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GENERALIZED QUATERNIONS AND THEIR ALGEBRAIC
PROPERTIES

MEHDI JAFARI AND YUSUF YAYLI

Abstract. The aim of this paper is to study the generalized quaternions,
Hαβ , and their basic properties. Hαβ has a generalized inner product that
allows us to identify it with four-dimensional space E4αβ . Also, it is shown
that the set of all unit generalized quaternions with the group operation of
quaternion multiplication is a Lie group of 3-dimension and its Lie algebra is
found.

1. Introduction

Quaternion algebra, customarily denoted by H (in honor of William R. Hamil-
ton [7], who enunciated this algebra for a first) recently has played a significant role
in several areas of science; namely, in differential geometry, in analysis, synthesis of
mechanism and machines, simulation of particle motion in molecular physics and
quaternionic formulation of equation of motion in theory of relativity [1, 2]. After his
discovery of quaternions, split quaternions, H ′, were initially introduced by James
Cackle in 1849, which are also called coquaternion or para-quaternion [3]. Mani-
folds endowed with coquaternion structures are studied in differential geometry and
superstring theory. Quaternion and split quaternion algebras both are associative
and non-commutative 4 -dimensional Clifford algebras. A brief introduction of the
generalized quaternions is provided in [20]. Also, this subject have investigated in
algebra [22, 23]. It was pointed out that the group G of all unit quaternions with
the group operation of quaternion multiplication is a Lie group of 3-dimension and
its Lie algebra were worked out in [14]. Subsequently, Inoguchi [6] showed that the
set of all unit split quaternions is a Lie group and found its Lie algebra. Here, we
study the generalized quaternions, Hαβ , and give some of their algebraic proper-
ties. Ultimately, we aim to show that the set of all unit generalized quaternions is
a Lie group. Its Lie algebra and properties of the bracket multiplication are inves-
tigated. Also, we point out that every generalized quaternion has an exponential
representation and find De-Moivre’s formula for it.
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2. Preliminaries

In this section, we define a new inner product and give a brief summary of real
and split quaternions.

Definition 2.1. A real quaternion is defined as

q = a0 + a1i+ a2j + a3k

where a0, a1, a2 and a3 are real numbers and 1, i, j, k of q may be interpreted as
the four basic vectors of Cartesian set of coordinates; and they satisfy the non-
commutative multiplication rules

i2 = j2 = k2 = ijk = −1

ij = k = −ji, jk = i = −kj

and

ki = j = −ik.

A quaternion may be defined as a pair (Sq, Vq) , where Sq = a0 ∈ R is scalar part
and Vq = a1i+a2j+a3k ∈ R3 is the vector part of q. The quaternion product of two
quaternions p and q is defined as

pq = SpSq − 〈Vp, Vq〉+ SpVq + SqVp + Vp ∧ Vq

where”〈, 〉”and ”∧” are the inner and vector products in R3, respectively. The
norm of a quaternion is given by the sum of the squares of its components: Nq =
a2◦+a

2
1+a

2
2+a

2
3, Nq ∈ R. It can also be obtained by multiplying the quaternion by its

conjugate, in either order since a quaternion and conjugated commute: Nq = qq =
qq. Every non-zero quaternion has a multiplicative inverse given by its conjugate
divided by its norm: q−1 = q

Nq
. The quaternion algebra H is a normed division

algebra, meaning that for any two quaternions p and q, Npq = NpNq, and the
norm of every non-zero quaternion is non-zero (and positive) and therefore the
multiplicative inverse exists for any non-zero quaternion. Of course, as is well known,
multiplication of quaternions is not commutative, so that in general for any two
quaternions p and q, pq 6= qp. Also, the algebra H ′ of split quaternions is defined as
the four-dimensional vector space over R having a basis {1, i, j, k} with the following
properties;

i2 = −1, j2 = k2 = +1

ij = k = −ji, jk = −i = −kj
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and

ki = j = −ik.

The quaternion product of two split quaternions p and q is defined as

pq = SpSq + 〈Vp, Vq〉l + SpVq + SqVp + Vp ∧l Vq

where”〈, 〉l”and ”∧l”are Lorentzian inner and vector products, respectively. It is
clear that H and H ′ are associative and non-commutative algebras and 1 is the
identity element [13, 15, 24].

Definition 2.2. Let u = (u1, u2, u3) and v = (v1, v2, v3) be in R3. If α, β ∈ R+,
the generalized inner product of u and v is defined by

g(u, v) = αu1v1 + βu2v2 + αβu3v3. (1)

It could be written

g(u, v) = ut

α 0 0
0 β 0
0 0 αβ

 v = utGv.

If α = β = 1, then E3αβ is an Euclidean 3-space E
3.

Also, if α > 0, β < 0, g(u, v) is called the generalized Lorentzian inner product.
The vector space on R3 equipped with the generalized inner product, is called 3-
dimensional generalized space, and is denoted by E3αβ . The vector product in E

3
αβ

is defined by

u ∧ v =

∣∣∣∣∣∣
βi αj k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣
= β(u2v3 − u3v2)i+ α(u3v1 − u1v3)j + (u1v2 − u2v1)k,

where i ∧ j = k, j ∧ k = βi and k ∧ i = αj [8].

Proposition 2.1. For α, β ∈ R+, the inner and the vector product satisfy the
following properties;

1. u ∧ v = −v ∧ u,
2. g(u ∧ v, w) = g(v ∧ w, u) = g(w ∧ u, v) = det(u, v, w),
3. g(u, v ∧ w) = −g(v, u ∧ w),
4. u ∧ (v ∧ w) = g(u,w)v − g(u, v)w.
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3. GENERALIZED QUATERNIONS

Definition 3.1. A generalized quaternion q is an expression of the form

q = a0 + a1i+ a2j + a3k

where a0, a1, a2 and a3 are real numbers and i, j, k are quaternionic units which
satisfy the equalities

i2 = −α, j2 = −β, k2 = −αβ
ij = k = −ji , jk = βi = −kj

and
ki = αj = −ik, α, β ∈ R.

The set of all generalized quaternions are denoted by Hαβ . A generalized quater-
nion q is a sum of a scalar and a vector, called scalar part, Sq = a0, and vector
part Vq = a1i + +a2j + a3k ∈ R3αβ . Therefore, Hαβ forms a 4-dimensional real
space which contains the real axis R and a 3-dimensional real linear space E3αβ , so
that, Hαβ = R⊕ E3αβ .

Special cases:

1) If α = β = 1 is considered, then Hαβ is the algebra of real quaternions H.

2) If α = 1, β = −1 is considered, then Hαβ is the algebra of split quaternions
H ′.

3) If α = 1, β = 0 is considered, then Hαβ is the algebra of semi quater-
nions H◦ [17].

4) If α = −1, β = 0 is considered, then Hαβ is the algebra of split semiquater-
nions H ′◦.

5) If α = 0, β = 0 is considered, then Hαβ is the algebra of 14quaternions
H◦◦ (see[7, 21]).
The addition rule for generalized quaternions, Hαβ , is:

p+ q = (a0 + b0) + (a1 + b1)i + (a2 + b2)j + (a3 + b3)k,

for p = a0 + a1i +a2j + a3k and q = b0 + b1i +b2j + b3k.
This rule preserves the associativity and commutativity properties of addition,

and provides a consistent behavior for the subset of quaternions corresponding to
real numbers, i.e.,

Sp+q = Sp + Sq = a0 + b0.
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The product of a scalar and a generalized quaternion is defined in a straightfor-
ward manner. If c is a scalar and q ∈ Hαβ ,

cq = cSq + cVq = (ca0)1 + (ca1)i+ (ca2)j + (ca3)k.

The multiplication rule for generalized quaternions is defined as

pq = SpSq − g(Vp, Vq) + SpVq + SqVp + Vp ∧ Vq,

which could also be expressed as

pq =


a0 −αa1 −βa2 −αβa3
a1 a0 −βa3 βa2
a2 αa3 a0 −αa1
a3 −a2 a1 a0



b0
b1
b2
b3

 .
Obviously, quaternion multiplication is an associative and distributive with respect
to addition and subtraction, but the commutative law does not hold in general.

Corollary 3.1. Hαβ with addition and multiplication has all the properties of a
number field expect commutativity of the multiplication. It is therefore called the
skew field of quaternions.

4. Some Properties of Generalized Quaternions

1) The Hamilton conjugate of q = a◦ + a1i+ a2j + a3k = Sq + Vq is

q = a0 − (a1i+ a2j + a3k) = Sq − Vq.

It is clear that the scalar and vector part of q denoted by Sq = q+q
2 and Vq = q−q

2 .

2) The norm of q is defined as Nq = |qq|= |qq|= |a20 + αa21 + βa22 + αβa23|.

Proposition 4.1. Let p, q ∈ Hαβ and λ, δ ∈ R. The conjugate and norm of gener-
alized quaternions satisfies the following properties;

i) q = q, ii) pq = q p, iii) λp+ δq = λp+ δq,

iv) Npq = NpNq, v) Nλq = λ2Nq, vi) N p
q

=
Np

Nq
.

If Nq = a20+αa21+βa22+αβa23 = 1, then q is called a unit generalized quaternion.

3) The inverse of q is defined as q−1 = q
Nq
, Nq 6= 0, with the following properties;

i) (pq)
−1

= q−1p−1, ii) (λq)
−1

= 1
λq
−1, iii) Nq−1 = 1

Nq
.
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4) For α, β > 0, division of a generalized quaternion p by the generalized quaternion
q( 6= 0), one simply has to resolve the equation

xq = p or qy = p,

with the respective solutions

x = pq−1 = p
q

Nq
,

y = q−1p =
q

Nq
p,

and the relation Nx = Ny =
Np

Nq
.

If Sq = 0, then q is called pure generalized quaternion, or generalized vector. We
also note that since

qp− pq = Vq ∧ Vp − Vp ∧ Vq,
and if p is a quaternion which commutes with every other quaternion then Vp = 0
and p is a real number.

Theorem 4.1. Let p and q are two generalized quaternions, then we have the
following properties;

i) Spq = Sqp, ii) Sp(qr) = S(pq)r.

5) The scalar product of two generalized quaternions p = Sp + Vp and q = Sq + Vq
is defined as

〈p, q〉 = SpSq + g(Vp, Vq)

= Spq

The above expression defines a metric in E4αβ . In the case α, β > 0, using the
scalar product we can define an angle λ between two quaternions p, q to be such;

cosλ =
Spq√
Np
√
Nq

.

Theorem 4.2. The scalar product has a properties;
1) 〈pq1, pq2〉 = Np〈q1, q2〉
2) 〈q1p, q2p〉 = Np〈q1, q2〉
3) 〈pq1, q2〉 = 〈q1, pq2〉
4) 〈pq1, q2〉 = 〈p, q2q1〉.
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Proof. We proof identities (1) and (3).

〈pq1, pq2〉 = S(pq1,pq2) = S(pq1,q2p)

= S(q2p,pq1) = NpS(q2,q1)

= NpS(q1,q2) = Np〈q1, q2〉
and

〈pq1, q2〉 = S(pq1,q2) = S(q1,q2p)

= S(q1,pq2) = 〈q1, pq2〉.
�

6) The cross product of two generalized quaternion p, q is a sum of a real number
and a pure generalized vectors, we defined as

p× q = Vp × Vq = −g(Vp, Vq) + Vp ∧ Vq.
here p = Vp = a1i + a2j + a3k and q = Vq = b1i + b2j + b3k. This is clearly a
general quaternion expect in two special cases; if Vp ‖ Vq, the product is a real
part of generalized quaternion equal to −g(Vp, Vq) and if Vp ⊥ Vq the product is a
generalized vector equal to Vp ∧ Vq.

7) We call generalized quaternions p and q are parallel if their vector parts
Vp = p−p

2 and Vq = q−q
2 are parallel; i.e., if (S − S) = 0, where S = Vp ∧ Vq.

Similarly, we call they are perpendicular if Vp and Vq are perpendicular; i.e., if
(S + S) = 0.

8) Polar form: Let α, β > 0, then every generalized quaternion q = a0 + a1i +
a2j + a3k can be written in the form

q = r(cos θ +−→u sin θ) , 0 ≤ θ ≤ 2π

with

r =
√
Nq =

√
a20 + αa21 + βa22 + αβa23,

cos θ = a0
r and

sin θ =

√
αa21 + βa22 + αβa23

r
.

The unit vector −→u is given by

−→u =
a1i+ a2j + a3k√
αa21 + βa22 + αβa23

,

with αa21+βa22+αβa23 6= 0. We can view θ as the angle between the vector q ∈ Hαβ

and the real axis and −→u sin θ as the projection of q onto the subspace R3αβ of pure
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quaternions. Since −→u 2 = −1 for any u ∈ S2αβ , we have a natural generalization of
Euler’s formula for generalized quaternions with α, β > 0,

e
−→u θ = 1 +−→u θ − θ2

2!
−−→u θ

3

3!
+
θ4

4!
− ...

= 1− θ2

2!
+
θ4

4!
− ...+−→u (θ − θ3

3!
+
θ5

5!
− ...)

= cos θ +−→u sin θ,

for any real θ.

Theorem 4.3. (De-Moivre’s formula) Let q = e
−→u θ = cos θ + −→u sin θ be a unit

generalized quaternion with positive alfa and beta, we have

qn = en
−→u θ = cosnθ +−→u sinnθ,

for every integer n.
The formula holds for all integer n since

q−1 = cos θ −−→u sin θ,

q−n = cos(−nθ) +−→u sin(−nθ)
= cosnθ −−→u sinnθ.

Example 4.1. q1 = 1
2 + 1

2 ( 1√
α
, 1√

β
, 1√

αβ
) = cos π3 + 1√

3
( 1√

α
, 1√

β
1√
αβ

) sin π
3 is of

order 6 and q2 = −1
2 + 1

2 ( 1√
α
, 1√

β
, 1√

αβ
) = cos 2π3 + 1√

3
( 1√

α
, 1√

β
1√
αβ

) sin 2π
3 is of

order 3.

Note that theorem 4.3 holds for αβ < 0 (see [16]).
Special case: If α = β = 1 is considered, then q becomes a unit real quaternion

and its De-Moivre form reads [4].

Corollary 4.1. There are uncountably many unit generalized quaternions satis-
fying qn = 1 for every integer n ≥ 3.

Proof. For every −→u ∈ S2αβ , the quaternion q = cos 2π/n + −→u sin2π/n is of order
n. For n = 1 or n = 2, the generalized quaternion q is independent of −→u . �

5. Lie Group and Lie Algebra of Hαβ

Theorem 5.1. Let α, β be positive numbers. The set G containing all of the unit
generalized quaternions is a Lie group of dimension 3.



GENERALIZED QUATERNIONS AND THEIR ALGEBRAIC PROPERTIES 23

Proof. G with multiplication action is a group. let us consider the differentiable
function

f : Hαβ → R,
f(q) = a20 + αa21 + βa22 + αβa23.

G = f−1(1) is a submanifold of Hαβ , since 1 is a regular value of function f . Also,
the following maps µ : G×G→ G sending (q, p) to qp and ζ : G→ G sending q
to q−1 are both differentiable. �

So, we put Lie group structure on unit ellipse

S3αβ =
{

(x0, x1, x2, x3) ∈ R4 : x20 + αx21 + βx22 + αβx23 = 1, α, β > 0
}

in four-dimensional space E4αβ .

Theorem 5.2. The Lie algebra = of G is the imaginary part of Hαβ , i.e.

= = ImHαβ = {a1i+ a2j + a3k : a1, a2, a3 ∈ R} .

Proof. Let g(s) = a0(s)+a1(s)i+a2(s)j+a3(s)k be a curve on G, and let g(0) = 1,
i.e., a0(0) = 1, am(0) = 0 for m = 1, 2, 3. By differentiation the equation

a20(s) + αa21(s) + βa22(s) + αβa23(s) = 1,

yields the equation

2a0(s)a
′
0(s) + 2αa1(s)a

′
1(s) + 2βa2(s)a

′
2(s) + 2αβa3(s)a

′
3(s) = 0.

Substituting s = 0, we obtain a′0(0) = 0. The Lie algebra = is constituted by vector
of the form ξ = ξm( ∂

∂am
) |g=1 where m = 1, 2, 3. The vector ξ is formally written

in the form ξ = ξ1i+ ξ2j + ξ3k. Thus = = ImHαβ ' TG(e). �

Let us find the left invariant vector field X on G for which Xg=1 = ξ. Let β(s)
be a curve on G such that β(0) = 1, β′(0) = ξ. Then Lg(β(s)) = gβ(s) is the left
translation of the curve β(s) by the unit generalized quaternion g ∈ G. Its tangent
vector is gβ′ (0) = gξ. In particular, denote by Xm those left invariant vector field
on G for which

Xm |g=1= (
∂

∂am
) |g=1,

where m = 1, 2, 3. These three vector fields are represented at the point g = 1, in
quaternion notation, by the quaternions i, j and k.
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For the components of these vector fields at the point g = a0 + a1i+ a2j + a3k,
we have (X1)g = g × i, (X2)g = g × j, (X3)g = g × k. The computations yield

X1 = −αa1
∂

∂a0
+ a0

∂

∂a1
+ αa3

∂

∂a2
− a2

∂

∂a3
,

X2 = −βa2
∂

∂a0
− βa3

∂

∂a1
+ a0

∂

∂a2
+ a1

∂

∂a3
,

X3 = −αβa3
∂

∂a0
+ βa2

∂

∂a1
− αa1

∂

∂a2
+ a0

∂

∂a3
,

where all the partial derivatives are at the point g. Further, we obtain

[X1, X2] = 2X3, [X2, X3] = 2βX1, [X3, X1] = 2αX2.

If we limit ourselves to the values at the point e = 1, we obtain, in quaternion
notation,

[i, j] = 2k, [j, k] = 2βi, [k, i] = 2αj.

Special case:
1) If α = β = 1 is considered, then Lie bracket of = is given for real quaternions

[14].
2) If α = 1, β = −1 is considered, then Lie bracket of = is given for split

quaternions [6].

Definition 5.1. Let = be a Lie algebra. For X ∈ =, we denote AdX : = → =,
Y → [X,Y ] for all Y ∈ =. Let us define K(X,Y ) = Tr(AdX , AdY ) for all
X,Y ∈ =. The form K(X,Y ) is called the Killing bilinear form on = [14].

Theorem 5.3. For every X = x1i+x2j + x3k ∈ =, the corresponding matrix AdX

is

AdX =

 0 −2βx3 2βx2
2αx3 0 −2αx1
−2x2 2x1 0


and K(X,Y ) = −8g(X,Y ).

Proof. The above expression of AdX , we have

AdX(i) = [x1i+ x2j + x3k, i] = x1[i, i] + x2[j, i] + x3[k, i] = 0 + x2(−2k) + x3(2αj)
= 0i+ 2αx3j − 2x2k

AdX(j) = [x1i+ x2j + x3k, j] = x1[i, j] + x2[j, j] + x3[k, j] = x1(2k) + 0 + x3(−2βi)
= −2βx3i+ 0j + 2x1k

AdX(k) = [x1i+ x2j + x3k, k] = x1[i, k] + x2[j, k] + x3[k, k] = x1(−2αj) + x2(2βi) + 0
= 2βx2i− 2αx1j + 0k.
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Thus, we find the matrix representation of the linear operator AdX as follows:

AdX =

 0 −2βx3 2βx2
2αx3 0 −2αx1
−2x2 2x1 0


So

Tr(AdX , AdY ) = −8(αx1y1 + βx2y2 + αβx3y3) = −8g(X,Y ).

�

Theorem 5.4. The matrix corresponding to the Killing bilinear form for the Lie
group G is K = −8Ĭ ,

where Ĭ =

 α 0 0
0 β 0
0 0 αβ

.
Proof. By Theorem 5.3, Killing form is defined as

K : TG(e)× TG(e)→ TG(e)

(X,Y ) → K(X,Y ) = −8g(X,Y ),

also, TG(e) ' sp {i, j, k} then we have

K =

 K(i, i) K(i, j) K(i, k)
K(j, i) K(j, j) K(j, k)
K(k, i) K(k, j) K(k, k)


= −8Ĭ .

�

Theorem 5.5. For α, β > 0, the set of all unit generalized quaternions G is a
compact Lie group.

Proof. For α, β > 0, we have K(X,Y ) < 0, thus G is a compact Lie group. �

In the next work, we will introduce the quaternion rotation operator in 3-space
E3αβ and giving the algebraic properties of Hamilton operators of generalized
quaternion. In [10] we considered the homothetic motions associated with these
operators in four-dimensional space E4αβ . Dual generalized quaternions and screw
motion in spatial kinematics are also under study by authors [11].
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