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STABILITY AND SUPER STABILITY OF FUZZY
APPROXIMATELY *-HOMOMORPHISMS

N. EGHBALI

Abstract. In this paper we introduce the concept of fuzzy Banach *-algebra.
Then we study the stability and super stability of approximately *-homomorphisms
in the fuzzy sense.

1. Introduction

It seems that the stability problem of functional equations had been first raised
by Ulam [12]. In 1941, Hyers [3] showed that if δ > 0 and if f : E1 → E2 is a
mapping between Banach spaces E1 and E2 with ||f(x+y)−f(x)−f(y)|| ≤ δ for all
x, y ∈ E1, then there exists a unique T : E1 → E2 such that T (x+y) = T (x)+T (y)
with ||f(x)− T (x)|| ≤ δ for all x, y ∈ E1. In 1978, a generalized solution to Ulam’s
problem for approximately linear mappings was given by Th. M. Rassias [10].
Suppose E1 and E2 are two real Banach spaces and f : E1 → E2 is a mapping. If
there exist δ ≥ 0 and 0 ≤ p < 1 such that ||f(x+y)−f(x)−f(y)|| ≤ δ(||x||p+||y||p)
for all x, y ∈ E1, then there is a unique additive mapping T : E1 → E2 such that
||f(x) − T (x)|| ≤ 2δ||x||p/|2 − 2p| for every x ∈ E1. In 1991, Gajda [1] gave a
solution to this question for p > 1. For the case p = 1, Th. M. Rassias and Šemrl
[11] showed that there exists a continuous real-valued function f : R→ R such that
f can not be approximated with an additive map.
Gǎvruta [2] generalized Rassias’s result: Let G be an abelian group and X a

Banach space. Denote by ϕ : G×G→ [0,∞) a function such that

ϕ̃(x, y) =
∑∞
k=0 2−kϕ(2kx, 2ky) <∞

for all x, y ∈ G. Suppose that f : G→ X is a mapping satisfying

||f(x+ y)− f(x)− f(y)|| ≤ ϕ(x, y)

for all x, y ∈ G. Then there exists a unique additive mapping T : G→ X such that

||f(x)− T (x)|| ≤ 1/2ϕ̃(x, x)
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for all x ∈ G. Recently, Park [9] applied Gǎvruta’s result to linear functional
equations in Banach modules over a C*-algebra.
B. E. Johnson [4] also investigated almost algebra *-homomorphisms between

Banach *-algebras.
Fuzzy notion introduced firstly by Zadeh [13] that has been widely involved in

different subjects of mathematics. Zadeh’s definition of a fuzzy set characterized
by a function from a nonempty set X to [0, 1].
Later, in 1984 Katsaras [7] defined a fuzzy norm on a linear space to construct a

fuzzy vector topological structure on the space. Defining the class of approximately
solutions of a given functional equation one can ask whether every mapping from
this class can be somehow approximated by an exact solution of the considered
equation in the fuzzy Banach *-algebra. To answer this question, we use here the
definition of fuzzy normed spaces given in [7] to exhibit some reasonable notions of
fuzzy approximately *-homomorphism in fuzzy normed algebras and we will prove
that if A is a Banach *-algebra, then under some suitable conditions a fuzzy ap-
proximately *-homomorphism f : A→ A can be approximated in a fuzzy sense by
a *-homomorphism H : A → A. This is applied to show that for a fuzzy approxi-
mately map f : A→ A on a C*-algebra A, there exists a unique *-homomorphism
H : A→ A such that f = H.

2. Preliminaries

In this section, we provide a collection of definitions and related results which
are essential and used in the next discussions.

Definition 2.1. Let X be a real linear space. A function N : X × R → [0, 1] is
said to be a fuzzy norm on X if for all x, y ∈ X and all t, s ∈ R,
(N1) N(x, c) = 0 for c ≤ 0;
(N2) x = 0 if and only if N(x, c) = 1 for all c > 0;
(N3) N(cx, t) = N(x, t

|c| ) if c 6= 0;
(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, .) is a non-decreasing function on R and limt→∞N(x, t) = 1;
(N6) for x 6= 0, N(x, .) is (upper semi) continuous on R.
The pair (X,N) is called a fuzzy normed linear space.

Example 2.2. Let (X, ||.||) be a normed linear space. Then

N(x, t) =


0, t ≤ 0;
t
||x|| , 0 < t ≤ ||x||;
1, t > ||x||.

is a fuzzy norm on X.

Definition 2.3. Let (X,N) be a fuzzy normed linear space and {xn} be a se-
quence in X. Then {xn} is said to be convergent if there exists x ∈ X such that
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limn→∞N(xn − x, t) = 1 for all t > 0. In that case, x is called the limit of the
sequence {xn} and we denote it by N − limn→∞xn = x.

Definition 2.4. A sequence {xn} in X is called Cauchy if for each ε > 0 and each
t > 0 there exists n0 such that for all n ≥ n0 and all p > 0, we haveN(xn+p−xn, t) >
1− ε.

It is known that every convergent sequence in a fuzzy normed space is Cauchy and
if each Cauchy sequence is convergent, then the fuzzy norm is said to be complete
and furthermore the fuzzy normed space is called a complete fuzzy normed space.
Let X be an algebra and (X,N) be complete fuzzy normed space. The pair

(X,N) is said to be a fuzzy Banach algebra if for every x, y ∈ X and s, t ∈ R we
have N(xy, st) ≥ min{N(x, s), N(y, t)}.

Definition 2.5. Let X be a linear space and ϕ : X ×X → [0,∞). We say that ϕ
is control function if we have
ϕ̃(x, y) =

∑∞
n=0 2−nϕ(2nx, 2ny) <∞,

for all x, y ∈ X.

We give the following results proved in [8].

Theorem 2.6. Let X be a linear space and (Y,N) be a fuzzy Banach space. Suppose
that ϕ : X × X → [0,∞) is a control function and f : X → Y is a uniformly
approximately additive function with respect to ϕ in the sense that
limt→∞N(f(x+ y)− f(x)− f(y), tϕ(x, y)) = 1

uniformly on X × X. Then T (x) = N − limn→∞
f(2nx)
2n for all x ∈ X exists and

defines an additive mapping T : X → Y such that if for some δ > 0, α > 0
N(f(x+ y)− f(x)− f(y), δϕ(x, y)) > α,

for all x, y ∈ X, then
N(T (x)− f(x), δ/2ϕ̃(x, x)) > α,

for every x ∈ X.

Corollary 2.7. Let X be a linear space and (Y,N) be a fuzzy Banach space. Let ϕ :
X×X → [0,∞) be a control function and f : X → Y be a uniformly approximately
additive function with respect to ϕ in the sense that
limt→∞N(f(x+ y)− f(x)− f(y), tϕ(x, y)) = 1

uniformly on X × X. Then there is a unique additive mapping T : X → Y such
that
limt→∞N(T (x)− f(x), tϕ̃(x, x)) = 1,

uniformly on X.

Theorem 2.8. Let X be a linear space and let (Z,N ′) be a fuzzy normed space.
Let ψ : X ×X → Z be a function such that for some 0 < α < 2,
N ′(ψ(2x, 2y), t) ≥ N ′(αψ(x, y), t)

for all x, y ∈ X and t > 0. Let (Y,N) be a fuzzy Banach space and let f : X → Y
be a mapping in the sense that
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N(f(x+ y)− f(x)− f(y), t) ≥ N ′(ψ(x, y), t)
for each t > 0 and x, y ∈ X. Then there exists a unique additive mapping T : X →
Y such that
N(f(x)− T (x), t) ≥ N ′( 2ψ(x,x)2−α , t),

where x ∈ X and t > 0.

3. Stability and super stability of fuzzy approximately
*-homomorphisms on a fuzzy Banach *-algebra in uniform version

We start our work with definition of fuzzy Banach *-algebra.

Definition 3.1. A fuzzy Banach *-algebra A is a *-algebra A with a fuzzy complete
N - norm N such that N(a, t) = N(a∗, t) for all a ∈ A.

Throughout this paper, let Asa be the set of self-adjoint elements of A and U (A)
the set of unitary elements in A.

Lemma 3.2. Let X be a fuzzy normed *-algebra and N − limn→∞xn = x. Then
N − limn→∞x

∗
n = x∗.

Proof. By Definition 2.3 we have limt→∞N(xn − x, t) = 1. So limt→∞N(x∗n −
x∗, t) = limt→∞N((xn − x)∗, t) = 1. It means that N − limn→∞x

∗
n = x∗. �

Theorem 3.3. Let A be a fuzzy Banach *-algebra and let ϕ : A×A→ [0,∞) be a
control function and suppose that f : A→ A is a function such that

limt→∞N(f(µx+ µy)− µf(x)− µf(y), tϕ(x, y)) = 1, (3.1)

uniformly on A×A,

limt→∞N(f(x∗)− f(x)∗, tϕ(x, x)) = 1, (3.2)

uniformly on A, and

limt→∞N(f(zw)− f(z)f(w), tϕ(z, w)) = 1, (3.3)

uniformly on A × A for all µ ∈ T 1 = {λ ∈ C : |λ| = 1}, all z, w ∈ Asa, and all
x, y ∈ A. Then there exists a unique algebra *-homomorphism H : A → A such
that

limt→∞N(H(x)− f(x), tϕ̃(x, x)) = 1 (3.4)

uniformly on A.

Proof. Put µ = 1 ∈ T 1. It follows from Theorem 2.6 and Corollary 2.7 that, there
exists a unique additive mapping H : A → A such that the equality (3.4) holds.
The additive mapping H : A → A is given by H(x) = N − limn→∞

1
2n f(2nx) for

all x ∈ A.
By the assumption we have,
limt→∞N(f(2nµx)− 2µf(2n−1x), tϕ(2n−1x, 2n−1x)) = 1,
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for all µ ∈ T 1 and all x ∈ A. We have
N(µf(2nx)− 2µf(2n−1x), tϕ(2n−1x, 2n−1x))

= N(f(2nx)− 2f(2n−1x), |µ|−1tϕ(2n−1x, 2n−1x))

= N(f(2nx)− 2f(2n−1x), tϕ(2n−1x, 2n−1x)),

for all µ ∈ T 1 and all x ∈ A. On the other hand
N(f(2nµx)− µf(2nx), tϕ(2n−1x, 2n−1x))

≥ min{N(f(2nµx)− 2µf(2n−1x), t/2ϕ(2n−1x, 2n−1x)),

N(2µf(2n−1x)− µf(2nx), t/2ϕ(2n−1x, 2n−1x))},
for all µ ∈ T 1 and x ∈ A. Thus
limt→∞N(f(2nµx)− µf(2nx), tϕ(2n−1x, 2n−1x)) = 1.
So
limt→∞N(2−nf(2nµx)− 2−nµf(2nx), 2−ntϕ(2n−1x, 2n−1x)) = 1.
Since limn→∞2−ntϕ(2n−1x, 2n−1x) = 0, there is some n0 > 0 such that
2−ntϕ(2n−1x, 2n−1x) < t,

for all n ≥ n0 and t > 0. Hence
N(2−nf(2nµx)−2−nµf(2nx), t) ≥ N(2−nf(2nµx)−2−nµf(2nx), 2−ntϕ(2n−1x, 2n−1x)).
Given ε > 0 we can find some t0 > 0 such that
N(2−nf(2nµx)− 2−nµf(2nx), 2−ntϕ(2n−1x, 2n−1x)) ≥ 1− ε,

for all x ∈ A and all t ≥ t0. So N(2−nf(2nµx) − 2−nµf(2nx), t) = 1 for all t > 0.
Hence by items (N5) and (N2) of definition 2.1 we have
N − limn→∞2−nf(2nµx) = N − limn→∞2−nµf(2nx),

for all µ ∈ T 1 and all x ∈ A. Hence
H(µx) = N − limn→∞

f(2nµx)
2n = N − limn→∞

µf(2nx)
2n = µH(x),

for all µ ∈ T 1 and all x ∈ A.
Now let λ ∈ C (λ 6= 0) and let M be an integer greater than 4|λ|. Then

| λM | < 1/4 < 1/3. By ([5], Theorem 1), there exist three elements µ1, µ2, µ3 ∈ T 1
such that 3 λ

M = µ1 + µ2 + µ3. We have H(x) = H(3.1/3x) = 3H(1/3x) for all
x ∈ A. So H(1/3x) = 1/3H(x) for all x ∈ A. Thus
H(λx) = H(M3 3. λM x) = MH(1/3.3 λ

M x) = M/3H(µ1x+ µ2x+ µ3x)

= M/3(H(µ1x)+H(µ2x)+H(µ3x)) = M/3(µ1+µ2+µ3)H(x) = M
3 3 λ

MH(x) =
λH(x),
for all x ∈ A. Hence
H(ζx+ ηy) = H(ζx) +H(ηy) = ζH(x) + ηH(y),

for all ζ, η ∈ C (ζ, η 6= 0) and all x, y ∈ A, and H(0x) = 0 = 0H(x) for all x ∈ A.
So the unique additive mapping H : A→ A is a C-linear mapping.
By using (3.2) we have
limt→∞N(2−nf(2nx∗)− 2−nf(2nx)∗, 2−ntϕ(x, x)) = 1.
Since limn→∞2−ntϕ(x, x) = 0, there is some n0 > 0 such that 2−ntϕ(x, x) < t

for all n ≥ n0 and t > 0. Hence
N(2−nf(2nx∗)− 2−nf(2nx)∗, t) ≥ N(2−nf(2nx∗)− 2−nf(2nx)∗, 2−ntϕ(x, x)).
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Given ε > 0 we can find some t0 > 0 such that
N(2−nf(2nx∗)− 2−nf(2nx)∗, 2−ntϕ(x, x)) ≥ 1− ε,

for all x ∈ A and all t ≥ t0. So N(2−nf(2nx∗) − 2−nf(2nx)∗, t) = 1 for all t > 0.
Hence by items (N5) and (N2) of Definition 2.1 we have

N − limn→∞(2−nf(2nx∗)) = N − limn→∞2−nf(2nx)∗. (3.5)

By (3.5) and Lemma 3.2, we get
H(x∗) = N−limn→∞

f(2nx∗)
2n = N−limn→∞

(f(2nx))∗

2n = (N−limn→∞
f(2nx)
2n )∗ =

H(x)∗,
for all x ∈ A.
Now it follows from (3.3) that
limt→∞N(4−nf(2−nz2−nw)− 4−nf(2−nz)f(2−nw), 4−ntϕ(2−nz, 2−nw)) = 1.
Since limn→∞4−ntϕ(2−nz, 2−nw) = 0, there is some n0 > 0 such that
4−ntϕ(2−nz, 2−nw) < t,

for all n ≥ n0 and t > 0. Hence

N(4−nf(2−nz2−nw)− 4−nf(2−nz)f(2−nw), t)

≥ N(4−nf(2−nz2−nw)− 4−nf(2−nz)f(2−nw), 4−ntϕ(2−nz, 2−nw)).

Given ε > 0 we can find some t0 > 0 such that
N(4−nf(2−nz2−nw)− 4−nf(2−nz)f(2−nw), 4−ntϕ(2−nz, 2−nw)) ≥ 1− ε,

for all x ∈ A and all t ≥ t0. So N(4−nf(2−nz2−nw)− 4−nf(2−nz)f(2−nw), t) = 1
for all t > 0. Hence by items (N5) and (N2) of definition 2.1 we have
N − limn→∞4−nf(2−nz2−nw) = N − limn→∞4−nf(2−nz)f(2−nw),

for all z, w ∈ Asa; but
∑∞
j=0 4−jϕ(2jz, 2jw) ≤

∑∞
j=0 2−jϕ(2jz, 2jw) for all z, w ∈

Asa. So
H(zw) = N−limn→∞

f(4nzw)
4n = N−limn→∞

f(2nz)f(2nw)
2n2n = N−limn→∞

f(2nz)
2n .N−

limn→∞
f(2nw)
2n = H(z)H(w),

for all z, w ∈ Asa.
For elements x, y ∈ A, x = x+x∗

2 +ix−x
∗

2i and y = y+y∗

2 +iy−y
∗

2i , where x1 = x+x∗

2 ,
x2 = x−x∗

2i , y1 = y+y∗

2 and y2 = y−y∗
2i are self-adjoint. Since H is C-linear,

H(xy) = H(x1y1 − x2y2 + i(x1y2 + x2y1)) = H(x1y1) −H(x2y2) + iH(x1y2) +
iH(x2y1)

= H(x1)H(y1)−H(x2)H(y2) + iH(x1)H(y2) + iH(x2)H(y1)
= (H(x1) + iH(x2))(H(y1) + iH(y2))
= H(x1 + ix2)H(y1 + iy2) = H(x)H(y),

for all x, y ∈ A. Hence the additive mapping H is an algebra *-homomorphism
satisfying the inequality (3.4), as desired.
The proof of the uniqueness property of H is similar to the proof of Corollary

2.7. �
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Corollary 3.4. Let A be a fuzzy Banach *-algebra, θ ≥ 0 and q > 0 , q 6= 1.
Suppose that f : A→ A is a function such that

limt→∞N(f(µx+ µy)− µf(x)− µf(y), tθ(||x||q + ||y||q)) = 1, (3.6)

uniformly on A×A,

limt→∞N(f(x∗)− f(x)∗, 2tθ||x||q) = 1, (3.7)

uniformly on A, and

limt→∞N(f(zw)− f(z)f(w), tθ(||z||q + ||w||q)) = 1, (3.8)

uniformly on A × A for all µ ∈ T 1 = {λ ∈ C : |λ| = 1}, all z, w ∈ Asa, and all
x, y ∈ A. Then there exists a unique algebra *-homomorphism H : A → A such
that

limt→∞N(H(x)− f(x),
2θt||x||q
|1− 2q−1| ) = 1, (3.9)

uniformly on A.

Proof. Considering the control function ϕ(x, y) = θ(||x||q + ||y||q) for some θ > 0,
we obtain this corollary. �

In the following example we will show that Corollary 3.4 does not necessarily
hold for q = 1.

Example 3.5. Let X be a Banach *-algebra, x0 ∈ X and α, β are real numbers
such that |α| ≥ 1− (||x||+ ||y||) and |β| ≤ ||x||+ ||y|| for every x, y ∈ X. Put
f(x) = αx+ βx0||x||, (x ∈ X).
Moreover for each fuzzy norm N on X, we have
N(f(x+ y)− f(x)− f(y), t(||x||+ ||y||))
= N(βx0(||x+ y|| − ||x|| − ||y||), t(||x||+ ||y||))
= N(βx0,

t(||x||+||y||)
||x+y||−|x||−||y|| ) ≥ N(βx0, t) (x, y ∈ X, t ∈ R).

Therefore by the item (N5) of the Definition 2.1, we get
limt→∞N(f(x+ y)− f(x)− f(y), t(||x||+ ||y||)) = 1,

uniformly on X ×X.
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Also

N(f(xy)− f(x)f(y), t(||x||+ ||y||))
= N(αxy + βx0||xy|| − (αx+ βx0||x||)(αy + βx0||y||), t(||x||+ ||y||))
= N(αxy + βx0||xy|| − α2xy − αβxx0||y|| − αβx0y||x|| − β2x20||x||||y||, t(||x||+ ||y||))

≥ min{N((1− α)αxy,
t(||x||+ ||y||)

5
), N(||xy||βx0,

t(||x||+ ||y||)
5

),

N(β2x20||x||||y||,
t(||x||+ ||y||)

5
), N(αβxx0||y||,

t(||x||+ ||y||)
5

),

N(αβx0y||x||,
t(||x||+ ||y||)

5
)}

where x ∈ X and t ∈ R.
Taking into account the following inequalities

N((1− α)αxy,
t(||x||+ ||y||)

5
) = N(αxy,

t(||x||+ ||y||)
5|1− α| ) ≥ N(αxy, t/5), (3.10)

N(||xy||βx0,
t(||x||+ ||y||)

5
) = N(||xy||x0,

t(||x||+ ||y||)
5|β| ) ≥ N(||xy||x0, t/5),

(3.11)

N(β2x20||x||||y||,
t(||x||+ ||y||)

5
) = N(β||x||||y||x20,

t

5|β| ) ≥ N(β||x||||y||x20,
t

5
),

(3.12)

N(αβxx0||y||,
t(||x||+ ||y||)

5
) = N(αxx0||y||,

t(||x||+ ||y||)
5|β| ) ≥ N(αxx0||y||, t/5),

(3.13)

N(αβx0y||x||,
t(||x||+ ||y||)

5
) = N(αx0y||x||,

t(||x||+ ||y||)
5|β| ) ≥ N(αx0y||x||, t/5),

(3.14)
it can be easily seen that limt→∞N(f(xy)− f(x)f(y), t(||x||+ ||y||)) = 1 uniformly
on X ×X.
Also we have

N(f(x∗)− f(x)∗, 2t||x||)
= N(αx∗ − αx∗ + βx0||x∗|| − βx∗0||x||, 2t||x||)

≥ min{N(βx0,
2t||x||
||x∗|| ), N(βx∗0,

2t||x||
||x|| )}.
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So limt→∞N(f(x∗)−f(x)∗, 2t||x||) = 1 uniformly onX and therefore the conditions
of Corollary 3.4 are fulfilled.
Now we suppose that there exists a unique *-homomorphism H satisfying the

conditions of Corollary 3.4. By the equation

limt→∞N(f(x+ y)− f(x)− f(y), t(||x||+ ||y||)) = 1, (3.15)

for given ε > 0, we can find some t0 > 0 such that
N(f(x+ y)− f(x)− f(y), t(||x||+ ||y||)) ≥ 1− ε,

for all x, y ∈ X and all t ≥ t0. By using the simple induction on n, we shall show
that

N(f(2nx)− 2nf(x), tn2n||x||) ≥ 1− ε. (3.16)

Putting y = x in (3.15), we get (3.16) for n = 1. Let (3.16) holds for some
positive integer n. Then

N(f(2n+1x)− 2n+1f(x), t(n+ 1)2n+1||x||)
≥ min{N(f(2n+1x)− 2f(2nx), t(||2nx||+ ||2nx||)),

N(2f(2nx)− 2n+1f(x), 2tn(||2n−1x||+ ||2n−1x||))
≥ 1− ε.

This completes the induction argument. We observe that
limn→∞N(H(x)− f(x), nt||x||) ≥ 1− ε.
Hence

limn→∞N(H(x)− f(x), nt||x||) = 1. (3.17)

One may regard N(x, t) as the truth value of the statement ’the norm of x is less
than or equal to the real number t. So (3.17) is a contradiction with the non-fuzzy
sense. This means that there is no such the H.

Theorem 3.6. Let A be a C*-algebra and let f : A → A be a bijective mapping
satisfying f(xy) = f(x)f(y) and f(0) = 0 for which there exists function ϕ :
A×A→ [0.∞) satisfying (3.1) and (3.3) such that

limt→∞N(f(u∗)− f(u)∗, tϕ(u, u)) = 1, (3.18)

for all u ∈ U (A). Assume that N − limn→∞
f(2ne)
2n is invertible, where e is the

identity of A. Then the bijective mapping f is a bijective *-homomorphism.

Proof. By the same reasoning as in the proof of Theorem 3.3 there exists a unique
C-linear mapping H : A→ A such that

limt→∞N(H(x)− f(x), tϕ̃(x, x)) = 1, (3.19)

for all x ∈ A. The C-linear mapping H : A→ A is given by
H(x) = N − limn→∞

f(2nx)
2n ,
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for all x ∈ A.
By using (3.18) we have
limt→∞N(2−nf(2nu∗)− 2−nf(2nu)∗, 2−ntϕ(u, u)) = 1.
Since limn→∞2−ntϕ(u, u) = 0, there is some n0 > 0 such that 2−ntϕ(u, u) < t

for all n ≥ n0 and t > 0. Hence
N(2−nf(2nu∗)− 2−nf(2nu)∗, t) ≥ N(2−nf(2nu∗)− 2−nf(2nu)∗, 2−ntϕ(u, u)).
Given ε > 0 we can find some t0 > 0 such that
N(2−nf(2nu∗)− 2−nf(2nu)∗, 2−ntϕ(u, u)) ≥ 1− ε,

for all x ∈ A and all t ≥ t0. So N(2−nf(2nu∗) − 2−nf(2nu)∗, t) = 1 for all t > 0.
Hence by items (N5) and (N2) of definition 2.1 we have

N − limn→∞(2−nf(2nu∗) = N − limn→∞2−nf(2nu)∗. (3.20)
By (3.20) and Lemma 3.2, we get
H(u∗) = N−limn→∞

f(2nu∗)
2n = N−limn→∞

(f(2nu))∗

2n = (N−limn→∞
f(2nu)
2n )∗ =

H(u)∗,
for all u ∈ U (A).
Since H is C-linear and each x ∈ A is a finite linear combination of unitary

elements [6],
H(x∗) = H(

∑m
j=1 λ̄ju

∗
j ) =

∑m
j=1 λ̄jH(u∗j ) =

∑m
j=1 λ̄jH(uj)

∗ = (
∑m
j=1 λjH(uj))

∗ =

H(
∑m
j=1 λjuj)

∗ = H(x)∗,
for all x ∈ A.
Since f(xy) = f(x)f(y) for all x, y ∈ A,

H(xy) = N − limn→∞
f(2nxy)

2n
= N − limn→∞

f(2nx)f(y)

2n
= H(x)f(y) (3.21)

for all x, y ∈ A. By the additivity of H and (3.21),
2nH(xy) = H(2nxy) = H(x(2ny)) = H(x)f(2ny),

for all x, y ∈ A. Hence

H(xy) =
H(x)f(2ny)

2n
= H(x)

f(2ny)

2n
, (3.22)

for all x, y ∈ A. Taking the N -limit in (3.22) as n→∞, we obtain
H(xy) = H(x)H(y),

for all x, y ∈ A. By (3.21) we have,

H(x) = H(ex) = H(e)f(x), (3.23)

for all x ∈ A. Since H(e) = N − limn→∞
2ne
2n is invertible and the mapping f is

bijective, the C-linear mapping H is a bijective *-homomorphism.
Now we have,
H(e)H(x) = H(ex) = H(x) = H(e)f(x),

for all x ∈ A. Since H(e) is invertible, H(x) = f(x) for all x ∈ A. Hence the
bijective mapping f is a bijective *-homomorphism. �
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4. Non-uniform type of Stability and super stability of fuzzy
approximately *-homomorphisms

We are in a position to give non-uniform type of Theorems 3.3 and 3.6.

Theorem 4.1. Let (B,N ′) be a fuzzy normed algebra, A a fuzzy Banach *-algebra
and let ϕ : A×A→ B be a function such that for some 0 < α < 2,
N ′(ϕ(2x, 2y), t) ≥ N ′(ϕ(x, y), t)

for all x, y ∈ A and t > 0. Let f : A→ A be a function such that
N(f(µx+ µy)− µf(x)− µf(y), t) ≥ N ′(ϕ(x, y), t),

for all x, y ∈ A,

N(f(x∗)− f(x)∗, t) ≥ N ′(ϕ(x, x), t), (4.1)

for all x ∈ A and

N(f(zw)− f(z)f(w), t) ≥ N ′(ϕ(z, w), t), (4.2)

for all t > 0, all µ ∈ T 1 = {λ ∈ C : |λ| = 1}, and all z, w ∈ Asa. Then there exists
a unique algebra *-homomorphism H : A→ A such that
N(H(x)− f(x), t) ≥ N ′( 2ϕ(x,x)2−α , t)

for all x ∈ A and all t > 0.

Proof. Theorem 2.8 shows that there exists an additive function H : A → A such
that
N(f(x)− T (x), t) ≥ N ′( 2ϕ(x,x)2−α , t),

where x ∈ A and t > 0.
Put µ = 1 ∈ T 1. The additive mapping H : A → A is given by H(x) =

N − limn→∞
1
2n f(2nx) for all x ∈ A.

By assumption for each µ ∈ T 1,
N(f(2nµx)− 2µf(2n−1x), t) ≥ N ′n−1x, 2n−1x), t),

for all x ∈ A. We have
N(µf(2nx) − 2µf(2n−1x), t) = N(f(2nx) − 2f(2n−1x), |µ|−1t) = N(f(2nx) −

2f(2n−1x), t) ≥ N ′n−1x, 2n−1x), t),
for all µ ∈ T 1 and all x ∈ A. So

N(f(2nµx)− µf(2nx), t) ≥ min{N(f(2nµx)− 2µf(2n−1x), t/2), (4.3)

N(2µf(2n−1x)− µf(2nx), t/2)} ≥ N ′n−1x, 2n−1x), t/2),
for all µ ∈ T 1 and all x ∈ A. Taking n to infinity in (4.3) and using the items (N2)
and (N5) of Definition 2.1, we see that
N − limn→∞2−nf(2nµx) = N − limn→∞2−nµf(2nx),

for all µ ∈ T 1 and all x ∈ A.
Now by using the similar proof of the Theorem 3.3 the unique additive mapping

H : A→ A is a C-linear mapping.
By using (4.1) we have
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N(2−nf(2nx∗)− 2−nf(2nx)∗, t) ≥ N ′nx, 2nx), 2nt), (4.4)

for all x ∈ A. Taking n to infinity in (4.4) and using the items (N2) and (N5) of
Definition 2.1, we see that
N − limn→∞2−nf(2nx∗) = N − limn→∞2−nf(2nx)∗.
Again by using the similar proof of the Theorem 3.3 we have H(x∗) = H(x)∗.

Now it follows from (4.2) that

N(4−nf(2−nz2−nw)− 4−nf(2−nz)f(2−nw), t) ≥ N ′nz, 2nw), 4nt). (4.5)

for all z, w ∈ Asa. Taking n to infinity in (4.5) and using the items (N2) and (N5)
of Definition 2.1, we see that
N − limn→∞4−nf(2−nz2−nw) = N − limn→∞4−nf(2−nz)f(2−nw),

for all z, w ∈ Asa. By the proof of Theorem 3.3, H is a *-homomorphism as desired.
To prove the uniqueness property ofH, assume thatH∗ is another *-homomorphism

satisfying N(f(x) −H∗(x), t) ≥ N ′( 2ϕ(x,x)2−α , t). Since both H and H∗ are additive
we deduce that
N(H(a)−H∗(a), t) ≥ min{N(H(a)−n−1f(na), t/2), N(n−1f(na)−H∗(a), t/2)} ≥

N ′( 2ϕ(na,na)2−α , nt/2)

for all a ∈ A and all t > 0. Letting n tend to infinity we get that H(a) = H∗(a)
for all a ∈ A. �

Theorem 4.2. Let A be a C*-algebra, (B,N ′) a fuzzy normed algebra and let
ϕ : A×A→ B be a function such that for some 0 < α < 2,
N ′(ϕ(2x, 2y), t) ≥ N ′(ϕ(x, y), t)

for all x, y ∈ A and t > 0. Let f : A → A be a bijective mapping satisfying
f(xy) = f(x)f(y) and f(0) = 0 such that
N(f(µx+ µy)− µf(x)− µf(y), t) ≥ N ′(ϕ(x, y), t),
and
limt→∞N(f(u∗)− f(u)∗, tϕ(u, u)) = 1,

for all x, y ∈ A and u ∈ U (A). Assume that N− limn→∞
f(2ne)
2n is invertible, where

e is the identity of A. Then the bijective mapping f is a bijective *-homomorphism.

Proof. As same as the proof of the Theorems 3.6 and 4.1, we can prove this Theo-
rem. �
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