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CONVERGENCE OF CERTAIN NONLINEAR COUNTERPART
OF THE BERNSTEIN OPERATORS

HARUN KARSLI AND H. ERHAN ALTIN

Abstract. The present paper concerns with the nonlinear Bernstein opera-
tors NBnf of the form

(NBnf)(x) =

n∑
k=0

Pn,k

(
x, f

(
k

n

))
, 0 ≤ x ≤ 1 , n ∈ N,

acting on bounded functions on an interval [0, 1] , where Pn,k satisfy some
suitable assumptions. As a continuation of the very recent paper of the authors
[13], we establish some pointwise convergence results for these type operators
on the interval [0, 1] .

1. Introduction

We consider the problem of approximating a given real-valued function f , de-
fined on [0, 1], by means of a sequence of nonlinear Bernstein operators (NBnf).
Operators like positive linear, convolution, moment and sampling operators play an
important role in several branches of Mathematics, for instance in reconstruction
of signals and images, in Fourier analysis, operator theory, probability theory and
approximation theory.

In this paper, we deal with a certain nonlinear counterpart of the Bernstein
operators, considered in [13].

Let f be a function defined on the interval [0, 1] and let N := {1, 2, ...} . The
classical Bernstein operators Bnf applied to f are defined as

(Bnf)(x) =

n∑
k=0

f

(
k

n

)
pn,k(x) , 0 ≤ x ≤ 1 , n ∈ N, (1)
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where pn,k(x) =

(
n

k

)
xk(1− x)n−k is the Bernstein basis. These polynomials were

introduced by Bernstein [7] in 1912 to give the first constructive proof of the Weier-
strass approximation theorem. Some properties of the polynomials (1) can be found
in Lorentz [14].

We now state a brief and technical explanation of the relation between approx-
imation by linear and nonlinear operators. Approximation with nonlinear integral
operators of convolution type was introduced by J. Musielak in [15] and widely
developed in [5] ( and the references contained therein). In [15], the assumption
of linearity of the singular integral operators was replaced by an assumption of
a Lipschitz condition for the kernel function Kλ(t, u) with respect to the second
variable. Especially, nonlinear integral operators of type

(Tλf) (x) =

b∫
a

Kλ(t− x, f(t)) dt, x ∈ (a, b) ,

and its special cases were studied by Bardaro-Karsli and Vinti [2], [3] and Karsli
[9], [10] in some Lebesgue spaces.

For further reading, we also refer the reader to [1], [6], [11] and the very recent
paper of the authors [13] as well as the monographs [5] and [8] where other kind
of convergence results of linear and nonlinear operators in the Lebesgue spaces,
Musielak-Orlicz spaces, BV -spaces and BVϕ-spaces have been considered.

Very recently, by using the techniques due to Musielak [15], Karsli-Tiryaki and
Altin [13] introduced the following type nonlinear counterpart of the well-known
Bernstein operators;

(NBnf)(x) =

n∑
k=0

Pn,k

(
x, f

(
k

n

))
, 0 ≤ x ≤ 1 , n ∈ N, (2)

acting on bounded functions f on an interval [0, 1] , where Pn,k satisfy some suit-
able assumptions. They proved some existence and approximation theorems for the
nonlinear Bernstein operators. In particular, they obtain some pointwise conver-
gence for the nonlinear sequence of Bernstein operators (2) to some point x of f,
as n→∞.
As a continuation of the very recent paper of the authors [13], we estimate the

rate of pointwise convergence for the nonlinear sequence of Bernstein operators (2)
to the point x, at the Lebesgue points of f , as n→∞.
An outline of the paper is as follows: The next section contains basic definitions

and notations. In Section 3, the main approximation results of this study are given.

In Section 4, we give some certain results which are necessary to prove the main
result. The final section, that is Section 5, concerns with the proof of the main
results presented in Section 3.
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2. Preliminaries

In this section, we recall the following structural assumptions according to [13],
which will be fundamental in proving our convergence theorems.

Let X be the set of all bounded Lebesgue measurable functions f : [0, 1]→ R.

Let Ψ be the class of all functions ψ : R+0 → R+0 such that the function ψ is
continuous and concave with ψ(0) = 0, ψ(u) > 0 for u > 0.

We now introduce a sequence of functions. Let {Pn,k}n∈N be a sequence functions
Pn,k : [0, 1] xR→ R defined by

Pn,k (t, u) = pn,k(t)Hn(u) (3)

for every t ∈ [0, 1], u ∈ R, where Hn : R→ R is such that Hn(0) = 0 and pn,k(t) is
the Bernstein basis.

Throughout the paper we assume that µ : N→ R+ is an increasing and continuous
function such that lim

n→∞
µ(n) =∞.

First of all we assume that the following conditions hold:

a ) Hn : R→ R is such that

|Hn(u)−Hn(v)| ≤ ψ (|u− v|) , ψ ∈ Ψ,

holds for every u, v ∈ R, for every n ∈ N. That is, Hn satisfies a (L− ψ) Lipschitz
condition.

b ) We now set

Kn(x, u) :=


∑
k≤nu

pn,k(x) , 0 < u ≤ 1

0 , u = 0

(4)

and

Bn(x) :=

x+(1−x)/nγ/β∫
x−x/nγ/β

dt (Kn(x, t)) for any fixed x ∈ (0, 1)

where β > 0, γ ≥ 1 and

λn (x, t) :=

t∫
0

duKn (x, u) . (5)

Similar approach and some particular examples can be found in [6], [11], [12], [13]
and [16].
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c)Denoting by rn(u) := Hn(u)−u, u ∈ R and n ∈ N. Assume that for n suffi ciently
large

sup
u
|rn(u)| ≤ 1

µ(n)
,

holds.

The symbol [a] will denote the greatest integer not greater than a.

3. Convergence Results

We will consider the following type nonlinear Bernstein operators,

(NBnf) (x) =

n∑
k=0

Pn,k

(
x, f

(
k

n

))
defined for every f ∈ X for which NBnf is well-defined, where

Pn,k(x, u) = pn,k(x)Hn(u)

for every x ∈ [0, 1], u ∈ R.
We are now ready to establish the main results of this study:

Definition 1. A point x0 ∈ R is called a Lebesgue point of the function f , if

lim
h→0+

1

h

h∫
0

|f (x0 + t)− f (x0)| dt = 0, (6)

holds.

Theorem 1. Let ψ ∈ Ψ and f ∈ L1 ([0, 1]) be such that ψ ◦ |f | ∈ BV ([0, 1]).
Suppose that Pn,k (x, u) satisfies condition (a), (b) and (c). Then at each point
x ∈ (0, 1) for which (6) holds we have for each ε > 0 and for suffi ciently large
n ∈ N,

|(NBnf) (x)− f (x)| ≤ εB∗n (x)
(
n
γ
β

)β−1
+
B∗n (x)

n
γ
β

 1∨
0

ψ (|fx|) +

[nγ ]∑
k=1

x+(1−x)/k1/β∨
x−x/k1/β

ψ (|fx|)


+

1

µ (n)

where B∗n (x) = Bn (x) max
{
x−β , (1− x)

−β
}
, (β > 0).

Theorem 2. Let ψ ∈ Ψ and f ∈ L1 ([0, 1]) be such that ψ ◦ |f | ∈ BV ([0, 1]).
Suppose that Pn,k (x, u) satisfies condition (a), (b) and (c). Then at each point
x ∈ (0, 1) for which (6) holds we have

lim
n→∞

|(NBnf) (x)− f (x)| = 0.
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Proof . From Theorem 1 and the definition of ψ function we reach the result, by
the arbitrariness of ε > 0.

Corollary 1 . Let ψ ∈ Ψ and f ∈ L1 ([0, 1]) be such that ψ ◦ |f | ∈ BV ([0, 1]).
Suppose that Pn,k (x, u) satisfies condition (a), (b) and (c). Then

lim
n→∞

|(NBnf) (x)− f (x)| = 0

holds almost everywhere in (0, 1).

Since almost all x ∈ (0, 1) are Lebesgue points of the function f , then the assertion
follows by Theorem 2.

4. Auxiliary Result

In this section we give certain results, which are necessary to prove our theorems.

Lemma 1. ([13], Lemma 2). For all x ∈ (0, 1) and for each n ∈ N, let

NBn((t− x)β ;x) :=

1∫
0

|u− x|β du (Kn(x, u)) ≤ Bn(x)

nγ/β
, (β > 0) (7)

holds, where Bn(x) is as defined in Section 2. Then one has

λn(x, t) =:

t∫
0

du (Kn(x, u)) ≤ Bn(x)

(x− t)βnγ/β , 0 ≤ t < x, (8)

and

1− λn(x, t) =

1∫
t

du (Kn(x, u)) ≤ Bn(x)

(t− x)βnγ/β
, x < t < 1. (9)

The following lemma is the slight modification of the Lemma 1 in [4].

Lemma 2 . Let ψ ∈ Ψ. Then, if x0 ∈ R is a Lebesgue point of the function f , we
have ∣∣∣∣∣∣

h∫
0

ψ (|f (x0 + t)− f (x0)|) dt

∣∣∣∣∣∣ = o (|h|) as h→ 0. (10)

Proof . In order to prove our lemma we will show the following two statements:∣∣∣∣∣∣
h∫
0

ψ (|f (x0 + t)− f (x0)|) dt

∣∣∣∣∣∣ = o (h) as h→ 0+,

∣∣∣∣∣∣
0∫
h

ψ (|f (x0 + t)− f (x0)|) dt

∣∣∣∣∣∣ = o (−h) as h→ 0−.
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Since ψ is concave, one has for h < 0 and h > 0, respectively,

1

−h

0∫
h

ψ (|f (x0 + t)− f (x0)|) dt ≤ ψ

 1

−h

0∫
h

|f (x0 + t)− f (x0)| dt


and

1

h

h∫
0

ψ (|f (x0 + t)− f (x0)|) dt ≤ ψ

 1

h

h∫
0

|f (x0 + t)− f (x0)| dt

 .

Hence, by continuity of ψ and ψ (0) = 0, we reach the desired result.

5. Proof of the Theorems

Proof of Theorem 1. Suppose that

x+ δ < 1 , x− δ > 0 , (11)

for any 0 < δ.

Let

|In (x)| = |(NBnf) (x)− f (x)|

=

∣∣∣∣∣
n∑
k=0

Pn,k

(
x, f

(
k

n

))
− f (x)

∣∣∣∣∣ .
From (2) and using triangle inequality, we can rewrite |In (x)| as follows:

|In (x)| ≤
∣∣∣∣∣
n∑
k=0

Pn,k

(
x, f

(
k

n

))
−

n∑
k=0

Pn,k (x, f (x))

∣∣∣∣∣
+

∣∣∣∣∣
n∑
k=0

Pn,k (x, f (x))− f (x)

∣∣∣∣∣
= In,1 (x) + In,2 (x)
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From (c) it is easy to see that the second term of the right-hand-side of the above
inequality is less than or equal to 1

µ(n) . Indeed;

In,2 (x) =

∣∣∣∣∣
n∑
k=0

Pn,k (x, f (x))− f (x)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=0

pn,k (x)Hn (f (x))−
n∑
k=0

pn,k (x) f (x)

∣∣∣∣∣
= |Hn (f (x))− f (x)|

n∑
k=0

pk,n (x)

≤ 1

µ (n)

holds for n suffi ciently large.

As to the first term, by (a) and using Lebesgue-Stieltjes integral representation of
Bernstein polynomial, we have the following inequality,

In,1 (x) ≤
n∑
k=0

ψ

(∣∣∣∣f (kn
)
− f (x)

∣∣∣∣) pn,k (x)

=

1∫
0

ψ (|f (t)− f (x)|) dt (Kn (x, t)) .

According to (b), we can split the last integral in three terms as follows:

In,1 (x) ≤


x−x/n

γ
β∫

0

+

x+(1−x)/n
γ
β∫

x−x/n
γ
β

+

1∫
x+(1−x)/n

γ
β

ψ (|f (t)− f (x)|) dt (Kn (x, t))

= I1 (n, x) + I2 (n, x) + I3 (n, x) .
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First, we estimate I2 (n, x). We have for t ∈
[
x− x/n

γ
β , x+ (1− x) /n

γ
β

]

|I2 (n, x)| =

x+(1−x)/n
γ
β∫

x−x/n
γ
β

ψ (|f (t)− f (x)|) dt (Kn (x, t))

≤
x∫

x−x/n
γ
β

ψ (|f (t)− f (x)|) dt (Kn (x, t))

+

x+(1−x)/n
γ
β∫

x

ψ (|f (t)− f (x)|) dt (Kn (x, t))

= I2,1 (n, x) + I2,2 (n, x) .

Setting

F (t) :=

x∫
t

ψ (|f (y)− f (x)|) dy,

then, according to Lemma 2, for each ε > 0 there exists a δ > 0 such that

F (t) ≤ ε (x− t) (12)

for all 0 < x− t ≤ δ.

We now fix this δ and estimate I2,1 (n, x) and I2,2 (n, x) respectively.

Now, we recall the Lebesgue-Stieltjes integral representation and using (5), we can
write I2,1 (n, x) as

I2,1 (n, x) =

x∫
x−x/n

γ
β

ψ (|f (t)− f (x)|) dtKn (x, t)

=

x∫
x−x/n

γ
β

ψ (|f (t)− f (x)|) ∂
∂t
λn (x, t) dt

=

x∫
x−x/n

γ
β

∂

∂t
λn (x, t) d (−F (t)) . (13)
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Applying partial Lebesgue-Stieltjes integration (13) and using (12), we obtain,

I2,1 (n, x) = F
(
x− x/n

γ
β

) ∂

∂t

(
λn

(
x, x− x/n

γ
β

))
+

x∫
x−x/n

γ
β

F (t)
∂2

∂t2
(λn (x, t)) dt

≤ ε x/n
γ
β
∂

∂t

(
λn

(
x, x− x/n

γ
β

))
+ε

x∫
x−x/n

γ
β

(x− t) ∂
2

∂t2
(λn (x, t)) dt.

Integration by parts again gives

I2,1 (n, x) = ε x/n
γ
β
∂

∂t

(
λn

(
x, x− x/n

γ
β

))

+ε

−x/n
γ
β
∂

∂t

(
λn

(
x, x− x/n

γ
β

))
+

x∫
x−x/n

γ
β

∂

∂t
(λn (x, t)) dt


= ε

x∫
x−x/n

γ
β

∂

∂t
(λn (x, t)) dt

= ε

x∫
x−x/n

γ
β

dt (Kn (x, t))

≤ ε Bn (x)x−β
(
n
γ
β

)β−1
.

We can use a similar method for I2,2 (n, x). Then, we find the following inequality,

I2,2 (n, x) ≤ ε

x+(1−x)/n
γ
β∫

x

dt (Kn (x, t))

≤ ε Bn (x) (1− x)
−β
(
n
γ
β

)β−1
.
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Next, we estimate I1 (n, x). Using partial Lebesgue-Stieltjes integration, we obtain

|I1 (n, x)| =

x−x/n
γ
β∫

0

ψ (|f (t)− f (x)|) dt (Kn (x, t))

=

x−x/n
γ
β∫

0

ψ (|fx (t)|) ∂
∂t

(λn (x, t)) dt

= ψ

(∣∣∣∣fx(x− x

n
γ
β

)∣∣∣∣)λn(x, x− x

n
γ
β

)

−
x−x/n

γ
β∫

0

λn (x, t) dt (ψ (|fx (t)|)) .

Let y = x− x/n
γ
β . By Lemma 1, it is clear that

λn (x, y) ≤ Bn (x) (x− y)
−β
(
n
γ
β

)β−1
. (14)

Here we note that

ψ

(∣∣∣∣fx(x− x

n
γ
β

)∣∣∣∣) =

∣∣∣∣ψ(∣∣∣∣fx(x− x

n
γ
β

)∣∣∣∣)− ψ (|fx (x)|)
∣∣∣∣

≤
x∨

x−x/n
γ
β

ψ (|fx|) .

Using partial integration and applying (14), we obtain

|I1 (n, x)| ≤
x∨

x−x/n
γ
β

ψ (|fx|)
∣∣∣∣λn(x, x− x

n
γ
β

)∣∣∣∣
+

x−x/n
γ
β∫

0

λn (x, t) dt

(
−

x∨
t

ψ (|fx|)
)

≤
x∨

x−x/n
γ
β

ψ (|fx|)Bn (x)x−β
(
n
γ
β

)β−1

+
Bn (x)

n
γ
β

x−x/n
γ
β∫

0

(x− t)−β dt

(
−

x∨
t

ψ (|fx|)
)
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=

x∨
x−x/n

γ
β

ψ (|fx|)Bn (x)x−β
(
n
γ
β

)β−1

+
Bn (x)

n
γ
β

−x−βnγ x∨
x−x/n

γ
β

ψ (|fx|) + x−β
x∨
0

ψ (|fx|)

+

x−x/n
γ
β∫

0

x∨
t

ψ (|fx|)
β

(x− t)β+1
dt



=
Bn (x)

n
γ
β

x−β x∨
0

ψ (|fx|) +

x−x/n
γ
β∫

0

x∨
t

ψ (|fx|)
β

(x− t)β+1
dt

 .
Changing the variable t by x− x/u1/β in the last integral, we have

x−x/n
γ
β∫

0

x∨
t

ψ (|fx|)
β

(x− t)β+1
dt =

1

xβ

nγ∫
1

x∨
x−x/u1/β

ψ (|fx|) du

≤ 1

xβ

[nγ ]∑
k=1

x∨
x−x/k1/β

ψ (|fx|) .

Consequently, we obtain

|I1 (n, x)| ≤ Bn (x)

n
γ
β

x−β

 x∨
0

ψ (|fx|) +

[nγ ]∑
k=1

x∨
x−x/k1/β

ψ (|fx|)

 .
Using a similar method, we can find

|I3 (n, x)| ≤ Bn (x)

n
γ
β

(1− x)
−β

 1∨
x

ψ (|fx|) +

[nγ ]∑
k=1

x+(1−x)/k1/β∨
x

ψ (|fx|)

 .
Collecting the above estimates we get the required result.
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