GENERALIZED QUATERNIONS AND THEIR ALGEBRAIC PROPERTIES

MEHDI JAFARI AND YUSUF YAYLI

Abstract

The aim of this paper is to study the generalized quaternions, $H_{\alpha \beta}$, and their basic properties. $H_{\alpha \beta}$ has a generalized inner product that allows us to identify it with four-dimensional space $E_{\alpha \beta}^{4}$. Also, it is shown that the set of all unit generalized quaternions with the group operation of quaternion multiplication is a Lie group of 3-dimension and its Lie algebra is found.

1. Introduction

Quaternion algebra, customarily denoted by H (in honor of William R. Hamilton [7], who enunciated this algebra for a first) recently has played a significant role in several areas of science; namely, in differential geometry, in analysis, synthesis of mechanism and machines, simulation of particle motion in molecular physics and quaternionic formulation of equation of motion in theory of relativity [1, 2]. After his discovery of quaternions, split quaternions, H^{\prime}, were initially introduced by James Cackle in 1849, which are also called coquaternion or para-quaternion [3]. Manifolds endowed with coquaternion structures are studied in differential geometry and superstring theory. Quaternion and split quaternion algebras both are associative and non-commutative 4 -dimensional Clifford algebras. A brief introduction of the generalized quaternions is provided in [20]. Also, this subject have investigated in algebra $[22,23]$. It was pointed out that the group G of all unit quaternions with the group operation of quaternion multiplication is a Lie group of 3-dimension and its Lie algebra were worked out in [14]. Subsequently, Inoguchi [6] showed that the set of all unit split quaternions is a Lie group and found its Lie algebra. Here, we study the generalized quaternions, $H_{\alpha \beta}$, and give some of their algebraic properties. Ultimately, we aim to show that the set of all unit generalized quaternions is a Lie group. Its Lie algebra and properties of the bracket multiplication are investigated. Also, we point out that every generalized quaternion has an exponential representation and find De-Moivre's formula for it.

[^0]
2. Preliminaries

In this section, we define a new inner product and give a brief summary of real and split quaternions.

Definition 2.1. A real quaternion is defined as

$$
q=a_{0}+a_{1} i+a_{2} j+a_{3} k
$$

where a_{0}, a_{1}, a_{2} and a_{3} are real numbers and $1, i, j, k$ of q may be interpreted as the four basic vectors of Cartesian set of coordinates; and they satisfy the noncommutative multiplication rules

$$
\begin{aligned}
i^{2} & =j^{2}=k^{2}=i j k=-1 \\
i j & =k=-j i, \quad j k=i=-k j
\end{aligned}
$$

and

$$
k i=j=-i k
$$

A quaternion may be defined as a pair $\left(S_{q}, V_{q}\right)$, where $S_{q}=a_{0} \in \mathbb{R}$ is scalar part and $V_{q}=a_{1} i+a_{2} j+a_{3} k \in \mathbb{R}^{3}$ is the vector part of q. The quaternion product of two quaternions p and q is defined as

$$
p q=S_{p} S_{q}-\left\langle V_{p}, V_{q}\right\rangle+S_{p} V_{q}+S_{q} V_{p}+V_{p} \wedge V_{q}
$$

where" \langle,$\rangle "and " \wedge$ " are the inner and vector products in \mathbb{R}^{3}, respectively. The norm of a quaternion is given by the sum of the squares of its components: $N_{q}=$ $a_{\circ}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}, N_{q} \in \mathbb{R}$. It can also be obtained by multiplying the quaternion by its conjugate, in either order since a quaternion and conjugated commute: $N_{q}=\bar{q} q=$ $q \bar{q}$. Every non-zero quaternion has a multiplicative inverse given by its conjugate divided by its norm: $q^{-1}=\frac{\bar{q}}{N_{q}}$. The quaternion algebra H is a normed division algebra, meaning that for any two quaternions p and $q, N_{p q}=N_{p} N_{q}$, and the norm of every non-zero quaternion is non-zero (and positive) and therefore the multiplicative inverse exists for any non-zero quaternion. Of course, as is well known, multiplication of quaternions is not commutative, so that in general for any two quaternions p and $q, p q \neq q p$. Also, the algebra H^{\prime} of split quaternions is defined as the four-dimensional vector space over \mathbb{R} having a basis $\{1, i, j, k\}$ with the following properties;

$$
\begin{aligned}
i^{2} & =-1, \quad j^{2}=k^{2}=+1 \\
i j & =k=-j i, \quad j k=-i=-k j
\end{aligned}
$$

and

$$
k i=j=-i k
$$

The quaternion product of two split quaternions p and q is defined as

$$
p q=S_{p} S_{q}+\left\langle V_{p}, V_{q}\right\rangle_{l}+S_{p} V_{q}+S_{q} V_{p}+V_{p} \wedge_{l} V_{q}
$$

where" \langle,\rangle_{l} " and " \wedge_{l} " are Lorentzian inner and vector products, respectively. It is clear that H and H^{\prime} are associative and non-commutative algebras and 1 is the identity element $[13,15,24]$.

Definition 2.2. Let $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$ be in \mathbb{R}^{3}. If $\alpha, \beta \in \mathbb{R}^{+}$, the generalized inner product of u and v is defined by

$$
\begin{equation*}
g(u, v)=\alpha u_{1} v_{1}+\beta u_{2} v_{2}+\alpha \beta u_{3} v_{3} . \tag{1}
\end{equation*}
$$

It could be written

$$
g(u, v)=u^{t}\left[\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \beta & 0 \\
0 & 0 & \alpha \beta
\end{array}\right] v=u^{t} G v .
$$

If $\alpha=\beta=1$, then $\mathbf{E}_{\alpha \beta}^{3}$ is an Euclidean 3-space \mathbf{E}^{3}.
Also, if $\alpha>0, \beta<0, g(u, v)$ is called the generalized Lorentzian inner product. The vector space on \mathbb{R}^{3} equipped with the generalized inner product, is called 3dimensional generalized space, and is denoted by $\mathbf{E}_{\alpha \beta}^{3}$. The vector product in $\mathbf{E}_{\alpha \beta}^{3}$ is defined by

$$
\begin{aligned}
u \wedge v & =\left|\begin{array}{ccc}
\beta i & \alpha j & k \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\beta\left(u_{2} v_{3}-u_{3} v_{2}\right) i+\alpha\left(u_{3} v_{1}-u_{1} v_{3}\right) j+\left(u_{1} v_{2}-u_{2} v_{1}\right) k
\end{aligned}
$$

where $i \wedge j=k, \quad j \wedge k=\beta i$ and $k \wedge i=\alpha j[8]$.
Proposition 2.1. For $\alpha, \beta \in \mathbb{R}^{+}$, the inner and the vector product satisfy the following properties;

1. $u \wedge v=-v \wedge u$,
2. $g(u \wedge v, w)=g(v \wedge w, u)=g(w \wedge u, v)=\operatorname{det}(u, v, w)$,
3. $g(u, v \wedge w)=-g(v, u \wedge w)$,
4. $u \wedge(v \wedge w)=g(u, w) v-g(u, v) w$.

3. GENERALIZED QUATERNIONS

Definition 3.1. A generalized quaternion q is an expression of the form

$$
q=a_{0}+a_{1} i+a_{2} j+a_{3} k
$$

where a_{0}, a_{1}, a_{2} and a_{3} are real numbers and i, j, k are quaternionic units which satisfy the equalities

$$
\begin{aligned}
i^{2} & =-\alpha, \quad j^{2}=-\beta, \quad k^{2}=-\alpha \beta \\
i j & =k=-j i, \quad j k=\beta i=-k j
\end{aligned}
$$

and

$$
k i=\alpha j=-i k, \quad \alpha, \beta \in \mathbb{R}
$$

The set of all generalized quaternions are denoted by $H_{\alpha \beta}$. A generalized quaternion q is a sum of a scalar and a vector, called scalar part, $S_{q}=a_{0}$, and vector part $V_{q}=a_{1} i++a_{2} j+a_{3} k \in \mathbb{R}_{\alpha \beta}^{3}$. Therefore, $H_{\alpha \beta}$ forms a 4-dimensional real space which contains the real axis \mathbb{R} and a 3-dimensional real linear space $E_{\alpha \beta}^{3}$, so that, $H_{\alpha \beta}=\mathbb{R} \oplus E_{\alpha \beta}^{3}$.

Special cases:

1) If $\alpha=\beta=1$ is considered, then $H_{\alpha \beta}$ is the algebra of real quaternions H.
2) If $\alpha=1, \beta=-1$ is considered, then $H_{\alpha \beta}$ is the algebra of split quaternions H^{\prime}.
3) If $\alpha=1, \beta=0$ is considered, then $H_{\alpha \beta}$ is the algebra of semi quaternions $H^{\circ}[17]$.
4) If $\alpha=-1, \beta=0$ is considered, then $H_{\alpha \beta}$ is the algebra of split semiquaternions $H^{\prime \circ}$.
5) If $\alpha=0, \beta=0$ is considered, then $H_{\alpha \beta}$ is the algebra of $\frac{1}{4}$ quaternions $H^{\circ \circ}$ (see[7, 21]).
The addition rule for generalized quaternions, $H_{\alpha \beta}$, is:

$$
p+q=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) i+\left(a_{2}+b_{2}\right) j+\left(a_{3}+b_{3}\right) k
$$

for $p=a_{0}+a_{1} i+a_{2} j+a_{3} k$ and $q=b_{0}+b_{1} i+b_{2} j+b_{3} k$.
This rule preserves the associativity and commutativity properties of addition, and provides a consistent behavior for the subset of quaternions corresponding to real numbers, i.e.,

$$
S_{p+q}=S_{p}+S_{q}=a_{0}+b_{0}
$$

The product of a scalar and a generalized quaternion is defined in a straightforward manner. If c is a scalar and $q \in H_{\alpha \beta}$,

$$
c q=c S_{q}+c V_{q}=\left(c a_{0}\right) 1+\left(c a_{1}\right) i+\left(c a_{2}\right) j+\left(c a_{3}\right) k
$$

The multiplication rule for generalized quaternions is defined as

$$
p q=S_{p} S_{q}-g\left(V_{p}, V_{q}\right)+S_{p} V_{q}+S_{q} V_{p}+V_{p} \wedge V_{q}
$$

which could also be expressed as

$$
p q=\left[\begin{array}{cccc}
a_{0} & -\alpha a_{1} & -\beta a_{2} & -\alpha \beta a_{3} \\
a_{1} & a_{0} & -\beta a_{3} & \beta a_{2} \\
a_{2} & \alpha a_{3} & a_{0} & -\alpha a_{1} \\
a_{3} & -a_{2} & a_{1} & a_{0}
\end{array}\right]\left[\begin{array}{c}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Obviously, quaternion multiplication is an associative and distributive with respect to addition and subtraction, but the commutative law does not hold in general.
Corollary 3.1. $H_{\alpha \beta}$ with addition and multiplication has all the properties of a number field expect commutativity of the multiplication. It is therefore called the skew field of quaternions.

4. Some Properties of Generalized Quaternions

1) The Hamilton conjugate of $q=a_{\circ}+a_{1} i+a_{2} j+a_{3} k=S_{q}+V_{q}$ is

$$
\bar{q}=a_{0}-\left(a_{1} i+a_{2} j+a_{3} k\right)=S_{q}-V_{q} .
$$

It is clear that the scalar and vector part of q denoted by $S_{q}=\frac{q+\bar{q}}{2}$ and $V_{q}=\frac{q-\bar{q}}{2}$.
2) The norm of q is defined as $N_{q}=|q \bar{q}|=|\bar{q} q|=\left|a_{0}^{2}+\alpha a_{1}^{2}+\beta a_{2}^{2}+\alpha \beta a_{3}^{2}\right|$.

Proposition 4.1. Let $p, q \in H_{\alpha \beta}$ and $\lambda, \delta \in \mathbb{R}$. The conjugate and norm of generalized quaternions satisfies the following properties;
i) $\overline{\bar{q}}=q$,
ii) $\overline{p q}=\bar{q} \bar{p}$,
iii) $\overline{\lambda p+\delta q}=\lambda \bar{p}+\delta \bar{q}$,
iv) $N_{p q}=N_{p} N_{q}$,
v) $N_{\lambda q}=\lambda^{2} N_{q}$,
vi) $N_{\frac{p}{q}}=\frac{N_{p}}{N_{q}}$.

If $N_{q}=a_{0}^{2}+\alpha a_{1}^{2}+\beta a_{2}^{2}+\alpha \beta a_{3}^{2}=1$, then q is called a unit generalized quaternion.
3) The inverse of q is defined as $q^{-1}=\frac{\bar{q}}{N_{q}}, N_{q} \neq 0$, with the following properties;
i) $(p q)^{-1}=q^{-1} p^{-1}$,
ii) $(\lambda q)^{-1}=\frac{1}{\lambda} q^{-1}$,
iii) $N_{q^{-1}}=\frac{1}{N_{q}}$.
4) For $\alpha, \beta>0$, division of a generalized quaternion p by the generalized quaternion $q(\neq 0)$, one simply has to resolve the equation

$$
x q=p \quad \text { or } \quad q y=p
$$

with the respective solutions

$$
\begin{aligned}
& x=p q^{-1}=p \frac{\bar{q}}{N_{q}} \\
& y=q^{-1} p=\frac{\bar{q}}{N_{q}} p
\end{aligned}
$$

and the relation $N_{x}=N_{y}=\frac{N_{p}}{N_{q}}$.
If $S_{q}=0$, then q is called pure generalized quaternion, or generalized vector. We also note that since

$$
q p-p q=V_{q} \wedge V_{p}-V_{p} \wedge V_{q}
$$

and if p is a quaternion which commutes with every other quaternion then $V_{p}=0$ and p is a real number.

Theorem 4.1. Let p and q are two generalized quaternions, then we have the following properties;

$$
\text { i) } S_{p q}=S_{q p}, \quad \text { ii) } S_{p(q r)}=S_{(p q) r}
$$

5) The scalar product of two generalized quaternions $p=S_{p}+V_{p}$ and $q=S_{q}+V_{q}$ is defined as

$$
\begin{aligned}
\langle p, q\rangle & =S_{p} S_{q}+g\left(V_{p}, V_{q}\right) \\
& =S_{p \bar{q}}
\end{aligned}
$$

The above expression defines a metric in $\mathbf{E}_{\alpha \beta}^{4}$. In the case $\alpha, \beta>0$, using the scalar product we can define an angle λ between two quaternions p, q to be such;

$$
\cos \lambda=\frac{S_{p \bar{q}}}{\sqrt{N_{p}} \sqrt{N_{q}}}
$$

Theorem 4.2. The scalar product has a properties;

1) $\left\langle p q_{1}, p q_{2}\right\rangle=N_{p}\left\langle q_{1}, q_{2}\right\rangle$
2) $\left\langle q_{1} p, q_{2} p\right\rangle=N_{p}\left\langle q_{1}, q_{2}\right\rangle$
3) $\left\langle p q_{1}, q_{2}\right\rangle=\left\langle q_{1}, \bar{p} q_{2}\right\rangle$
4) $\left\langle p q_{1}, q_{2}\right\rangle=\left\langle p, q_{2} \overline{q_{1}}\right\rangle$.

Proof. We proof identities (1) and (3).

$$
\begin{aligned}
\left\langle p q_{1}, p q_{2}\right\rangle & =S_{\left(p q_{1}, \overline{p q_{2}}\right)}=S_{\left(p q_{1}, \overline{\left.q_{2} p\right)}\right.} \\
& =S_{\left(\overline{q_{2} p}, p q_{1}\right)}=N_{p} S_{\left(\overline{q_{2}}, q_{1}\right)} \\
& =N_{p} S_{\left(q_{1}, \overline{q_{2}}\right)}=N_{p}\left\langle q_{1}, q_{2}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle p q_{1}, q_{2}\right\rangle & =S_{\left(p q_{1}, \overline{q_{2}}\right)}=S_{\left(q_{1}, \overline{q_{2}} p\right)} \\
& =S_{\left(q_{1}, \overline{\bar{p} q_{2}}\right)}=\left\langle q_{1}, \bar{p} q_{2}\right\rangle .
\end{aligned}
$$

6) The cross product of two generalized quaternion p, q is a sum of a real number and a pure generalized vectors, we defined as

$$
p \times q=V_{p} \times V_{q}=-g\left(V_{p}, V_{q}\right)+V_{p} \wedge V_{q} .
$$

here $p=V_{p}=a_{1} i+a_{2} j+a_{3} k$ and $q=V_{q}=b_{1} i+b_{2} j+b_{3} k$. This is clearly a general quaternion expect in two special cases; if $V_{p} \| V_{q}$, the product is a real part of generalized quaternion equal to $-g\left(V_{p}, V_{q}\right)$ and if $V_{p} \perp V_{q}$ the product is a generalized vector equal to $V_{p} \wedge V_{q}$.
7) We call generalized quaternions p and q are parallel if their vector parts $V_{p}=\frac{p-\bar{p}}{2}$ and $V_{q}=\frac{q-\bar{q}}{2}$ are parallel; i.e., if $(S-\bar{S})=0$, where $S=V_{p} \wedge V_{q}$. Similarly, we call they are perpendicular if V_{p} and V_{q} are perpendicular; i.e., if $(S+\bar{S})=0$.
8) Polar form: Let $\alpha, \beta>0$, then every generalized quaternion $q=a_{0}+a_{1} i+$ $a_{2} j+a_{3} k$ can be written in the form

$$
q=r(\cos \theta+\vec{u} \sin \theta), \quad 0 \leq \theta \leq 2 \pi
$$

with

$$
r=\sqrt{N_{q}}=\sqrt{a_{0}^{2}+\alpha a_{1}^{2}+\beta a_{2}^{2}+\alpha \beta a_{3}^{2}}
$$

$\cos \theta=\frac{a_{0}}{r}$ and

$$
\sin \theta=\frac{\sqrt{\alpha a_{1}^{2}+\beta a_{2}^{2}+\alpha \beta a_{3}^{2}}}{r} .
$$

The unit vector \vec{u} is given by

$$
\vec{u}=\frac{a_{1} i+a_{2} j+a_{3} k}{\sqrt{\alpha a_{1}^{2}+\beta a_{2}^{2}+\alpha \beta a_{3}^{2}}}
$$

with $\alpha a_{1}^{2}+\beta a_{2}^{2}+\alpha \beta a_{3}^{2} \neq 0$. We can view θ as the angle between the vector $q \in H_{\alpha \beta}$ and the real axis and $\vec{u} \sin \theta$ as the projection of q onto the subspace $\mathbb{R}_{\alpha \beta}^{3}$ of pure
quaternions. Since $\vec{u}^{2}=-1$ for any $u \in S_{\alpha \beta}^{2}$, we have a natural generalization of Euler's formula for generalized quaternions with $\alpha, \beta>0$,

$$
\begin{aligned}
e^{\vec{u} \theta} & =1+\vec{u} \theta-\frac{\theta^{2}}{2!}-\vec{u} \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}-\ldots \\
& =1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\ldots+\vec{u}\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\ldots\right) \\
& =\cos \theta+\vec{u} \sin \theta
\end{aligned}
$$

for any real θ.
Theorem 4.3. (De-Moivre's formula) Let $q=e^{\vec{u} \theta}=\cos \theta+\vec{u} \sin \theta$ be a unit generalized quaternion with positive alfa and beta, we have

$$
q^{n}=e^{n \vec{u} \theta}=\cos n \theta+\vec{u} \sin n \theta
$$

for every integer n.
The formula holds for all integer n since

$$
\begin{aligned}
q^{-1} & =\cos \theta-\vec{u} \sin \theta \\
q^{-n} & =\cos (-n \theta)+\vec{u} \sin (-n \theta) \\
& =\cos n \theta-\vec{u} \sin n \theta
\end{aligned}
$$

Example 4.1. $q_{1}=\frac{1}{2}+\frac{1}{2}\left(\frac{1}{\sqrt{\alpha}}, \frac{1}{\sqrt{\beta}}, \frac{1}{\sqrt{\alpha \beta}}\right)=\cos \frac{\pi}{3}+\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{\alpha}}, \frac{1}{\sqrt{\beta}} \frac{1}{\sqrt{\alpha \beta}}\right) \sin \frac{\pi}{3} \quad$ is of order 6 and $q_{2}=\frac{-1}{2}+\frac{1}{2}\left(\frac{1}{\sqrt{\alpha}}, \frac{1}{\sqrt{\beta}}, \frac{1}{\sqrt{\alpha \beta}}\right)=\cos \frac{2 \pi}{3}+\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{\alpha}}, \frac{1}{\sqrt{\beta}} \frac{1}{\sqrt{\alpha \beta}}\right) \sin \frac{2 \pi}{3} \quad$ is of order 3 .

Note that theorem 4.3 holds for $\alpha \beta<0$ (see [16]).
Special case: If $\alpha=\beta=1$ is considered, then q becomes a unit real quaternion and its De-Moivre form reads [4].

Corollary 4.1. There are uncountably many unit generalized quaternions satisfying $q^{n}=1$ for every integer $n \geq 3$.

Proof. For every $\vec{u} \in S_{\alpha \beta}^{2}$, the quaternion $q=\cos 2 \pi / n+\vec{u} \sin 2 \pi / n$ is of order n. For $n=1$ or $n=2$, the generalized quaternion q is independent of \vec{u}.

5. Lie Group and Lie Algebra of $H_{\alpha \beta}$

Theorem 5.1. Let α, β be positive numbers. The set G containing all of the unit generalized quaternions is a Lie group of dimension 3.

Proof. G with multiplication action is a group. let us consider the differentiable function

$$
\begin{aligned}
& f: \quad H_{\alpha \beta} \rightarrow \mathbb{R} \\
& f(q)= \\
& a_{0}^{2}+\alpha a_{1}^{2}+\beta a_{2}^{2}+\alpha \beta a_{3}^{2}
\end{aligned}
$$

$G=f^{-1}(1)$ is a submanifold of $H_{\alpha \beta}$, since 1 is a regular value of function f. Also, the following maps $\mu: G \times G \rightarrow G$ sending (q, p) to $q p$ and $\zeta: G \rightarrow G$ sending q to q^{-1} are both differentiable.

So, we put Lie group structure on unit ellipse

$$
S_{\alpha \beta}^{3}=\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{4}: x_{0}^{2}+\alpha x_{1}^{2}+\beta x_{2}^{2}+\alpha \beta x_{3}^{2}=1, \alpha, \beta>0\right\}
$$

in four-dimensional space $\mathbf{E}_{\alpha \beta}^{4}$.

Theorem 5.2. The Lie algebra \Im of G is the imaginary part of $H_{\alpha \beta}$, i.e.

$$
\Im=I m H_{\alpha \beta}=\left\{a_{1} i+a_{2} j+a_{3} k: a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}
$$

Proof. Let $g(s)=a_{0}(s)+a_{1}(s) i+a_{2}(s) j+a_{3}(s) k$ be a curve on G, and let $g(0)=1$, i.e., $a_{0}(0)=1, a_{m}(0)=0$ for $m=1,2,3$. By differentiation the equation

$$
a_{0}^{2}(s)+\alpha a_{1}^{2}(s)+\beta a_{2}^{2}(s)+\alpha \beta a_{3}^{2}(s)=1,
$$

yields the equation

$$
2 a_{0}(s) a_{0}^{\prime}(s)+2 \alpha a_{1}(s) a_{1}^{\prime}(s)+2 \beta a_{2}(s) a_{2}^{\prime}(s)+2 \alpha \beta a_{3}(s) a_{3}^{\prime}(s)=0
$$

Substituting $s=0$, we obtain $a_{0}^{\prime}(0)=0$. The Lie algebra \Im is constituted by vector of the form $\xi=\left.\xi^{m}\left(\frac{\partial}{\partial a_{m}}\right)\right|_{g=1}$ where $m=1,2,3$. The vector ξ is formally written in the form $\xi=\xi^{1} i+\xi^{2} j+\xi^{3} k$. Thus $\Im=I m H_{\alpha \beta} \simeq T_{G}(e)$.

Let us find the left invariant vector field X on G for which $X_{g=1}=\xi$. Let $\beta(s)$ be a curve on G such that $\beta(0)=1, \beta^{\prime}(0)=\xi$. Then $L_{g}(\beta(s))=g \beta(s)$ is the left translation of the curve $\beta(s)$ by the unit generalized quaternion $g \in G$. Its tangent vector is $g \beta^{\prime}(0)=g \xi$. In particular, denote by X_{m} those left invariant vector field on G for which

$$
\left.X_{m}\right|_{g=1}=\left.\left(\frac{\partial}{\partial a_{m}}\right)\right|_{g=1}
$$

where $m=1,2,3$. These three vector fields are represented at the point $g=1$, in quaternion notation, by the quaternions i, j and k.

For the components of these vector fields at the point $g=a_{0}+a_{1} i+a_{2} j+a_{3} k$, we have $\left(X_{1}\right)_{g}=g \times i,\left(X_{2}\right)_{g}=g \times j,\left(X_{3}\right)_{g}=g \times k$. The computations yield

$$
\begin{aligned}
& X_{1}=-\alpha a_{1} \frac{\partial}{\partial a_{0}}+a_{0} \frac{\partial}{\partial a_{1}}+\alpha a_{3} \frac{\partial}{\partial a_{2}}-a_{2} \frac{\partial}{\partial a_{3}} \\
& X_{2}=-\beta a_{2} \frac{\partial}{\partial a_{0}}-\beta a_{3} \frac{\partial}{\partial a_{1}}+a_{0} \frac{\partial}{\partial a_{2}}+a_{1} \frac{\partial}{\partial a_{3}} \\
& X_{3}=-\alpha \beta a_{3} \frac{\partial}{\partial a_{0}}+\beta a_{2} \frac{\partial}{\partial a_{1}}-\alpha a_{1} \frac{\partial}{\partial a_{2}}+a_{0} \frac{\partial}{\partial a_{3}},
\end{aligned}
$$

where all the partial derivatives are at the point g. Further, we obtain

$$
\left[X_{1}, X_{2}\right]=2 X_{3}, \quad\left[X_{2}, X_{3}\right]=2 \beta X_{1}, \quad\left[X_{3}, X_{1}\right]=2 \alpha X_{2}
$$

If we limit ourselves to the values at the point $e=1$, we obtain, in quaternion notation,

$$
[i, j]=2 k, \quad[j, k]=2 \beta i, \quad[k, i]=2 \alpha j
$$

Special case:

1) If $\alpha=\beta=1$ is considered, then Lie bracket of \Im is given for real quaternions [14].
2) If $\alpha=1, \beta=-1$ is considered, then Lie bracket of \Im is given for split quaternions [6].

Definition 5.1. Let \Im be a Lie algebra. For $X \in \Im$, we denote $A d_{X}: \Im \rightarrow \Im$, $Y \rightarrow[X, Y]$ for all $Y \in \Im$. Let us define $K(X, Y)=\operatorname{Tr}\left(A d_{X}, A d_{Y}\right)$ for all $X, Y \in \Im$. The form $K(X, Y)$ is called the Killing bilinear form on \Im [14].

Theorem 5.3. For every $X=x_{1} i+x_{2} j+x_{3} k \in \Im$, the corresponding matrix $A d_{X}$
is

$$
A d_{X}=\left[\begin{array}{ccc}
0 & -2 \beta x_{3} & 2 \beta x_{2} \\
2 \alpha x_{3} & 0 & -2 \alpha x_{1} \\
-2 x_{2} & 2 x_{1} & 0
\end{array}\right]
$$

and $K(X, Y)=-8 g(X, Y)$.
Proof. The above expression of $A d_{X}$, we have

$$
\begin{aligned}
A d_{X}(i) & =\left[x_{1} i+x_{2} j+x_{3} k, i\right]=x_{1}[i, i]+x_{2}[j, i]+x_{3}[k, i]=0+x_{2}(-2 k)+x_{3}(2 \alpha j) \\
& =0 i+2 \alpha x_{3} j-2 x_{2} k \\
A d_{X}(j) & =\left[x_{1} i+x_{2} j+x_{3} k, j\right]=x_{1}[i, j]+x_{2}[j, j]+x_{3}[k, j]=x_{1}(2 k)+0+x_{3}(-2 \beta i) \\
& =-2 \beta x_{3} i+0 j+2 x_{1} k \\
A d_{X}(k) & =\left[x_{1} i+x_{2} j+x_{3} k, k\right]=x_{1}[i, k]+x_{2}[j, k]+x_{3}[k, k]=x_{1}(-2 \alpha j)+x_{2}(2 \beta i)+0 \\
& =2 \beta x_{2} i-2 \alpha x_{1} j+0 k .
\end{aligned}
$$

Thus, we find the matrix representation of the linear operator $A d_{X}$ as follows:

$$
A d_{X}=\left[\begin{array}{ccc}
0 & -2 \beta x_{3} & 2 \beta x_{2} \\
2 \alpha x_{3} & 0 & -2 \alpha x_{1} \\
-2 x_{2} & 2 x_{1} & 0
\end{array}\right]
$$

So

$$
\operatorname{Tr}\left(A d_{X}, A d_{Y}\right)=-8\left(\alpha x_{1} y_{1}+\beta x_{2} y_{2}+\alpha \beta x_{3} y_{3}\right)=-8 g(X, Y)
$$

Theorem 5.4. The matrix corresponding to the Killing bilinear form for the Lie group G is $K=-8 \breve{I}$,

$$
\text { where } \breve{I}=\left[\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \beta & 0 \\
0 & 0 & \alpha \beta
\end{array}\right]
$$

Proof. By Theorem 5.3, Killing form is defined as

$$
\begin{array}{rll}
K & : \quad T_{G}(e) \times T_{G}(e) \rightarrow T_{G}(e) \\
(X, Y) & \rightarrow \quad K(X, Y)=-8 g(X, Y)
\end{array}
$$

also, $T_{G}(e) \simeq s p\{i, j, k\}$ then we have

$$
\begin{aligned}
K & =\left[\begin{array}{lll}
K(i, i) & K(i, j) & K(i, k) \\
K(j, i) & K(j, j) & K(j, k) \\
K(k, i) & K(k, j) & K(k, k)
\end{array}\right] \\
& =-8 \breve{I} .
\end{aligned}
$$

Theorem 5.5. For $\alpha, \beta>0$, the set of all unit generalized quaternions G is a compact Lie group.

Proof. For $\alpha, \beta>0$, we have $K(X, Y)<0$, thus G is a compact Lie group.

In the next work, we will introduce the quaternion rotation operator in 3 -space $\mathbf{E}_{\alpha \beta}^{3}$ and giving the algebraic properties of Hamilton operators of generalized quaternion. In [10] we considered the homothetic motions associated with these operators in four-dimensional space $\mathbf{E}_{\alpha \beta}^{4}$. Dual generalized quaternions and screw motion in spatial kinematics are also under study by authors [11].

References

[1] Adler S. L., Quaternionic quantum mechanics and quantum fields, Oxford university press inc., New York, 1995.
[2] Agrawal O. P., Hamilton operators and dual-number-quaternions in spatial kinematics, Mech. Mach. theory. Vol. 22, no.6(1987)569-575.
[3] Cackle J., On system of algebra involving more than one imaginary, Philosophical magazine, 35 (3) (1849) 434-445.
[4] Сно E., De-Moivre Formula for Quaternions, Appl. Math. Lett., Vol. 11, no.6(1998)33-35.
[5] Girard P. R., Quaternions, Clifford algebras relativistic physics. Birkhäuser Verlag AG, CH-4010 Basel, Switzerland Part of Springer Science+Business Media, 2007.
[6] Inoguchi J., Timelike surfaces of constant mean curvature in Minkowski 3-space, Tokyo J. Math.Vol. 21, no.1(1998)140-152.
[7] Hamilton W. Rowan, Elements of quaternions, 2 Vols(1899-1901); reprinted Chelsea, New York, 1969.
[8] Jafari M., On the properties of quasi-quaternion algebra commun.Fac.Sci.Ank.Series A1 volume 63 no 1 (2014) 1303-5991.
[9] Jafari M., Yayli Y., Hamilton Operators and Generalized Quaternions, $8^{\text {th }}$ Congress of geometry, Antalya, Turkey.
[10] Jafari M., Yayli Y., Homothetic Motions at $E_{\alpha \beta}^{4}$. Int. J. Contemp. Math. Sciences, Vol. 5, no. $47(2010) 2319-2326$.
[11] Jafari M., Yayli Y., Hamilton operators and dual generalized quaternions. Work in progress.
[12] Jafari M., Yayli Y., Dual Generalized Quaternions in Spatial Kinematics. $41^{\text {st }}$ Annual Iranian Math. Conference, Urmia, Iran (2010).
[13] Kula L. and Yayli Y., Split Quaternions and Rotations in Semi-Euclidean Space E_{2}^{4}, J. Korean Math. Soc. 44, no. 6(2007)1313-1327.
[14] Karger A., Novak J., Space kinematics and Lie groups, Gordon and science publishers, 1985.
[15] Kuipers J. B., Quaternions and Rotation Sequences. Published by princenton university press, New Jersey,1999.
[16] Mamagani A. B., Jafari M., On properties of generalized quaternion algebra Journal of novel applied science (2013) 683-689.
[17] Mortazaasl H., Jafari M., A study of semi-quaternions algebra in semi-euclidean 4-space. Mathematical Science and applications E-notes Vol. 2(1) (2013) 20-27.
[18] ONeill B., Semi-Riemannian geometry, Pure and application mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, pablishers], New York, 1983.
[19] Ozdemir M., The roots of a split quaternion, Applied Math. Lett.22(2009) 258-263.
[20] Pottman H.,Wallner J., Computational line geometry. Springer-Verlag Berlin Heidelberg New York, 2000.
[21] Rosenfeld B., Geometry of Lie groups, Kluwer Academic Publishers, Netherlands,1997.
[22] Savin D., Flaut C., Ciobanu C., Some properties of the symbol algebras. Carpathian J. Math.(2009)arXiv:0906.2715v1.
[23] Unger T., Markin N., Quadratic forms and space-Time block codes from generalized quaternion and biquaternion algebras. (2008)arXiv:0807.0199v1.
[24] Ward J.P., Quaternions and cayley algebra and applications, Kluwer Academic Publishers, Dordrecht, 1996.

Address: Department of Mathematics, University College of Science and Technology Elm o Fen, Urmia, Iran

E-mail: mjafari@science.ankara.edu.tr \& mj_msc@yahoo.com
Address: Department of Mathematics, Faculty of Science, Ankara University, 06100 Ankara, Turkey

E-mail: yayli@science.ankara.edu.tr

[^1]
[^0]: Received by the editors: December 24, 2014; Accepted: April 08, 2015.
 2010 Mathematics Subject Classification. 15A33.
 Key words and phrases. De-Moivre's formula, Generalized quaternion, Lie group.

[^1]: ${ }^{0}$ Başlık: Genelleştirilmiş Kuaterniyonlar ve Cebirsel Özellikleri
 Anahtar Kelimeler: De-Moivre formülü, genellştirilmiş kuaterniyon, Lie grubu

