

A WEAKER FORM OF CONNECTEDNESS

S. MODAK AND T. NOIRI

ABSTRACT. In this paper, we introduce the notion of Cl - Cl - separated sets and Cl - Cl - connected spaces. We obtain several properties of the notion analogous to these of connectedness. We show that Cl - Cl - connectedness is preserved under continuous functions.

1. INTRODUCTION

In this paper, we introduce a weaker form of connectedness. This form is said to be Cl - Cl - connected. We investigate several properties of Cl - Cl - connected spaces analogous to connected spaces. And also, we show that every connected space is Cl - Cl - connected . Furthermore we present a Cl - Cl - connected space which is not a connected space. Among them we interrelate with Cl - Cl connections of semi-regularization topology [4], Velicko's θ - topology [2] and $V - \theta$ connection [3]. We show that Cl - Cl - connectedness is preserved under continuous functions. Let (X, τ) be a topological space and A be a subset of X. The closure of A is denoted by Cl(A). A topological space is briefly called a space.

2. Cl - Cl - Separated sets

Definition 1. Let X be a space. Nonempty subsets A, B of X are called Cl - Cl- separated sets if $Cl(A) \cap Cl(B) = \emptyset$.

It is obvious that every Cl - Cl - separated sets are separated sets. But the converse need not hold in general.

Example 1. In \Re with the usual topology on \Re the sets A = (0,1) and B = (1,2) are separated sets but not Cl - Cl - separated sets.

Theorem 1. Let A and B be Cl - Cl - separated in a space X. If $C \subset A$ and $D \subset B$, then C and D are also Cl - Cl - separated.

Definition 2. A subset A of a space X is said to be Cl - Cl - connected if A is not the union of two Cl - Cl - separated sets in X.

©2016 Ankara University Communications de la Faculté des Sciences de l'Université d'Ankara. Séries A1. Mathematics and Statistics.

49

Received by the editors: Oct. 09, 2015, Accepted: Jan. 15, 2016.

²⁰¹⁰ Mathematics Subject Classification. 54D05; 54A10; 54A05.

Key words and phrases. Cl - Cl - separated set, Cl - Cl - connected space, connected space.

It is obvious that every connected space is a Cl - Cl - connected space but the converse need not hold in general.

Example 2. Let \Re be the real line with the usual topology on \Re . Let $X = (0, 1) \cup (1, 2)$. Consider $A = (0, 1) \cap X$ and $B = (1, 2) \cap X$, then X is not connected set in \Re , since $X = A \cup B$, $A \cap Cl(B) = \emptyset = Cl(A) \cap B$. But the set X is a Cl - Cl - connected set.

Definition 3. [3] A subset A of X is $V - \theta$ - connected if it cannot be expressed as the union of nonempty subsets with disjoint closed neighbourhoods in X, i.e., if there are no disjoint nonempty sets B_1 and B_2 and no open sets U and V such that $A = B_1 \cup B_2, B_1 \subset U, B_2 \subset V$ and $Cl(U) \cap Cl(V) = \emptyset$.

Theorem 2. Every $V - \theta$ - connected space is a Cl - Cl - connected space.

Proof. The proof is obvious from Definition 3.

Following examples show that T_0 - space and Cl - Cl - connected space are independent concept.

Example 3. Let $X = \{1, 2\}, \tau = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$. Then $X = \{1\} \cup \{2\}$ and $Cl(\{1\}) \cap Cl(\{2\}) = \emptyset$. The space is a T_0 - space but X is not a Cl - Cl - connected space.

Example 4. Let X be a set such that $|X| \ge 2$. Let τ be the indiscrete topology on X. Then (X, τ) is not a T_0 - space but it is a Cl - Cl - connected space.

Theorem 3. A space X is Cl - Cl - connected if and only if it cannot be expressed as the disjoint union of two nonempty clopen sets.

Proof. Let X be a Cl-Cl - connected space. If possible suppose that $X = W_1 \cup W_2$, where $W_1 \cap W_2 = \emptyset$, $W_1 \neq \emptyset$ is a clopen set in X and $W_2 \neq \emptyset$ is a clopen set in X. Since W_1 and W_2 are clopen sets in X, then $Cl(W_1) \cap Cl(W_2) = \emptyset$. Therefore X is not a Cl - Cl - connected space. This is a contradiction.

Conversely suppose that $X \neq W_1 \cup W_2$ and $W_1 \cap W_2 = \emptyset$, where W_1 is a nonempty clopen set and W_2 is a nonempty clopen set in X. We shall prove that X is a Cl-Cl - connected space.

If possible suppose that X is not a Cl - Cl - connected space, then there exist Cl - Cl - separated sets A and B such that $X = A \cup B$. Then $X = Cl(A) \cup Cl(B)$ and $Cl(A) \cap Cl(B) = \emptyset$. Set $W_1 = Cl(A)$ and $W_2 = Cl(B)$. Then W_1 and W_2 are nonempty clopen sets.

Moreover, we have $W_1 \cup W_2 = X$ and $W_1 \cap W_2 = \emptyset$. This is a contradiction. So X is a Cl - Cl - connected space.

Theorem 4. Let X be a space. If A is a Cl - Cl - connected subset of X and H, G are Cl - Cl - separated subsets of X with $A \subset H \cup G$, then either $A \subset H$ or $A \subset G$.

50

Proof. Let A be a Cl - Cl - connected set. Let $A \subset H \cup G$. Since $A = (A \cap H) \cup (A \cap G)$, then $Cl(A \cap G) \cap Cl(A \cap H) \subset Cl(G) \cap Cl(H) = \emptyset$. Suppose $A \cap H$ and $A \cap G$ are nonempty. Then A is not Cl - Cl - connected. This is a contradiction. Thus, either $A \cap H = \emptyset$ or $A \cap G = \emptyset$. This implies that $A \subset H$ or $A \subset G$. \Box

Theorem 5. If A and B are Cl - Cl - connected sets of a space X and A and B are not Cl - Cl - separated, then $A \cup B$ is Cl - Cl - connected.

Proof. Let A and B be Cl - Cl - connected sets in X. Suppose $A \cup B$ is not Cl - Cl - connected. Then, there exist two nonempty disjoint Cl - Cl - separated sets G and H such that $A \cup B = G \cup H$. Suppose that $Cl(G) \cap Cl(H) = \emptyset$. Since A and B are Cl - Cl - connected, by Theorem 4, either $A \subset G$ and $B \subset H$ or $B \subset G$ and $A \subset H$.

Case (i). If $A \subset G$ and $B \subset H$, then $A \cap H = B \cap G = \emptyset$. Therefore, $(A \cup B) \cap G = (A \cap G) \cup (B \cap G) = (A \cap G) \cup \emptyset = A \cap G = A$. Also, $(A \cup B) \cap H = (A \cap H) \cup (B \cap H) = B \cap H = B$. Now, $Cl(A) \cap Cl(B) = Cl((A \cup B) \cap G) \cap Cl((A \cup B) \cap H) \subset Cl(H) \cap Cl(G) = \emptyset$. Thus, A and B are Cl - Cl - separated, which is a contradiction. Hence, $A \cup B$ is Cl - Cl - connected.

Case (ii). If $B \subset G$ and $A \subset H$, then $B \cap H = A \cap G = \emptyset$. Therefore $(A \cup B) \cap H = (A \cap H) \cup (B \cap H) = (A \cap H) \cup \emptyset = A$. Also, $(A \cup B) \cap G = (A \cap G) \cup (B \cap G) = B \cap G = B$. Now, $Cl(A) \cap Cl(B) = Cl((A \cup B) \cap H) \cap Cl((A \cup B) \cap G) \subset Cl(H) \cap Cl(G) = \emptyset$. Thus, A and B are Cl - Cl - separated, which is a contradiction. Hence, $A \cup B$ is Cl - Cl - connected.

Theorem 6. If $\{M_i : i \in I\}$ is a nonempty family of Cl - Cl - connected sets of a space X, with $\bigcap_{i \in I} M_i \neq \emptyset$, then $\bigcup_{i \in I} M_i$ is Cl - Cl - connected.

Proof. Suppose $\cup_{i \in I} M_i$ is not Cl - Cl - connected. Then we have $\cup_{i \in I} M_i = H \cup G$, where H and G are Cl - Cl - separated sets in X. Since $\cap_{i \in I} M_i \neq \emptyset$, we have a point $x \in \cap_{i \in I} M_i$. Since $x \in \bigcup_{i \in I} M_i$, either $x \in H$ or $x \in G$. Suppose that $x \in H$. Since $x \in M_i$ for each $i \in I$, then M_i and H intersect for each $i \in I$. By Theorem 4, $M_i \subset H$ or $M_i \subset G$. Since H and G are disjoint, $M_i \subset H$ for all $i \in I$ and hence $\cup_{i \in I} M_i \subset H$. This implies that G is empty. This is a contradiction. Suppose that $x \in G$. By the similar way, we have that H is empty. This is a contradiction. Thus, $\cup_{i \in I} M_i$ is Cl - Cl - connected. □

Theorem 7. Let X be a space, $\{A_{\alpha} : \alpha \in \Delta\}$ be a family of Cl - Cl - connected sets and A be a Cl - Cl - connected set. If $A \cap A_{\alpha} \neq \emptyset$ for every $\alpha \in \Delta$, then $A \cup (\bigcup_{\alpha \in \Delta} A_{\alpha})$ is Cl - Cl - connected.

Proof. Since $A \cap A_{\alpha} \neq \emptyset$ for each $\alpha \in \Delta$, by Theorem 6, $A \cup A_{\alpha}$ is Cl - Cl - connected for each $\alpha \in \Delta$. Moreover, $A \cup (\cup A_{\alpha}) = \cup (A \cup A_{\alpha})$ and $\cap (A \cup A_{\alpha}) \supset A \neq \emptyset$. Thus by Theorem 6, $A \cup (\cup A_{\alpha})$ is Cl - Cl - connected.

Theorem 8. The continuous image of a Cl - Cl - connected space is a Cl - Cl - connected space.

Proof. Let $f: X \to Y$ be a continuous map and X be a Cl - Cl - connected space. If possible suppose that f(X) is not a Cl - Cl - connected subset of Y. Then, there exist nonempty Cl - Cl - separated sets A and B such that $f(X) = A \cup B$. Since f is continuous and $Cl(A) \cap Cl(B) = \emptyset$, $Cl(f^{-1}(A)) \cap Cl(f^{-1}(B)) \subset f^{-1}(Cl(A)) \cap f^{-1}(Cl(B)) = f^{-1}(Cl(A) \cap Cl(B)) = \emptyset$. Since A and B are nonempty, $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty. Therefore, $f^{-1}(A)$ and $f^{-1}(B)$ are Cl - Cl - separated and $X = f^{-1}(A) \cup f^{-1}(B)$. This contradicts that X is Cl - Cl - connected. Therefore, f(X) is Cl - Cl - connected. □

Theorem 9. Let X be a space then following are equivalent conditions:

(1) X is not Cl - Cl - connected;

(2) $X = W_1 \cup W_2$, $W_1 \cap W_2 = \emptyset$, where $W_1(\neq \emptyset)$ is clopen set in X and $W_2(\neq \emptyset)$ is a clopen set in X;

(3) there is a continuous map $f : X \to (Y, \sigma)$ such that f(x) = 0 if $x \in W_1$ and f(x) = 1 if $x \in W_2$, where $Y = \{0, 1\}$ and σ is the discrete topology on Y.

Proof. $(1) \Leftrightarrow (2)$ is obvious from Theorem 3.

 $(2) \Rightarrow (3)$: Let $Y = \{0,1\}$ and σ is the discrete topology, then (Y,σ) is a topological space. Let $f: X \to (Y,\sigma)$ be a function defined by $f(W_1) = 0$ and $f(W_2) = 1$. Then f is a continuous surjection such that f(x) = 0 for each $x \in W_1$ and f(x) = 1 for each $x \in W_2$.

(3) \Rightarrow (2): Here $W_1 = f^{-1}(0)$ is a clopen set of X and $W_2 = f^{-1}(1)$ is a clopen set of X. And also X is a disjoint union of nonempty sets W_1 and W_2 .

Lemma 10. [1] Let (X, τ) be a topological space and $A \subset X$. Then the topologies τ , τ_s and τ_{θ} have same family of open and closed sets, i.e., $CO(\tau_{\theta}) = CO(\tau_s) = CO(\tau)$.

Corollary 11. The Cl - Cl - connection of θ - topology, semi-regularization topology and original topology are same concept.

References

- [1] Mršević, M., Andrijević, D.: On θ connectedness and θ closure, Topology and its Applications, 123, 157 166 (2002)
- [2] Veličko, N. V., H closed topological spaces, Mat. Sb. 70, 98 112 (1966); Math. USSR Sb. 78, 103 118 (1969)
- [3] Veličko, N. V., On the theory of H closed topological spaces, Sibirskii Math. Z. 8, 754 763 (1967); Siberian Math J. 8, 569 579 (1967)

[4] Willard, S., General Topology, Addison-Wesley Publ. Comp., (1970)

Current address: S. Modak, Department of Mathematics, University of Gour Banga P.O. Mokdumpur, Malda - 732103, India

 $E\text{-}mail\ address: \texttt{spmodak2000@yahoo.co.in}$

 $Current \ address:$ T. Noiri, 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumomoto-ken, 869-5142 JAPAN

E-mail address: t.noiri@nifty.com