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ABSTRACT. In this paper, we employ a non-linear state space model and the extended Kalman filter to 

simultaneously estimate the time-varying parameters in an optimal control problem, where the objective 

(loss) function is quadratic. Our methodology also allows us to derive the difference between the optimal 

control and the observed control variable. A simulation exercise based on a simple intertemporal model 

shows that the estimated parameter values are very close to their population values, which provide further 

support for the estimation methodology introduced in this paper. 

 

 
1. INTRODUCTION 

 

Although there has been an ever-growing increase in the number of studies, which utilize 

optimal control techniques in economics, the literature is relatively silent in the estimation of 

the parameters in an optimal control set-up 1 .  In other words, given the observation, state and 

the control variables, developing estimation techniques for the parameters of a system needs to 

be explored in details.  

 

Especially when the parameters in an optimal control problem are assumed to vary over time, 

which is a general characteristic of the models that employ large data sets, estimation of the 

time-varying parameters become even more important and complex. 

 

This study tries to fulfill the above-mentioned gap in the literature by introducing an estimation 

algorithm for the time-varying parameters of an optimal linear regulator problem, which has a 

quadratic objective (loss) function and a linear system of constraints. As it will be clearer, 

estimating the state vector and the time-varying parameters simultaneously will cause a non-

linearity in the system, which leads us to cast the model in a state space form and employ a non-

linear filter, namely the extended Kalman filter. This algorithm is very useful method to 

parameter estimation in nonlinear state-space models but very small using in economic 

literature. In economic literature, Grillenzoni (1993), Bacchetta and Gerlac (1997), Ozbek and 

Ozlale (2005) used this method in their studies.  
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In order to test the estimation accuracy of the above mentioned method, we also conduct a 

simulation exercise and estimate the parameters for a simple intertemporal consumption-saving 

model of a representative household. The exercise shows that the estimated parameters using 

the non-linear state space framework and the extended Kalman filter are very close to their 

generated population values, supporting the estimation method introduced in this paper. 

The outline of the paper is as follows. First, we briefly introduce the linear and the non-linear 

state space models, which are frequently used in an optimal control framework. Then, we will 

define the optimal control problem, for which we show the estimation methodology of the 

parameters. The simulation exercise follows. Finally, the last section concludes the paper. 

 

2. THE LINEAR DISCRETE-TIME STATE SPACE MODEL 

 

A linear state space model can be defined as: 

 

1
=

n n n n n n n
x x B u G w


                                                     (1) 

,    =
n

n n n n n
x y H x v                                                            (2) 

 

where   
n

n
x  is the state vector, 

m

n
y   is the observation vector and 

r

n
u   is 

the control variable vector. In addition, 
n

  and 
n

H show the n n  dimensional transition 

matrix and the m n  dimensional observation matrix, respectively. Finally, n

n
w    and 

m

n
v   represent the zero-mean white noise processes, which are the disturbance terms of the 

model. The assumptions about these white noise processes can be written as: 

 

  0
n

E v                                                                      (3) 

  0
n

E w                                                                      (4) 

n j n nj
E v v R                                                                  (5) 

n j n nj
E w w Q                                                                         (6) 

0
n j

E v w                                                                      (7) 

 0 0
E x x                                                                  (8) 

 0 0 0 0 0
( )( )E x x x x P                                                         (9) 

 0
0

n
E x w                                                                  (10) 

 0
0

n
E x v                                                                  (11) 

 

 

It is further assumed that for 0,1,2,...n  the matrices   , ,  and 
n n n n

H Q R  are known with 

certainty. Given these conditions and the observation vector  0 1
, ,...,

n n
Y y y y , the Kalman 
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filter, which is stated in Kalman (1960), emerges as a possible algorithm to estimate the state 

vector n
x  (see Appendix 1). 

 

3. NON-LINEAR STATE SPACE MODELS AND THE EXTENDED KALMAN 

FILTER 

 

On the other hand, a non-linear state space model can be represented as: 

 

   1
( )

n n n n n n
x F x G u w 


                                                   (12) 

( )
n n n n

y H x e                                                                  (13) 

 

where, ,  and F G H  represent the vector-valued functions. In addition, n
w  and n

e  are the 

white noise processes with covariance matrices,  1 n
R   and  2 n

R  , respectively. The vector 

n
  represents the time varying parameter vector to be estimated. It is important to note that, the 

time varying parameters and the state vector is in multiplicative form, which rules out the 

assumption of linearity and makes it necessary to use the extended Kalman filter, as mentioned 

in Ljung and Söderström(1985) (see Appendix 2). 

 

4. THE OPTIMAL CONTROL PROBLEM 

 

Finally, the form of the dynamic quadratic loss function, for which the parameters will be 

estimated, can be defined as: 

 ' ' '

0 1 1

0

=E 2 ,   0 1
n

N n n n n n n

n

J x R x u Q u x Wu 




                                 (14) 

The problem of determining the control sequence  0 1 1
, ,...,

N
u u u u


 is known as the  

discounted stochastic regulator problem. In the above function, 
1 1
 and R Q  are non-negative 

symmetric matrices and.   is discount factor. As stated in Ljungqvist and Sargent (2000) an 

explicit solution of the above form is given as: 

 

n n n
u F x                                                                    (15) 

     
1

1 1 11 1
' ' '

n n n
F Q B P B B P W 



 
                                         (16) 

   

        

1 1 11

1

1 1 1 1

 '

 ' ' ' '

n n

n n n

P R P

W P B Q B P B B P W



  





   

     

                                (17) 

 

When the state vector is unknown, the Kalman filter is executed to estimate the state vector, 

which leads us to obtain nn n
u F x  . 

. 
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5. ESTIMATION OF THE PARAMETERS AND THE STATE VARIABLES IN 

THE CONTROL PROBLEM 

 

This section introduces the methodology to estimate the parameters in the above mentioned 

optimal control problem. We start by assuming that the representative agent or the policymaker 

minimizes the loss function by using the control variable n
u , which is obtained from the 

control algorithm, defined by equations (15) to (17). Then, in order to estimate the parameters, 

we proceed as follows: 

 

Let n
e  be the difference (control error) between the observed control variable and the optimal 

control variable, which is obtained from the solution of the control problem. Formally; 
optimal observed

n n n
u u e   

Then, in the Kalman filtering algorithm, the estimate for the state vector can be stated as: 

1 1 11 1 1
ˆ ˆ

n n nn n n n
x x B e

    
    

which can also be written as: 

1 1 1 11 1 1
ˆ ˆ ( )

optimal observed

n n n nn n n n
x x B u u

     
     

Since the optimal feedback rule for the linear regulator is 

1 1 1
ˆ

n n n n
u F x

  
   

We can write the equation for the state vector as: 

 

1 1 1 1 11 1 1 1 1
ˆ ˆ ˆ observed

n n n n nn n n n n n
x x B F x B u

        
                             (18) 

1 1 1 1 11 1 1
ˆ ˆ( )

observed

n n n n nn n n n
x B F x B u

      
                                   (19) 

 

For simplicity, let 
1 1 1 1

( )
n n n n

A B F
   
   . Then, the problem reduces down to obtaining the 

elements of 1n
A

  at each step. Since the matrix 1n
A

  includes parameters to be estimated, the 

model can be cast in a non-linear state space model, where the extended Kalman filter is used. 

As a result, both the optimal control sequence and the time-varying parameters in the model are 

simultaneously obtained. 

 

6. APPLICATION OF THE METHODOLOGY 

 

In the previous sections, we showed how the parameters in an optimal linear regulator problem 

can be estimated. In this section, we apply our methodology to an optimal control problem, 

which includes a linear quadratic loss function and linear constraints. 

 

For application purposes, we focus on the consumption and saving decision of a representative 

household, who is assumed to face the following loss function Ljungqvist and Sargent (2000) 

  2 2

1

n

n n

n

c b i 




                                                  (20) 
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where n
c and n

i are consumption and investment at time n, respectively. Thus, at each period, 

the representative household has to make a choice between present and future consumption. 

The economy is characterized by the following system of equations: 

 

1

1 1 2 1

n n n n

n n n

n n n

c i ra y

a a i

y y y 



 

  

 

 

                                                            (21) 

 

In the above system, ,
n n

a y , r denote the accumulated asset, the exogenous labor income and 

the interest rate, respectively. The parameters of the model are assumed to be as 0, 0b   . 

Finally, the control variable n
u  can be written as 1n n n

i a a


  . The system of equations can be 

cast in the state space form as follows Ljungqvist et al (2001): 

 

1

1 1 2

1

1 0 0 0 1

0 0 0

0 1 0 0 0

1 0 0 0 1 1 0

n n

n n

n n

n n

a a

y y
u w

y y

 







       
       
         
       
       
              

                                 (22) 

 

As it can be seen in (22), the state vector includes unknown parameters to be estimated.  

On the other hand, in order to incorporate the loss function into the state space form, the 

matrices  
1 1
,R Q  and W  should be defined as follows:  

 
2

1 1

0

1 0
,   1 ,   1 0 '

0 0 0 0

0 ^ 2

r r br

r b
R Q W r b

br b b



 
 

         
 
   

                                  (23) 

 

Accordingly, we can write:  

 

 
2 2 ' ' '

1 1
2

n n n n n n n n
c b i x R x u Q u x Wu                                         (24) 

 

It should be remarked that 
1 1
,   and  R Q W also include some unknown parameters to be 

estimated. Finally, the observation equation will be as: 

 

1 0 0 0

0 1 0 0
n n n

z x v
 

  
 

                                                          (25) 

 

Before running the optimal control algorithm and the extended Kalman filter, let the population 

parameters take the following values    1 2
, , , , 1.2, 0.3, 0.05,30,1r b       and discount factor 
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1  . Then, the parameters in the state space model and the loss function can be estimated by 

using the extended Kalman filter, which is also shown in Appendix 2. Figure 1 compares the 

actual and the estimated values of the variables in the observation matrix. As it can be seen, 

these two series are almost identical. 

 

 

Figure 1: Comparison of the estimated and the actual values of the observation 

matrix ( Actual: Blue, Estimate: Red) 

 
In addition, Figure 2 shows how observed and the estimated control variable path evolve over 

time. Due to insufficient number of observations, the extended Kalman filter, which is a 

recursive algorithm, provides inaccurate result at the very first phase of the sample. However, 

as the number of observations increases, the two series become almost identical. Such a finding 

leads us to conclude that, as long as there is sufficient number of observations, the extended 

Kalman filter provides accurate estimates. 

 

Other than comparison of the observation and the control variables, it is also important to see 

whether the estimated parameters converge to their population values. Figure 3 states that the 

estimated parameters in the exogenous labor income process, which follows AR(2), converge 

to their parameter values, which are 1.2 and -0.3, respectively. 

 

The estimated values for the real interest rate and the targeted consumption in the loss function 

can be seen in Figure 4. As it can be seen, while the interest rate is not very close, the targeted 

consumption is almost identical with its population value. 
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Figure 2: Comparison of the estimated and the actual values of the control   

variable ( Actual: Blue, Estimate: Red) 

 
 

Figure 3: The estimated parameter values in the exogenous labor income process 

 
 

Figure 4: The estimated values for the real interest rate and the targeted consumption 

 
Finally, the evolution of the estimated value for the parameter in front of the investment in the 

loss function can be seen in Figure 5. While the population value is chosen to be as 1, the 

estimated value becomes steady at about 0.94, which is very close to its actual value. 
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Figure 5: The estimated value for the parameter in front of investment in the loss 

function 

 

 

7. CONCLUSION 

 

In this study, we develop a method to estimate the unknown parameters in an optimal control 

problem, where the objective (loss) function is quadratic and the constraints are linear. We show 

that, when the model is represented in state space form, the unknown parameters in the loss 

function and the system of equations can be simultaneously estimated by employing the 

extended Kalman filter.  

 

In the second part of the paper, we conduct a simulation exercise to see the estimation accuracy 

of the introduced method. Using a simple intertemporal consumption-saving model for a 

representative household, we see that the estimated parameters are very close to the generated 

population values, which support our estimation method.  

 

As a result, the estimation method, which is described in this paper, can be conveniently used 

for the purpose of simultaneously estimating the time-varying parameters in an optimal linear 

regulator problem.  

 

 

Appendix 1 

 

Kalman Filter Algorithm 

 

Suppose that, when the observations  0 1
, ,...,

n n
Y y y y  are given, forecasting the state vector 

n
x  is denoted by 0 1

ˆ , ,...,
n n nn n n

x E x y y y E x Y       , and the covariance matrix of the 

disturbance term is denoted by ˆ ˆ( )( )
n n nn n n n n n

P E x x x x Y   
 

 

In this circumstance, depending on the initial values  
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00 1

00 1
ˆ

P P

x x








 

   

The Kalman filter algorithm is given by the following algorithm: 

 1 1 11 1 1
ˆ ˆ

n n nn n n n
x x B u

    
                   (A1) 

 
1 1

ˆ ˆ ˆ
n n nn n n n n n

x x K y H x
 

   
 

                   (A2) 

 
 

1

1 1n n n n nn n n n
K P H H P H R



 
   
 

                           (A3) 

     1n nn n n n
P I K H P


                             (A4) 

 1 1 1 1 11 1 1n n n n nn n n n
P P G Q G

      
            (A5) 

Equation (3) is also known as the Kalman gain. 

 

  

Appendix 2 

 

Extended Kalman Filter Algorithm 

 

Suppose that 

   

   
1 2

2 31

,    ,    
n n

nn n T

n n

x K P n P n
X K P

P n P nL


    
         
     

 

where K  and P  are Kalman gain and the covariance matrix of the extended state, respectively, 

as stated in Ljung and Söderström (1985). Then, the updating equations will be: 

 1n n nn n n n n n
x F x G u K y H x          (A6) 

0
ˆ 0x   

 1 1n n nn n n
L y H x   

         (A7) 

0 0
   

         1

1 1 2 2 12

T T T T T

n n n n n n n n n n
K F P n H M P n H F P n D M P n D R S


        (A8) 

       1 2 2 3 2

T T T T T

n n n n n n n n n
S H P n H H P n D D P n H D P n D R         (A9) 

       1

2 1 3

T T T

n n n
L n P n H P n D S




     (A10) 

         1 1 2 2 3 1
1

T T T T T T

n n n n n n n n n n n
P n F P n F F P n M M P n F M P n M K S K R              (A11) 

 1 0 0
0 ( )P    

     2 2 3
1

T

n n n n n
P n F P n M P n K S L       (A12) 

 2
0 0P   
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   3 3
1

T

n n n
P n P n L S L       (A13) 

 3 0
0P P  

Here, it is assumed that 

 nn
F F   

 nn
G G      (A14) 

 nn
H H   

 , ,n nn n
M M x u  

 and 

     , ,M x u F x G u
 

  
 


    


   (A15) 

and 

 1,n nn
D D x   

   ,D x H x
 

 
 


   


        (A16) 

 

 

REFERENCES 

 

[1] Anderson, B.D.O. and J.B. Moore (1979), “Optimal Filtering”, Prentice Hall, 1979. 

[2] Bacchetta, P., Gerlach, S.(1997). “Consumption and credit constraints:international 

evidence”, Journal of Monetary Economics, 40, 207-238. 

[3] Favero, C. A, Rovelli, R.(2003), “Modeling and Identifying central bank preferences ”, 

Journal of Money , Credit and Banking, 35, 545-556. 

[4]  Grillenzoni C.(1993), “ARIMA Processes with ARIMA parameters”, Journal of Business 

and Economic Statistics, 11, 235-250. 

[5]  Kalman, R. E. (1960), “A new Approach to Linear Filtering and Prediction Problems”, 

Journal of Basic Engineering, Vol. 82; 35-45. 

[6]  Ljungqvist, L, H. Lustig, R. Manvelli, T.J. Sargent, S.V. Nievwerburgh, (2001), “Exercises 

in Recursive Macroeconomic Theory”, unpublished manuscript, Stanford University, 

Hoover Institution. 

[7]  Ljungqvist, L and T.J. Sargent (2000), “Recursive Macroeconomic Theory”, The MIT 

Press, Cambridge, MA. 

[8]  Ljung, L and T. Söderström (1985), “Theory and Practice of Recursive Identification”, The 

MIT Press, Cambridge, MA. 

[9]  Özbek, L. and M. Efe (2004), “An adaptive extended Kalman filter with application to 

compartment models”, Communication in Statistics, Simulation and Computation, 33:145-

158. 

[10] Özlale, Ü. (2003), “Price Stability US Output Stability: tales of federal reserve 

administrations, Journal of Economic Dynamics and Control”, 27,1595-1610. 



ESTIMATION OF TIME VARYING PARAMETERS 

 
     121 

[11]  Özbek, L., Özlale, Ü.(2005), “Employing the extended Kalman Filter in measuring the 

output gap, Journal of Economic Dynamics and Control”, 29, 1611-1622. 

[12]  Salemi, M. (1995), “Revealed preference of the federal reserve: using inverse control 

theory to interpret the policy equation of a vector autoregression, journal of business and 

economic statistics”, 13, 419-433. 

 
Current Address: Levent Özbek, Ankara University, Department of Statistics, Faculty of Science, 06100 

Tandoğan, Ankara-TURKEY 
E-Mail: ozbek@science.ankara.edu.tr  

Current Address: Esin Köksal Babacan, Ankara University, Department of Statistics, Faculty of Science, 

06100 Tandoğan, Ankara-TURKEY 
E-Mail: ekoksal@science.ankara.edu.tr 

mailto:ozbek@science.ankara.edu.tr
mailto:ekoksal@science.ankara.edu.tr

