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COMPLEX FACTORIZATION OF SOME TWO-PERIODIC
LINEAR RECURRENCE SYSTEMS

SEMIH YILMAZ AND A.BULENT EKIN

Abstract. In this paper, we define the generalized two-periodic linear recur-
rence systems and find the factorizations of this recurrence systems. We also
solve an open problem given in [3] under certain conditions.

1. Introduction

Definition 1.1. Let a0, a1, b0, b1 are real numbers. The two-periodic second
order linear recurrence system {vn} is defined by v0 := 0 , v1 ∈ R and for n ≥ 1

v2n := a0v2n−1 + b0v2n−2

v2n+1 := a1v2n + b1v2n−1.

Also, let A := a0a1 + b0 + b1, B := b0b1, and assume A2 − 4B 6= 0.

Heleman studied two periodic second order linear recurrence systems and called
it as {fn} in [2]. Curtis and Parry also worked on the same linear recurrence systems
in [3]. If we take v0 = 0 , v1 = 1 then we get the sequence {fn}, so here we study
more general case.
We need the following results of Theorem 6 and Theorem 9 in [1], in the case

r = 2.
The generating function of the sequence {vn} is

G (x) =
v1x+ a0v1x

2 − b0v1x3
1−Ax2 +Bx4

and the terms of the sequences {vn} satisfy

v2n =
αn − βn

α− β a0v1 (1.1)
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where

α =
A+
√
A2 − 4B
2

, β =
A−
√
A2 − 4B
2

that is, α and β are the roots of the polynomial p (z) = z2−Az+B. Since A2−4B 6=
0 thus α and β are distinct.
We also need to define, the following matrix, for a positive integer n,

T (n) :=



v1 b0
0 a0 b1
−1 a1 b0

−1 a0 b1
−1 a1 b0

−1 a0
. . .

. . .
. . .


n×n

.

It is easily seen by induction that for n ≥ 1,
vn = det (T (n)) . (1.2)

2. The Factorization of v2n

We give two lemmas to prove our main results, Theorem 2.3 and Theorem 2.4.

Lemma 2.1. Let n ≥ 2, then

det (T (2n)) = 0 ⇐⇒ a0 = 0 or v1 = 0 or a0a1 + b0 + b1 = 2
√
b0b1 cos

(
kπ

n

)
where 1 ≤ k ≤ n− 1.

Proof. By 1.1 and 1.2

det (T (2n)) = 0 ⇐⇒ v2n =
αn − βn

α− β a0v1 = 0

⇐⇒ a0 = 0 or v1 = 0 or αn − βn = 0

αn − βn = 0 ⇐⇒
(
α

β

)n
= 1

Hence, for some 0 ≤ k ≤ n− 1 we have(
α

β

)n
= e2kπi

⇐⇒ α

β
= e

2kπi
n .

We note here that k 6= 0 since α 6= β.
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Let

θ :=
2kπi

n
for some 1 ≤ k ≤ n− 1. Then,

α

β
=

A+
√
A2 − 4B

A−
√
A2 − 4B

= eiθ

⇐⇒ A+
√
A2 − 4B = eiθ

(
A−

√
A2 − 4B

)
.

Next, √
A2 − 4Beiθ +

√
A2 − 4B = Aeiθ −A.

Then, √
A2 − 4B = A

eiθ − 1
eiθ + 1

= A
eiθ − 1
eiθ + 1

e−iθ + 1

e−iθ + 1
= A

eiθ − e−iθ
2 + eiθ + e−iθ

.

Now, since

eiθ = cos (θ) + i sin (θ) and sin (−θ) = − sin (θ) , cos (−θ) = cos (θ)
we have√

A2 − 4B = A
eiθ − e−iθ

2 + eiθ + e−iθ
= A

i sin (θ)

1 + cos (θ)
= Ai tan

(
θ

2

)
.

Squaring both sides of this equality and after some simplifications we have

A = 2
√
B cos

(
θ

2

)
. (2.1)

Now, substituting the values of A,B and θ in 2.1, we get

a0a1 + b0 + b1 = 2
√
b0b1 cos

(
kπ

n

)
for some 1 ≤ k ≤ n− 1. This is what we wanted prove. �

Lemma 2.2. Let n ≥ 2. The eigenvalues of T (2n) are

a0, v1 and
a0 + a1
2
±

√(
a0 − a1
2

)2
− (b0 + b1) + 2

√
b0b1 cos

(
kπ

n

)
, 1 ≤ k ≤ n−1.

Proof. Let g0 := 0, g1 := v1 − t and for n ≥ 1
g2n := (a0 − t) g2n−1 + b0g2n−2
g2n+1 := (a1 − t) g2n + b1g2n−1.

The eigenvalues of T (2n) are the solutions of det (T (2n)− tI2n) = g2n = 0. By
Lemma 2.1,

g2n = 0 ⇐⇒ a0−t = 0 or g1 = v1−t = 0 or (a0 − t) (a1 − t)+b0+b1 = 2
√
b0b1 cos

(
kπ

n

)



132 SEMIH YILMAZ AND A.BULENT EKIN

for some 1 ≤ k ≤ n− 1. Therefore, the eigenvalues of T (2n) are a0, v1 and the
solutions of the quadratic equation

t2 − (a0 + a1) t+ a0a1 + b0 + b1 = 2
√
b0b1 cos

(
kπ

n

)
for some 1 ≤ k ≤ n− 1. Completing the square we have

t2− (a0 + a1) t+
(
a0 + a1
2

)2
=

(
a0 + a1
2

)2
− a0a1− b0− b1+2

√
b0b1 cos

(
kπ

n

)
.

Therefore, the eigenvalues of T (2n) are a0, v1 and

a0 + a1
2

±

√(
a0 − a1
2

)2
− (b0 + b1) + 2

√
b0b1 cos

(
kπ

n

)
for some 1 ≤ k ≤ n− 1. �

Theorem 2.3. Let {vn} be the two-periodic second order linear recurrence system,
and n ≥ 2. Then

v2n = a0v1

n−1∏
k=1

a0 + a1
2

±

√(
a0 − a1
2

)2
− (b0 + b1) + 2

√
b0b1 cos

(
kπ

n

) .

Proof. The result follows from Lemma 2.2, v2n = det (T (2n)) and the fact that the
determinant of a matrix is the product of the eigenvalues of the matrix. �
Theorem 2.4. Let {vn} be the two-periodic second order linear recurrence system,
n ≥ 2 and b1 := 0. Then

v2n+1 = a0a1v1 (a0a1 + b0)
n−1

.

Proof. If we take b1 = 0 in Definition 1, we get v0 = 0, v1 ∈ R and for n ≥ 1
v2n = a0v2n−1 + b0v2n−2

v2n+1 = a1v2n.

By Theorem 2.3, we have

v2n = a0v1

n−1∏
k=1

a0 + a1
2

±

√(
a0 − a1
2

)2
− b0


= a0v1

n−1∏
k=1

(a0a1 + b0)

= a0v1 (a0a1 + b0)
n−1

.

Hence, by the definition of {vn}, we get the result
v2n+1 = a1v2n = a0a1v1 (a0a1 + b0)

n−1
.

�
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Example 2.5. Let v0 = 0, v1 = 1 and for n ≥ 1
v2n = a0v2n−1 + b0v2n−2

v2n+1 = a1v2n + b1v2n−1.

Then {vn} is added one term to beginning of {fn} sequences in [3]. Namely,
fn = vn+1, n ≥ 0.

Hence

f2n+1 = v2n = a0

n−1∏
k=1

a0 + a1
2

±

√(
a0 − a1
2

)2
− (b0 + b1) + 2

√
b0b1 cos

(
kπ

n

) .

Therefore this factorization is the same as Theorem 11 in [3].
They give several open questions for future work. One of this question is a

complex factorization of the terms f2n. We have solved in the following way at
condition b1 = 0 of this question by Theorem 2.4,

f2n = v2n+1 = a0a1v1 (a0a1 + b0)
n−1

.

2.1. Special Cases:

Case 1. The case v0 := 0, v1 := 1, a0 := 1, a1 := 1, b0 := 1, b1 := 1, then {vn}
becomes the sequence of Fibonacci numbers. Therefore, we get

F2n =

n−1∏
k=1

(
3− 2 cos

(
kπ

n

))
.

that is the equation 4.1 in [4].

Case 2. The case v0 := 0 , v1 := 1, a0 := 2, a1 := 2, b0 := 1, b1 := 1, then {vn}
becomes the sequence of Pell numbers. Therefore,

P2n = 2

n−1∏
k=1

(
6− 2 cos

(
kπ

n

))
= 2n

n−1∏
k=1

(
3− cos

(
kπ

n

))
.

Case 3. The case v0 := 0, v1 := 1, a0 := 1, a1 := 1, b0 := 2, b1 := 2, then {vn}
becomes the sequence of Jacobsthal numbers. Therefore,

J2n =

n−1∏
k=1

(
5− 4 cos

(
kπ

n

))
.

Case 4. The case v0 := 0, v1 := 1, a0 := 1, a1 := 1, b0 := −1, b1 := 1, then
{vn} becomes the sequence of A053602 on [5]. Then {v2n} becomes the sequence of
Fibonacci numbers. Therefore, we get

Fn =

n−1∏
k=1

(
1− 2i cos

(
kπ

n

))
.

that is the equation 1.1 in [4].
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Case 5. The case v0 := 0, v1 := 1, a0 := 3, a1 := 3, b0 := −2, b1 := −2, then
{vn} becomes the sequence of Mersenne numbers. Therefore,

M2n = 3

n−1∏
k=1

(
5− 4 cos

(
kπ

n

))
= 3J2n.
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