MODIFIED q-BASKAKOV OPERATORS

DILEK SÖYLEMEZ

Abstract

In the present paper, a generalization of the sequences of q Baskakov operators, which are based on a function τ having continuously differentiable on $[0, \infty)$ with $\tau(0)=0, \inf \tau^{\prime}(x) \geq 1$, has been considered. Uniform approximation of such a sequence has been studied and degree of approximation has been obtained. Moreover, monotonicity properties of the sequence of operators are investigated.

1. Introduction

In [7], Baskakov operator was introduced as

$$
B_{n}(f)(x)=\frac{1}{(1+x)^{n}} \sum_{k=0}^{\infty}\binom{n+k-1}{k}\left(\frac{x}{1+x}\right)^{k} f\left(\frac{k}{n}\right)
$$

for $n \in \mathbb{N}, x \in[0, \infty)$ and $f \in C[0, \infty)$ where $C[0, \infty)$ denote the space of all continuous and real valued functions defined on $[0, \infty)$. This operator and its various extentions have been intensively studied. Some are in [1], [6], [8], [15], [16].

Let us recall some notations on q-analysis ([10], [17]). The q-integer, [$n]$ and the q-factorial, $[n]$! are defined by

$$
[n]:=[n]_{q}=\left\{\begin{array}{ll}
\frac{1-q^{n}}{1-q}, & q \neq 1 \\
n, & q=1
\end{array} \quad \text { for } n \in \mathbb{N}\right.
$$

$[0]=0$, and

$$
[n]!:=\left\{\begin{array}{cl}
{[1]_{q}[2]_{q} \ldots[n]_{q},} & n=1,2, \ldots \\
1 & , n=0
\end{array} \quad, \text { for } n \in \mathbb{N} \text { and }[0]!=1\right.
$$

[^0]respectively where $q>0$. For integers $n \geq r \geq 0$ the q-binomial coefficient is defined as
\[

\left[$$
\begin{array}{c}
n \\
r
\end{array}
$$\right]_{q}=\frac{[n]_{q}!}{[r]_{q}![n-r]_{q}!}
\]

The q-derivative of $f(x)$ is denoted by $D_{q} f(x)$ and defined as

$$
D_{q} f(x):=\frac{f(q x)-f(x)}{(q-1) x}, x \neq 0, D_{q} f(0)=f^{\prime}(0)
$$

also

$$
D_{q}^{0} f:=f, D_{q}^{n} f:=D_{q}\left(D_{q}^{n-1} f\right), n=1,2, \ldots
$$

q-Pochammer formula is given by

$$
\begin{gathered}
(x, q)_{0}=1 \\
(x, q)_{n}=\prod_{k=0}^{n-1}\left(1-q^{k} x\right)
\end{gathered}
$$

with $x \in \mathbb{R}, n \in \mathbb{N} \cup\{\infty\}$. The q-derivative of the product and quotient of two functions f and g are

$$
D_{q}(f(x) g(x))=g(x) D_{q}(f(x))+f(q x) D_{q}(g(x))
$$

and

$$
D_{q}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) D_{q}(f(x))-f(x) D_{q}(g(x))}{g(x) g(q x)}
$$

respectively.
A generalization of the Baskakov operator based on q - integers is defined by Aral and Gupta [4]. The authors constructed the q-Baskakov operator as

$$
B_{n, q}(f ; x)=\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \tag{1.1}\\
k
\end{array}\right] q^{\frac{k(k-1)}{2}} x^{k}(-x, q)_{n+k}^{-1} f\left(\frac{[k]}{q^{k-1}[n]}\right), n \in \mathbb{N}
$$

where $x \geq 0, q>0$ and f is a real valued continuous function on $[0, \infty)$. They established moments using q-derivatives, expressed the operator in terms of divided differences, studied the rate of convergence in a polynomial weighted norm and gave a theorem related to monotonic convergence of the sequence of operators with respect to n.

Finta and Gupta [11] obtained direct estimates for the operators (1.1), using the second order Ditzian-Totik modulus of smoothness. A Voronovskaja-type result for q-derivative of q-Baskakov operators is given in [2].

Yet, a different type of q-Baskakov operator has also been introduced by Aral and Gupta in [3].

Recently, Cárdenas-Morales, Garrancho and Raşa [9] introduced a new type generelization of Bernstein polynomials denoted by B_{n}^{τ} and defined as

$$
\begin{align*}
B_{n}^{\tau}(f ; x) & : \quad=B_{n}\left(f \circ \tau^{-1} ; \tau(x)\right) \tag{1.2}\\
& =\sum_{k=0}^{n}\binom{n}{k} \tau^{k}(x)(1-\tau(x))^{n-k}\left(f \circ \tau^{-1}\right)\left(\frac{k}{n}\right),
\end{align*}
$$

where B_{n} is the n-th Bernstein polynomial, $f \in C[0,1], x \in[0,1]$ and τ is a continuously differentiable of infinite order on $[0,1]$ such that $\tau(0)=0, \tau(1)=1$ and $\tau^{\prime}(x)>0$ for $x \in[0,1]$. Also, the authors studied some shape preserving and convergence properties concerning the generalized Bernstein operators $B_{n}^{\tau}(f ; x)$.

In [5], Aral, Inoan and Raşa constructed sequences of Szasz-Mirakyan operators which are based on a function ρ. They studied weighted approximation properties, Voronovskaja-type result for these operators. They also showed that the sequence of the generalized Szász-Mirakyan operators is monotonically nonincreasing under the ρ-convexity of the original function.

In the present paper, we consider a modification of the $q-$ Baskakov operators (1.1) in the sense of [5], we study some approximation and shape preserving properties of the new operators.

Motivated from [5] and [9], we define a new generalization of q-Baskakov operators for $f \in C[0, \infty)$ by

$$
B_{n, q}^{\rho}(f ; x)=\sum_{k=0}^{\infty}\left(f \circ \rho^{-1}\right)\left(\frac{[k]}{q^{k-1}[n]}\right)\left[\begin{array}{c}
n+k-1 \tag{1.3}\\
k
\end{array}\right] q^{\frac{k(k-1)}{2}} \rho^{k}(x)(-\rho(x), q)_{n+k}^{-1}
$$

$q>0$ and ρ is a continuously differentiable function on $[0, \infty)$ such that

$$
\rho(0)=0, \quad \inf _{x \in[0, \infty)} \rho^{\prime}(x) \geq 1
$$

An example of such a function ρ is given in [5]. Note that, in the setting (1.3) we have

$$
B_{n, q}^{\rho} f:=B_{n, q}\left(f \circ \rho^{-1}\right) \circ \rho,
$$

where the operator $B_{n, q}$ is defined by (1.1). If $\rho=e_{1}$, then $B_{n, q}^{\rho}=B_{n, q}$. We can write the following equalities that are similar to the corresponding results for the q-Baskakov operators (1.1)

$$
\begin{gather*}
B_{n, q}^{\rho}(1 ; x)=1 \tag{1.4}\\
B_{n, q}^{\rho}(\rho ; x)=\rho(x) \tag{1.5}\\
B_{n, q}^{\rho}\left(\rho^{2} ; x\right)=\rho^{2}(x)+\frac{\rho(x)}{[n]}\left(1+\frac{\rho(x)}{q}\right) . \tag{1.6}
\end{gather*}
$$

$$
\begin{align*}
& B_{n, q}^{\rho}\left(\rho^{3} ; x\right) \\
= & \rho^{3}(x)+\frac{1}{[n]}\left\{\rho^{2}(x)\left(1+\frac{\rho(x)}{q}\right)\left(\frac{2 q+1}{q}\right)\right\} \tag{1.7}\\
& \frac{1}{[n]^{2}}\left\{\rho(x)\left(1+\frac{\rho(x)}{q}\right)\left(1+\frac{\rho(x)}{q^{2}}\right)+\frac{\rho^{2}(x)}{q}\left(1+\frac{\rho(x)}{q}\right)\right\} .
\end{align*}
$$

The first purpose of the paper is to investigate uniform convergence of the operators (1.3) on weighted spaces which are defined using the function ρ and obtain the degree of weighted convergence, using weighted modulus of continuity. Next, we study the monotonic convergence under ρ-convexity of the function.

Troughout the paper we will consider the following class of functions. Let $\varphi(x)=$ $1+\rho^{2}(x)$

$$
B_{\varphi}\left(\mathbb{R}^{+}\right)=\left\{f: \mathbb{R}^{+} \rightarrow \mathbb{R},|f(x)| \leq M_{f} \varphi(x), x \geq 0\right\}
$$

where M_{f} is a constant depending on f.

$$
\begin{gathered}
C_{\varphi}\left(\mathbb{R}^{+}\right)=\left\{f \in B_{\varphi}\left(\mathbb{R}^{+}\right) ; f \text { is continuous on } \mathbb{R}^{+}\right\} \\
C_{\varphi}^{k}\left(\mathbb{R}^{+}\right)=\left\{f \in C_{\varphi}\left(\mathbb{R}^{+}\right) ; \lim _{x \rightarrow \infty} \frac{f(x)}{\varphi(x)}=k_{f}\right\}
\end{gathered}
$$

where k_{f} is a constant depending on f.

$$
U_{\varphi}\left(\mathbb{R}^{+}\right)=\left\{f \in C_{\varphi}\left(\mathbb{R}^{+}\right) ; \frac{f(x)}{\varphi(x)} \text { is uniformly continuous on } \mathbb{R}^{+}\right\}
$$

These spaces are normed spaces with the norm

$$
\|f\|_{\varphi}=\sup _{x \in \mathbb{R}^{+}} \frac{|f(x)|}{\varphi(x)}
$$

Moreover, we shall use the following weighted modulus of continuity

$$
\omega_{\rho}(f ; \delta)=\sup _{\substack{x, t \in \mathbb{R}^{+} \\|\rho(t)-\rho(x)| \leq \delta}} \frac{|f(t)-f(x)|}{\varphi(t)+\varphi(x)}
$$

for each $f \in C_{\varphi}\left(\mathbb{R}^{+}\right)$and for every $\delta>0[14]$. We observe that $\omega_{\rho}(f ; 0)=0$ for every $f \in C_{\varphi}\left(\mathbb{R}^{+}\right)$and the function $\omega_{\rho}(f ; \delta)$ is nonnegative and nondecreasing with respect to δ for $f \in C_{\varphi}\left(\mathbb{R}^{+}\right)$.
Definition 1. A continuous, real valued function f is said to be convex in $D \subseteq$ $[0, \infty)$, if

$$
f\left(\sum_{i=1}^{m} \alpha_{i} x_{i}\right) \leq \sum_{i=1}^{m} \alpha_{i} f\left(x_{i}\right)
$$

for every $x_{1}, x_{2}, \ldots, x_{m} \in D$ and for every nonnegative numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ such that $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{m}=1$.

In [9] Cárdenas-Morales, Garrancho and Raşa introduced the following definition of ρ-convexity of a continuous function.

Definition 2. A continuous, real valued function f is said to be ρ-convex in D, if $f \circ \rho^{-1}$ is convex in the sense of Definition 1 .

2. Approximation Properties

In this section, we obtain the weighted uniform convergence of $B_{n, q}^{\rho}$ to f and the degree of approximation with the aid of weighted modulus of continuity. Let us recall the weighted form of the Korovkin Theorem ([12], [13]).
Lemma 1. [12] The positive linear operators $L_{n}, n \geq 1$, act from $C_{\varphi}\left(\mathbb{R}^{+}\right)$to $B_{\varphi}\left(\mathbb{R}^{+}\right)$if and only if the inequality

$$
\left|L_{n}(\varphi ; x)\right| \leq K_{n} \varphi(x), x \geq 0
$$

holds; where K_{n} is a positive constant.
Theorem 1. [12] Let the sequence of linear positive operators $\left(L_{n}\right)_{n \geq 1}$ acting from $C_{\varphi}\left(\mathbb{R}^{+}\right)$to $B_{\varphi}\left(\mathbb{R}^{+}\right)$satisfy the three conditions

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|L_{n} \rho^{v}-\rho^{v}\right\|_{\varphi}=0, v=0,1,2 \tag{2.1}
\end{equation*}
$$

Then for any function $f \in C_{\varphi}^{k}\left(\mathbb{R}^{+}\right)$

$$
\lim _{n \rightarrow \infty}\left\|L_{n} f-f\right\|_{\varphi}=0
$$

Now, we are ready to give the following theorem.
Theorem 2. Let $B_{n, q}^{\rho}$ be the operator defined by (1.3). Then for any $f \in C_{\varphi}^{k}\left(\mathbb{R}^{+}\right)$ and $q>1$, we have

$$
\lim _{n \rightarrow \infty}\left\|B_{n, q}^{\rho} f-f\right\|_{\varphi}=0
$$

Proof. By Lemma $1 B_{n, q}^{\rho}$ are linear operators acting from $C_{\varphi}\left(\mathbb{R}^{+}\right)$to $B_{\varphi}\left(\mathbb{R}^{+}\right)$. Indeed, from (1.4) and (1.6) we easily obtain that

$$
\left|B_{n, q}^{\rho}(\varphi ; x)\right| \leq\left(1+\rho^{2}(x)\right)\left(\frac{q[n]+q+1}{q[n]}\right)
$$

On the other hand, using (1.4), (1.5) and (1.6), one can write

$$
\begin{aligned}
& \left\|B_{n, q}^{\rho} 1-1\right\|_{\varphi}=0 \\
& \left\|B_{n, q}^{\rho}(\rho)-\rho\right\|_{\varphi}=0
\end{aligned}
$$

and

$$
\begin{equation*}
\left\|B_{n, q}^{\rho}\left(\rho^{2}\right)-\rho^{2}\right\|_{\varphi}=\sup _{x \in \mathbb{R}^{+}} \frac{\rho(x)\left(1+\frac{\rho(x)}{q}\right)}{[n] 1+\rho^{2}(x)} \leq \frac{2}{[n]} \tag{2.2}
\end{equation*}
$$

Therefore, the conditions (2.1) are satisfied. By Theorem 1, the proof is completed.

In [14], the following theorem is given.
Theorem 3. Let $L_{n}: C_{\varphi}\left(\mathbb{R}^{+}\right) \rightarrow B_{\varphi}\left(\mathbb{R}^{+}\right)$be a sequence of positive linear operators with

$$
\begin{gathered}
\left\|L_{n}(1)-1\right\|_{\varphi^{0}}=a_{n} \\
\left\|L_{n}(\rho)-\rho\right\|_{\varphi^{\frac{1}{2}}}=b_{n} \\
\left\|L_{n}\left(\rho^{2}\right)-\rho^{2}\right\|_{\varphi}=c_{n} \\
\left\|L_{n}\left(\rho^{3}\right)-\rho^{3}\right\|_{\varphi^{\frac{3}{2}}}=d_{n}
\end{gathered}
$$

where a_{n}, b_{n}, c_{n} and d_{n} tend to zero as $n \rightarrow \infty$. Then

$$
\left\|L_{n}(f)-f\right\|_{\varphi^{\frac{3}{2}}} \leq\left(7+4 a_{n}+2 c_{n}\right) \omega_{\rho}\left(f ; \delta_{n}\right)+\|f\|_{\varphi} a_{n}
$$

for all $f \in C_{\varphi}\left(\mathbb{R}^{+}\right)$, where

$$
\delta_{n}=2 \sqrt{\left(a_{n}+2 b_{n}+c_{n}\right)\left(1+a_{n}\right)}+\left(a_{n}+3 b_{n}+3 c_{n}+d_{n}\right)
$$

Applying the above theorem, we obtain the degree of approximation.
Theorem 4. For all $f \in C_{\varphi}\left(\mathbb{R}^{+}\right)$and $q>1$, we have

$$
\left\|B_{n, q}^{\rho}(f)-f\right\|_{\varphi^{\frac{3}{2}}} \leq\left(7+\frac{4}{[n]}\right) \omega_{\rho}\left(f ; \frac{2 \sqrt{2}}{\sqrt{[n]}}+\frac{18}{[n]}\right)
$$

Proof. According to Theorem 3, we shall calculate the sequences a_{n}, b_{n}, c_{n} and d_{n}. From (1.4), (1.5), (2.2) and (1.7)we get

$$
\begin{gathered}
a_{n}=\left\|B_{n, q}^{\rho}(1)-1\right\|_{\varphi^{0}}=0, \\
b_{n}=\left\|B_{n, q}^{\rho}(\rho)-\rho\right\|_{\varphi^{\frac{1}{2}}}=0, \\
c_{n}=\left\|B_{n, q}^{\rho}\left(\rho^{2}\right)-\rho^{2}\right\|_{\varphi}=\sup _{x \in \mathbb{R}^{+}} \frac{\rho(x)\left(1+\frac{\rho(x)}{q_{n}}\right)}{[n]\left(1+\rho^{2}(x)\right)} \leq \frac{2}{[n]}, \\
\left.\left.d_{n}=\left\|B_{n, q}^{\rho}\left(\rho^{3}\right)-\rho^{3}\right\|_{\varphi^{\frac{3}{2}}}\right]\right\} \\
=\sup _{x \in \mathbb{R}^{+}}\left\{\frac{1}{[n]}\left[\frac{\rho^{2}(x)\left(1+\frac{\rho(x)}{q}\right)\left(\frac{2 q+1}{q}\right)}{\left(1+\rho^{2}(x)\right)^{\frac{3}{2}}}\right]\right. \\
\leq \frac{1}{[n]^{2}}\left[\frac{12}{[n]} .\right.
\end{gathered}
$$

By Theorem 3, the proof is completed.
3. Monotonicity Properties of $B_{n, q}^{\rho}$

Here, we study the monotonic convergence of the operators (1.3) under the ρ-convexity.

Theorem 5. Let f be a ρ-convex function on $[0, \infty)$. Then we have

$$
B_{n, q}^{\rho}(f ; x) \geq B_{n+1, q}^{\rho}(f ; x)
$$

for $n \in \mathbb{N}$.

Proof. From (1.3), one can write

$$
\begin{aligned}
B_{n, q}^{\rho}(f ; x) & -B_{n+1, q}^{\rho}(f ; x) \\
= & \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] q^{\frac{k(k-1)}{2}} \frac{\rho^{k}(x)}{(-\rho(x), q)_{n+k}}\left(f \circ \rho^{-1}\right)\left(\frac{[k]}{q^{k-1}[n]}\right) \\
& -\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] q^{\frac{k(k-1)}{2}} \frac{\rho^{k}(x)}{(-\rho(x), q)_{n+k+1}}\left(f \circ \rho^{-1}\right)\left(\frac{[k]}{q^{k-1}[n+1]}\right) \\
= & \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] q^{\frac{k(k-1)}{2}} \frac{\rho^{k}(x)}{(-\rho(x), q)_{n+k}}\left(f \circ \rho^{-1}\right)\left(\frac{[k]}{q^{k-1}[n]}\right) \\
& -\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] q^{\frac{k(k-1)}{2}} \frac{\rho^{k}(x)}{(-\rho(x), q)_{n+k}}\left(f \circ \rho^{-1}\right)\left(\frac{[k]}{q^{k-1}[n+1]}\right) \\
& +\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] q^{\frac{k(k-1)}{2}} q^{n+k} \frac{\rho^{k+1}(x)}{(-\rho(x), q)_{n+k+1}}\left(f \circ \rho^{-1}\right)\left(\frac{[k]}{q^{k-1}[n+1]}\right) \\
= & \sum_{k=1}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] q^{\frac{k(k-1)}{2}} \frac{\rho^{k}(x)}{(-\rho(x), q)_{n+k}}\left(f \circ \rho^{-1}\right)\left(\frac{[k]}{q^{k-1}[n]}\right) \\
& -\sum_{k=1}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] q^{\frac{k(k-1)}{2}} \frac{\rho^{k}(x)}{(-\rho(x), q)_{n+k}}\left(f \circ \rho^{-1}\right)\left(\frac{[k]}{q^{k-1}[n+1]}\right) \\
& +\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] q^{\frac{k(k-1)}{2}} q^{n+k} \frac{\rho^{k+1}(x)}{(-\rho(x), q)_{n+k+1}}\left(f \circ \rho^{-1}\right)\left(\frac{[k]}{q^{k-1}[n+1]}\right) .
\end{aligned}
$$

Rearranging the above equality, we have

$$
\begin{aligned}
& B_{n, q}^{\rho}(f ; x)-B_{n+1, q}^{\rho}(f ; x) \\
= & \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k+1
\end{array}\right] q^{\frac{k(k-1)}{2}} q^{k} \frac{\rho^{k+1}(x)}{(-\rho(x), q)_{n+k+1}}\left(f \circ \rho^{-1}\right)\left(\frac{[k+1]}{q^{k}[n]}\right) \\
& -\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k+1 \\
k+1
\end{array}\right] q^{\frac{k(k-1)}{2}} q^{k} \frac{\rho^{k+1}(x)}{(-\rho(x), q)_{n+k+1}}\left(f \circ \rho^{-1}\right)\left(\frac{[k+1]}{q^{k}[n+1]}\right) \\
& +\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] q^{\frac{k(k-1)}{2}} q^{n+k} \frac{\rho^{k+1}(x)}{(-\rho(x), q)_{n+k+1}}\left(f \circ \rho^{-1}\right)\left(\frac{[k]}{q^{k-1}[n+1]}\right) \\
= & \sum_{k=0}^{\infty} q^{\frac{k(k-1)}{2}} q^{k} \frac{\rho^{k+1}(x)}{(-\rho(x), q)_{n+k+1}}\left\{\left[\begin{array}{l}
n+k \\
k+1
\end{array}\right]\left(f \circ \rho^{-1}\right)\left(\frac{[k+1]}{q^{k}[n]}\right)\right. \\
& -\left[\begin{array}{c}
n+k+1 \\
k+1
\end{array}\right]\left(f \circ \rho^{-1}\right)\left(\frac{[k+1]}{q^{k}[n+1]}\right) \\
& \left.+\left[\begin{array}{c}
n+k \\
k
\end{array}\right] q^{n}\left(f \circ \rho^{-1}\right)\left(\frac{[k]}{q^{k-1}[n+1]}\right)\right\}
\end{aligned}
$$

By the following equalities

$$
\begin{aligned}
{\left[\begin{array}{c}
n+k+1 \\
k+1
\end{array}\right] } & =\frac{[n+k+1]}{[k+1]}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] \\
{\left[\begin{array}{c}
n+k \\
k+1
\end{array}\right] } & =\frac{[n]}{[k+1]}\left[\begin{array}{c}
n+k \\
k
\end{array}\right],
\end{aligned}
$$

we get

$$
\begin{aligned}
& B_{n, q}^{\rho}(f ; x)-B_{n+1, q}^{\rho}(f ; x) \\
= & \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] q^{\frac{k(k-1)}{2}} q^{k} \frac{\rho^{k+1}(x)}{(-\rho(x), q)_{n+k+1}} \frac{[n+k+1]}{[k+1]} \\
& \times\left\{\frac{[n]}{[n+k+1]}\left(f \circ \rho^{-1}\right)\left(\frac{[k+1]}{q^{k}[n]}\right)-\left(f \circ \rho^{-1}\right)\left(\frac{[k+1]}{q^{k}[n+1]}\right)\right. \\
& \left.+q^{n} \frac{[k+1]}{[n+k+1]}\left(f \circ \rho^{-1}\right)\left(\frac{[k]}{q^{k-1}[n+1]}\right)\right\} .
\end{aligned}
$$

By taking, $\lambda_{1}=\frac{[n]}{[n+k+1]} \geq 0, \lambda_{2}=q^{n} \frac{[k+1]}{[n+k+1]} \geq 0, \lambda_{1}+\lambda_{2}=1$ and $x_{1}=\frac{[k+1]}{q^{k}[n]}, x_{2}=$ $\frac{[k]}{q^{k-1}[n+1]}$ one has

$$
\lambda_{1} x_{1}+\lambda_{2} x_{2}=\frac{[k+1]}{q^{k}[n+1]} .
$$

Therefore, we obtain that

$$
B_{n, q}^{\rho}(f ; x)-B_{n+1, q}^{\rho}(f ; x) \geq 0
$$

by ρ-convexity of f for $x \in[0, \infty)$ and $n \in \mathbb{N}$. This proves the theorem.

References

[1] Altomare, F. and Mangino, E. M. 1999. On a generalization of Baskakov operator, Rev. Roumaine Math. Pures Appl. 44, 683-705.
[2] Aral, A. Acar, T. 2012. Voronovskaja type result for q-derivative of q-Baskakov operators. Journal of Applied Functional Analysis, vol. 7(4), 321-331.
[3] Aral, A. Gupta, V. 2009. On q-Baskakov type operators, Demonstratio Math. 42 (1), 109122.
[4] Aral, A. Gupta, V. 2011. Generalized q-Baskakov operators, Math. Slovaca 61 (4), 619-634.
[5] Aral, A., Inoan, D. and Raşa, I. 2014. On the generalized Szász-Mirakyan operators. Resulr in Mathematics. 65, 441-452.
[6] Atakut, Ç. 1997. On the approximation of functions together with derivatives by certain linear positive operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 46 (1 2) 57-65.
[7] Baskakov, V. A. 1957. An example of a sequence of linear positive operators in the spaces of continuous functions, Doklady Akademii Nauk SSSR 112, 249-251.
[8] Cao, F., Ding, C. and Xu, Z. 2005. On multivariate Baskakov operator, J. Math. Anal. Appl. 307 no. 1, 274-291
[9] Cárdenas-Moreles, D. Garrancho, P., Raşa, I.: 2011. Berstein-type operators which preserve polynomials. Compt. Math. Appl. 62, 158-163.
[10] Ernst, T. 2000.The history of q-calculus and a new method, U.U.U.D.M Report 2000, 16, ISSN 1101-3591, Department of Mathematics, Upsala University.
[11] Finta, Z. Gupta, V. 2010. Approximation properties of q-Baskakov operators, Cent. Eur. J. Math. 8(1), 199-211.
[12] Gadjiev, A. D. 1974. The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogues to that of P. P. Korovkin. Dokl. Akad. Nauk SSSR 218, 1001-1004. Also in Soviet Math. Dokl. 15, 1433-1436.
[13] Gadjiev, A. D. 1976. Theorems of the type of P. P. Korovkin's theorems (in Russian), Math. Z. 205, 781-786, translated in Maths Notes, 20 (5-6), 995-998 (1977).
[14] Holhoş, A. 2008. Quantitative estimates for positive linear operators in weighted space. Gen. Math. 16(4), 99-110.
[15] İspir N., 2001. On Modified Baskakov Operators on Weighted Spaces. Turkish Journal of Mathematics, 25, No:3 (355-365).
[16] Pethe, S. 1984. On the Baskakov operator, Indian J. Math. 26, No. 1-3, 43-48 (1985).
[17] Phillips, G. M. 2003. Interpolation and approximation by polynomials. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 14. Springer-Verlag, New York.

Current address: Ankara University, Elmadag Vocational School, Department of Computer Programming, 06780, Ankara, Turkey

E-mail address: dsoylemez@ankara.edu.tr

[^0]: Received by the editors: Oct. 25, 2015, Accepted: Dec. 23, 2015.
 2010 Mathematics Subject Classification. Primary ; 41A36 Secondary 41A25.
 Key words and phrases. Modified q-Baskakov operators, weighted Korovkin theorem, monotonicity properties.

