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MODELING DEPENDENT FINANCIAL ASSETS BY DYNAMIC
COPULA AND PORTFOLIO OPTIMIZATION BASED ON CVAR

SIBEL AÇIK KEMALOĞLU AND EMEL KIZILOK KARA

Abstract. This paper is concerned with the statistical modeling of the de-
pendence structure of multivariate financial data using copula. Since financial
data is greatly affected by the economic factors, it often varies according to
the time. Therefore, dynamic copula model is used that takes into account the
time-varying. In addition, portfolio optimization based on Mean-CVaR model
is applied with Monte Carlo simulation. As an application, a portfolio with
four different Indexes is constructed from the Turkish financial markets. The
marginal distributions of assets in the portfolio are estimated and parameter
estimates are given for the different copula models. The portfolio optimization
based on CVaR is made for the portfolio created from the specified copula
model.

1. INTRODUCTION

Modern Portfolio Theory is an approach which had emerged after the 1950s
and has enabled the creation of portfolios, taking into account the relationships
between assets. Markowitz [1] presented the mean variance model and laid the
foundations of modern portfolio theory. Portfolio risk is measured by variance
in the mean variance model. When the return data is not distributed normally,
it is more appropriate to use other risk measurements instead of measuring risk
by variance. Value at Risk (VaR) and Conditional Value at Risk (CVaR) are
the most known risk measurements in the field of finance. In the first studies
carried out in finance, VaR was used as risk measurement. However, VaR could
not ensure the attributes of being subadditive and convex, which are required in
a risk measurement. It is of importance to ensure these attributes, particularly in
a portfolio optimization. CVaR has been recommended as opposed to VaR, since
it can ensure these attributes [2]. In this study, risk measurement was adopted as
CVaR, and the mean-CVaR model was used for portfolio optimization.
In order to estimate the portfolio CVaR in a more accurate way, the nonlinear

dependency between the tails of return on assets should be revealed. In this study,
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the copula model that was first mentioned in Sklar [3] was used in order to model
the dependency structure between the return series. However, since the financial
data exploited varied with respect to time, the dynamic copula model was applied
to the data instead of a known copula model [4].
In order to conduct a portfolio optimization based on CVaR , the copula para-

meter should primarily be estimated. In the literature, there are different methods
for the copula parameter estimation. The Inference Function for Margins (IFM)
method, based on the marginal distribution, Kendall’s τ based on sequence inde-
pendent of marginal functions and Maximum Pseudo Likelihood (MPL) method,
are the most known estimation methods. In this study, Two-Stage IFM method
was used. In this method, the parameter of marginal distribution is estimated in
the first phase, and copula parameter is estimated in the second phase [5]. For the
test of marginal and copula goodness of fit, AIC and BIC criteria were applied.
Finally, portfolio optimization based on the CVaR risk measurement was made for
the data generated from this model with the Monte Carlo simulation method, and
the weights in the portfolio were determined.
Comprehensive information regarding copula is available in the study of Joe [6]

and Nelsen [7].
In the field of finance, copula was first mentioned by Embrechts et al. [8]. The

first applications of this subject were given in Cherubini [5]. Jondeau and Rockinger
[9] used the Copula-GARCH model in order to determine the dependence structure
among stocks. Other studies that included this model have been presented in Wei
and Zhang [10], Ozun and Cifter [11], and Huang et al. [12]. Optimization studies
based on CVaR were recommended in Uryasev and Rockafellar [2] for the first time.
The application of the copula-GARCH model for portfolio risk analysis was given
in Wu and Chen [13], and Wang et al. [14]. He and Li [4] have conducted studies
regarding the dynamic copula model based on CVaR and copula.
In the second part of the study, the dynamic copula model is introduced, and

methods to find the estimations for parameters are given. In the third part, the
definition of CVaR risk measurement is presented nd portfolio optimization based
on CVaR is formed. In the fourth part, for a sample of Turkish financial data
is tested and the results are presented. Finally, in the fifth part, the results are
discussed and further studies that could be conducted in the future are mentioned.

2. DYNAMIC COPULA MODEL AND PARAMETER ESTIMATION

Copula functions are frequently used in modeling the dependency structure
among the risk variables in the field of finance and actuary. Sklar [3] states that
there is only one expression of an n-dimensional C(·, . . . ·) copula for any continuous
(X1, ..., Xn) random vector:

F (x1, ...xn) = C (F1 (x1) , ..., FN (xn)) (2.1)
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where F1 (�) , ..., FN (�) and F (�, ..., �) respectively show the marginal and joint dis-
tribution functions of x1, x2, ..., xn random variables.
In this study, static copula models (Gaussian, Student-t, Clayton, and Sym-

metrized Joe Clayton-SJC) and corresponding dynamic copula models (GDCC,
tDCC, tvC, tvSJC) are used. The static copulas exploited are defined as follows
[5, 7, 15]

Table 1. Bivariate copula functions and parameter space of the considered copulas
Copula C(u1, u2) Parameter Space
Gaussian Φρ

(
φ−1 (u1) , φ

−1 (u2)
)

= ρ ∈ (−1, 1)
φ−1(u1)∫
−∞

φ−1(u2)∫
−∞

1

2π
√
1−ρ2

exp
(
− s

2−2ρst+t2
2(1−ρ2

)
dsdt

Student’s t td,ρ
(
t−1d (u1) , t

−1
d (u2)

)
=

t−1d (u1)∫
−∞

t−1d (u2)∫
−∞

1

2π
√
1−ρ2

(
1 + s2−2ρst+t2

d(1−ρ2

)
dsdt

ρ ∈ (−1, 1)
d ∈ (0,∞)

Clayton
[
u−w1 + u−w2 − 1

]− 1
w w ∈ (0,∞)

SJC 1
2

(
CJC

(
u1, u2|τU , τL

) Upper tail: τU ∈ (0, 1)
Lower tail: τL ∈ (0, 1)

+CJC
(
1− u1, 1− u2|τL, τU

)
+ u1 + u2 − 1

)
Also note that φ−1and t−1d are the inverse of the Normal and t-student c.d.f., where the parameters ρ

and d are the coeffi cient of linear correlation and the degrees of freedom, respectively. Joe-Clayton copula

is defined as CJC
(
u1, u2|τU , τL

)
= 1 −

(
1−

{
[1− (1− u1)κ]−γ + [1−

(
1− /u2

)κ]−γ − 1}−1/γ)1/κ ,
where κ = 1

log2(2−τU )
and γ = 1

log2(τ
L)

The used dynamic copula are created by applying the static copulas which are
defined in Table 1. According to the Sklar [3] theorem, the dynamic copula model
is expressed as below [11].

F (X1t, ..., Xnt | ξt) = Ct (F1t (X1t | ξt) , F2t (X2t | ξt) ..., Fnt (Xnt | ξt)) (2.2)

where ξt = σ {X1t−1, X2t−2, ..., Xnt−t, ...} for t = 1, 2, ..., T represents the historical
data until t time.
The first step to create the joint distribution of portfolio assets with the dynamic

copula method is generating the marginal distribution of each asset. In the litera-
ture, since the financial data varies according to the time, it is stated that marginal
distributions are in compliance with the GARCH model, which was first run by
Bollerslev [16]. The GJR model was acquired by adding the dummy variable to the
GARCH model.
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GARCH(1, 1)− n and GARCH(1, 1)− t models can be expressed as below:
xt = µ+ at (2.3)

at = σtεt

σ2t = α0 + α1a
2
t−1 + βσ2t−1

εt ∼ N (0, 1) or εt ∼ td
Here, provided that µ indicates conditional mean of return series, and σ2t−1

indicates conditional variance, it is defined as below. Moreover, Ωt−1 indicates the
information set and d indicates the degree of freedom.

µ = E (xt) = E (E (xt|Ωt−1)) = E (µt) = µ

σ2t = V ar (xt|Ωt−1) = V ar (at|Ωt−1)
α0 > 0, α1 ≥ 0, β ≥ 0 ve α1 + β < 1

GJR-n and GJR- t models are defined as:

xt = µ+ at (2.4)

at = σtεt

σ2t = α0 + α1a
2
t−1 + βσ2t−1 + γst−1a

2
t−1

εt ∼ N (0, 1) or εt ∼ td

where,st−1 =

{
1, at−1 < 0
0, at−1 ≥ 0

is a dummy variable which is equal to 0 as opposed

to 1 while εt is negative. Moreover, parameter intervals are given as α0 > 0, α1 ≥
0, β ≥ 0 , β + γ ≥ 0 and α1 + β + 1

2γ < 1.
The parameters of the GARCH and GJR models are estimated with MLE

method. The joint density function can be expressed as
f (a1, ..., at) = f (at|Ωt−1) f (at−1|Ωt−2) ...f (a1|Ω0) f (a0)
where Ωt−1 = {a0, a1, ..., at−1} . Given data a1, ..., at, the log-likelihood function

is given as:

LL =

n−1∑
k=0

f (an−k|Ωn−k−1)

Here, the conditional marginal distribution of Xt+1 for the GARCH(1, 1) model is
defined as follows:

P (Xt+1 ≤ x|Ωt) = P (at+1 ≤ (x− µ) |Ωt)

= P

(
εt+1 ≤

(x− µ)√
α0 + α1a2t + βσ2t

|Ωt

)


N

(
(x−µ)√

α0+α1a2t+βσ
2
t

|Ωt
)
, ε ∼ N (0, 1)

td

(
(x−µ)√

α0+α1a2t+βσ
2
t

|Ωt
)
, ε ∼ td
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For the GJR(1, 1) model:

P (Xt+1 ≤ x|Ωt) = P (at+1 ≤ (x− µ) |Ωt)

= P

(
εt+1 ≤

(x− µ)√
α0 + α1a2t + βσ2t + γsta2t

|Ωt

)


N

(
(x−µ)√

α0+α1a2t+βσ
2
t+γsta

2
t

|Ωt
)
, ε ∼ N (0, 1)

td

(
(x−µ)√

α0+α1a2t+βσ
2
t+γsta

2
t

|Ωt
)
, ε ∼ td

The copula parameter should also be estimated in order to conduct portfolio
optimization based on CVaR. Therefore, the IFM method that is composed of two
phases based on the method of Maximum Likelihood Estimation (MLE) was used.
The IFM estimates the marginal distribution parameters separately from the copula
parameters. The estimation procedure of the IFM method consists of two steps [5].
In the first step, the parameters of the marginals are estimated:

θ̂1 = arg max θ1

T∑
t=1

n∑
j=1

ln fj (xjt; θ1) . (2.5)

In the second step, the parameter of the copula model is estimated, given θ1:

θ̂2 = arg max θ2

T∑
t=1

ln c
(
F1 (x1t) , F2 (x2t) , ..., Fn (xnt) ; θ2, θ̂1

)
. (2.6)

The IFM estimator is defined as(Cherubini et.al.,[5])

θ̂IFM =
(
θ̂1, θ̂2

)′
(2.7)

To make the goodness of fit tests for marginal and copula, AIC (Akaike Infor-
mation Criterion) [17] and BIC (Bayesian Information Criterion) [18, 19] criteria
were used. AIC and BIC values are,

AIC = −2 ∗ LL+ 2k (2.8)

BIC = −2 ∗ LL+ ln(n) ∗ k (2.9)

where LL is the log-likelihood at its maximum point of the model estimated and k
is the number of copula parameters in the model. According to these criteria, the
best choice is the model with minimum AIC or BIC value.

3. PORTFOLIO OPTIMIZATION BASED ON CVAR

CVaR measurement was introduced to the literature by the development of VaR
measurement by Rockafellar and Uryasev [2]. Let x = (x1, x2, ..., xn)T vector be a
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portfolio with n assets, and let y = (y1, y2, ..., ym)T be m type loss factor with p(y)
density distribution. The loss factor of portfolio f(x, y) is given as follows:

Ψ(x, α) =

∫
f(x,y)≤α

p(y)dy, α ∈ R

For the given β ∈ (0, 1) confidence level

αβ(x) = min {α ∈ R : Ψ(x, α) ≥ β}
Φβ(x) = E [f(x, y)|f(x, y) ≥ αβ(x)]

=
1

1− β

∫
f(x,y)≥αβ(x)

f(x, y)p(y)dy

αβ(x) and Φβ(x) show V aR and CV aR at β confidence level, respectively. Rock-
afellar and Uryasev [2] converted the minimization problem of CV aR to that of
Fβ(x, α) . Here, Fβ(x, α) is a constantly differentiable function, which is composed
of convex composition of V aR and CV aR.

Fβ(x, α) = α+
1

1− β

∫
y∈Rm

[f(x, y)− α]
+
p(y)dy (3.1)

Since the analytical expression of p(y) is diffi cult, or it is not known generally in
practice, y’s are derived through the Monte Carlo simulation method. Accordingly,
the (3.1) equation can be written as follows:

F̃β(x, α) = α+
1

m (1− β)

m∑
j=1

[
−xT yj − α

]+
(3.2)

Here, provided that m indicates the number of simulations, x = (x1, x2, ..., xn)
indicates the weights of assets in the portfolio, and yj = (yj1, yj2, ..., yjn) indicates
the derived returns, the portfolio selection model based on CV aR optimization is
given as below:

min F̃β(x, α) = α+
1

m (1− β)

m∑
j=1

zj

zj =
[
−xT yj − α

]+

xT yj + α+ zj ≥ 0
zj ≥ 0

1
qx

T

m∑
j=1

yj ≥ ρ∑m
i=1 xi = 1, x ≥ 0


(3.3)

Here, ρ is the return expected by investor. CV aR optimization problem can
be solved as a linear programming problem. Returns generated from the dynamic
copula model are obtained from the Monte Carlo simulation.
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4. NUMERICAL EXAMPLE

In this study, in order to demonstrate the performance of the copula-GARCH
model, 1649 daily stock final quotations between January 4, 2007 and August 1,
2013, as well as USD and EURO currency data, were used. Stock final quotations
were obtained from the website of BIST [20], and USD and EURO currency data
were retrieved from the website of the Turkish Central Bank [21]. Daily market
returns of BIST30, BIST100, USD and EURO are shown in Figure 1.
When rt indicates the returns, it is given as:

rt = 100× ln

(
Pt
Pt−1

)

Here Pt indicates the index value at t time. The existence of volatility clustering is
seen in Figure 1. Therefore, the results are given in Table 2, after quadratic returns
that are named as ARCH effects are tested with the Engle test (LM(4), LM(6),
LM(8), and LM(10)) to reveal whether there is a relation to the series.
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Figure 1. Daily returns of BIST30, BIST100, USD and EURO
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Figure 2. Autocorrelations of BIST30, BIST100, USD and EURO indexes (a) and
partial autocorrelation measurements (b)

Table 2. Descriptive statistics and tests
Statistics BIST30 BIST100 USD EURO
Sample Number 1646 1646 1646 1646
Mean 0.000462 0.000479 0.000191 0.000195
Standart deviation 0.0200 0.0185 0.0090 0.0081
Skewness -0.1174 -0.2545 -0.5112 0.2224
Kurtosis 3.7106 4.1608 24.03122 7.4139
Tests Q-stat p-value Q-stat p-value Q-stat p-value Q-stat p-value
Jarque-Bera 940.51 0.0010 1195.9 0.0010 39427 0.0010 3756.8 0.0010
LM(4) 118.5178 0.0000 124.0513 0.0000 227.9964 0.0000 191.0501 0.0000
LM(6) 129.5706 0.0000 132.7788 0.0000 228.3458 0.0000 199.3508 0.0000
LM(8) 160.8098 0.0000 152.2154 0.0000 286.3049 0.0000 258.9005 0.0000
LM(10) 166.1320 0.0000 155.6451 0.0000 287.7057 0.0000 268.2120 0.0000

Table 2 consists of summary statistics of financial returns and statistical test
information in relation to ARCH effects. Thus, it is revealed that BIST30, BIST100,
and USD have negative skewness (-0.1174, -0.2545 and -0.5112, respectively), the
EURO has a positive skewness (0.2224), and marginal are not distributed normally
according to JB statistics (p value < 0.05). It should be looked to the Engle
test results to determine whether there is correlation between the data related to
each financial return. According to the Engle test results, LM statistics indicate
that there are ARCH effects (p value < 0.05). Furthermore, the correlations for raw
returns in Figure 2 were evaluated with autocorrelation functions (ACF) and partial
autocorrelation functions (PACF). Here, it was observed that all autocorrelations
are not zero after zero lag. Since financial returns are considered to be time series
data, their marginal distributions were regarded as GARCH and GJR models to
conduct copula estimation. Another result that supports the selection of these
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models is that kurtosis coeffi cients that were computed for each of the financial
returns were found to be greater than 3. As a consequence, empiric observations in
regard to returns have greater leptokurtosis than the normal distribution. Goodness
of fit for the distribution with regard to the residual series of each of the financial
returns (BIST30, BIST100, USD, and EURO) were made for the GARCH and GJR
models by selecting Normal and Student-t, respectively.
Table 3 and Table 4 respectively show maximum likelihood results, estimated

parameter values, AIC (Akaike Information Criterion) and BIC (Bayesian Informa-
tion Criterion) values for GARCH and GJR models selection.
In order to determine the model that best explains financial returns, minimum

AIC and BIC values should be sought in the tables. Table 3 and Table 4 demon-
strate that the GJR-t (AIC:-8612.8174,-8895.0195) model can be used for BIST 30
and BIST 100, and the GARCH-t (AIC: -11681.6623, -11889.9500) model can be
used for USD and EURO.
An appropriate copula model was selected by using the estimated parameter val-

ues for the identified marginal distributions. Four copula functions were created for
the application. The copula selection model was examined in two situations: static
(Gaussian, Student-t, Clayton, SJC) and dynamic (GDCC, tDCC, tvC, tvSJC).
Table 5 demonstrates the parameter estimation results for the IFM method in re-
gard to these situations, and AIC and BIC values. From the table, it is understood
that in both situations, the Student-t copula is the best copula model in order to
explain the dependency structure of financial returns with four variables. When
examined separately for static and dynamic situations, the dependency structure
of GJR marginal distributions with the minimum AIC (-8831.6529) in a dynamic
situation was modeled ideally with tDCC copula.
It was identified that financial data marginals that were used fit GJR-t, and joint

dependency structure fit the tDCC dynamic copula model. By using the parameter
values for selected model, the Monte Carlo simulation was performed 10,000 times,
and portfolio optimization was achieved based on CVaR risk measurement. VaR
and CVaR risk measurement values for different confidence levels, and results in-
cluding the weights for each financial asset are given in Table 6. Accordingly, mean
loss above a certain value, that is, CVAR value would reach the minimum when an
investor allocates 35% of his/her assets in BIST30, 15% in BIST100, 30% in USD,
and 20% in EURO within a 99% confidence level.
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Table 3. Parameter estimates of GARCH-n and GARCH-t models and statistic tests
GARCH-n
BIST30 BIST100 USD EURO

Parameter Value Std Value Std Value Std Value Std
µ 0.0015 0.0000 0.0016 0.0000 0.0001 0.0000 0.0000 0.0000
α0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
α1 0.1198 0.0320 0.1325 0.0380 0.0994 0.0150 0.1028 0.0400
β 0.8548 0.0390 0.8452 0.0410 0.9005 0.0150 0.8970 0.0380
LL 4274.4950 4407.2970 5816.9220 5917.6170
AIC -8540.9905 -8806.5938 -11625.8442 -11827.2338
BIC -8519.3661 -8784.9694 -11604.2198 -11805.6094

GARCH-t
BIST30 BIST100 USD EURO

Parameter Value Std Value Std Value Std Value Std
µ 0.0013 0.0000 0.0014 0.0000 -0.0001 0.0000 0.0000 0.0000
α0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
α1 0.1080 0.0340 0.1237 0.0420 0.1000 0.0170 0.1471 0.0390
β 0.8613 0.0500 0.8485 0.0510 0.8985 0.0170 0.8529 0.0400
d 8.0756 1.825 7.3133 1.7420 8.4006 1.2500 4.6384 0.2690
LL 4305.663 4446.708 5845.831 5949.975
AIC -8601.3251 -8883.4169 -11681.6623 -11889.9500
BIC -8574.2946 -8856.3854 -11654.6317 -11862.9194

Table 4. Parameter estimates of GJR-n and GJR-t models and statistic tests
GJR-n
BIST30 BIST100 USD EURO

Parameter Value Std Value Std Value Std Value Std
µ 0.0010 0.0000 0.0014 0.0000 0.0000 4825134.081 -0.0001 0.001
α0 0.0000 0.0000 0.0000 0.0000 0.0000 15973.427 0.0000 0.0000
α1 0.0480 0.0015 0.0502 0.0140 0.2017 683963044.071 0.2889 0.0000
β 0.8501 0.0510 0.8487 0.0400 0.6650 675977556.066 0.5453 1.2460
γ 0.1255 0.0610 0.1490 0.0610 0.0000 5416656809.538 0.1305 1.9300
LL 4285.5600 4416.5190 5756.1670 5862.2690
AIC -8561.1200 -8823.0377 -11502.3339 -11714.5376
BIC -8534.0895 -8796.0071 -11475.3034 -11687.5071

GJR-t
BIST30 BIST100 USD EURO

Parameter Value Std Value Std Value Std Value Std
µ 0.0010 0.0000 0.0011 0.0000 -0.0002 1406475.109 0.0000 28078131.946
α0 0.0000 0.0000 0.0000 0.0000 0.0000 8879.443 0.0000 221202.851
α1 0.0532 0.0170 0.0618 0.0180 0.3678 276992226.475 0.2539 29560250106.651
β 0.8371 0.0700 0.8198 0.0610 0.6226 426936136.846 0.7147 2212994007.407
γ 0.1294 0.0800 0.1291 0.0660 0.0000 2473886510.168 0.0003 47746730949.042
d 7.9437 1.5840 7.2247 1.2100 5.2103 5946045507.02 3.9473 13182520678.426
LL 4312.1270 4453.5100 5810.7600 5937.0560
AIC -8612.2540 -8895.0195 -11609.5192 -11862.1122
BIC -8579.8174 -8862.5829 -11577.0826 -11829.6756
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Table 5. Parameter estimates for static and dynamic copula families and model selection statistic
Static Copula Parameter GARCH-n GARCH-t GJR-n GJR-t
Gaussian ρ 0.0221 0.0297 0.0179 0.0360

d 0.9731 0.9686 0.9664 0.9611
LL 4351.2600 4329.1890 4055.8200 4347.8940
AIC -8704.5208 -8654.3780 -8107.6392 -8691.7872
BIC -8693.7086 -8643.5658 -8096.8270 -8680.9750

Student-t d 6.5491 8.0109 23.9706 5.5313
LL 4290.433 4243.688 3981.715 4330.352
AIC -8578.8664 -8485.9692 -7961.4291 -8658.7042
BIC -8573.4603 -8479.9692 -7956.0230 -8653.2981

Clayton ω 0.85 0.85 0.85 0.85
LL 3103.124 3103.277 2833.643 3101.575
AIC -6204.2483 -6204.5538 -5665.2859 -6201.1500
BIC -6198.8422 -6199.1477 -5659.8798 -6195.7439

SJC λ 0.5353 0.5322 0.8109 0.8144 0.5348 0.5388 0.8299 0.8319
LL 1413.471 2299.055 1443.225 2424.352
AIC -2822.9424 -4594.1105 -2882.4507 -4844.7030
BIC -2812.1302 -4583.2983 -2871.6385 -4833.8908

Dynamic Copula Parameter GARCH-n GARCH-t GJR-n GJR-t
GDCC α 0.0316 0.0297 0.0179 0.036

β 0.9663 0.9686 0.9663 0.9611
LL 4358.363 4329.189 4055.820 4347.894
AIC -8712.7252 -8654.3780 -8107.6391 -8691.7870
BIC -8701.9130 -8643.5658 -8096.8269 -8680.9748

tDCC d 7.5376 9.5010 24.9955 5.9672
α 0.028 0.0266 0.0194 0.0286
β 0.9703 0.9718 0.9684 0.9688
LL 4409.837 4365.207 4083.280 4418.826
AIC -8813.6744 -8724.4134 -8160.56 -8831.6529
BIC -8797.4561 -8708.1951 -8144.3417 -8815.4346

tvC ω 12.8923 12.8913 12.8748 12.8905
α 0.2197 0.2223 0.2343 0.2222
β 12.7842 12.7839 12.704 12.7857
LL 2430.023 2433.630 2403.856 2423.371
AIC -4854.0459 -4861.2597 -4801.7120 -4840.7423
BIC -4837.8276 -4845.0414 -4785.4937 -4824.5240

tvSJC λ 9.1147 1.7757 -2.3995 1.5160 -0.4491 1.1956 1.4481 9.9382
α 1.0295 8.4754 -8.3109 7.6800 -0.3626 1.2357 9.9486 9.6797
β 3.228 3.9021 2.9388 5.0730 -0.4471 -0,3567 2.6305 3.0602
LL 1966.988 1706.809 1431.022 1976.633
AIC -3921.9770 -3401.6179 -2850.0436 -3941.2664
BIC -3889.5404 -3369.1812 -2817.6070 -3908.8298

Table 6. The results of portfolio optimization based on CVaR
β V aR CV aR x1−BIST30 x2−BIST100 x3−USD x4−EURO
90% 0.0057 0.0102 0.3888 0.1552 0.2676 0.1884
95% 0.0084 0.0136 0.3760 0.1611 0.2715 0.1913
99% 0.0159 0.0233 0.3535 0.1486 0.2983 0.1996
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5. CONCLUSION AND DISCUSSION

In this study, the dynamic Copula model was introduced and applied to four
different sets of financial data (BIST30, BIST100, USD, EURO) in Turkey. In
order to shape the model, first, the marginal distributions of the data series were
determined as GJR-t, and by using identified marginal distributions, the copula
model that established the dependency structure between the data series was se-
lected as dynamic t (tDCC). By conducting the simulation, portfolio optimization
was achieved based on CVaR risk measurement. Therefore, it can be inferred that
investment in BIST30 is the best at each confidential level in accordance with the
portfolio optimization results based on the minimization of CVaR. Other best in-
vestments are USD, EURO, and BIST100 respectively.
It is possible to add extreme value theory to the model due to the fat tail of

financial data. Another possibility is to take into account the change points; we
can offer different models for every period. Those will be topics of the future work.
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