = a()l}lH 02 1:|: (02 1) —bo

k=1

n—1

= aov1 H (apa1 + bo)
k=1

= agV1 (a0a1 + bo)nil .

Hence, by the definition of {v,}, we get the result

n—1
Van41 = Q1025 = Aoa1v1 (agar +bo)" .
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Example 2.5. Let vg =0, v1 =1 and forn > 1
Vap = AgU2n—1 + bovan—2
V2p41 = A1U2n + b1v2,-1.
Then {v,} is added one term to beginning of {f,} sequences in [3]. Namely,
fn="vn11, n2>0.

Hence

n—1 2
ap+ a ap — a km
font1 = vop :aokli[l 0 5 ! j:\/<021> — (bo + b1) 4+ 24/boby cos <n>

Therefore this factorization is the same as Theorem 11 in [3].

They give several open questions for future work. One of this question is a
complex factorization of the terms fs,. We have solved in the following way at
condition b; = 0 of this question by Theorem 2.4,

1
Jon = vont1 = apaivy (agar +bo)" .

2.1. Special Cases:

Case 1. The case vy :=0, v1 :=1, ag:=1, a1 :=1, bg:=1, by :=1, then {v,}
becomes the sequence of Fibonacci numbers. Therefore, we get

n—1 kr
Fy, = -2 — ).
on kl;[l (3 cos ( " >)

that is the equation 4.1 in [4].

Case 2. The case vg:=0, vy :=1, ag:=2, a1 :=2, bg:=1, by :=1, then {v,}
becomes the sequence of Pell numbers. Therefore,

n—1 kr n—1 kn
P, =2 —2cos| — ) | =2" — — .
on kl:[l<6 cos<n>) kl:[l<3 cos(n))

Case 3. The case vy :=0, v1 :=1, ag:=1, a1 :=1, by :=2, by := 2, then {v,}
becomes the sequence of Jacobsthal numbers. Therefore,

n—1 k’]’(’
Jon = H <5 — 4 cos ()) .
n
k=1

Case 4. The case vg := 0, vy := 1, ag :=1, a1 := 1, by := —1, by := 1, then
{vn} becomes the sequence of A053602 on [5]. Then {van} becomes the sequence of
Fibonacci numbers. Therefore, we get

n—1 ]f’IT
F, = 1—2 — .

that is the equation 1.1 in [4].
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Case 5. The case vg := 0, vy := 1, ap := 3, a1 := 3, by := —2, by := —2, then
{vn} becomes the sequence of Mersenne numbers. Therefore,

n—1
k
Mz, =3[ (5 — 4cos <”>) = 3y,
k=1 n
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