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ON CR−SUBMANIFOLDS OF A S−MANIFOLD ENDOWED
WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

MEHMET AKIF AKYOL AND RAMAZAN SARI

Abstract. In this paper, we study CR−submanifolds of an S−manifold en-
dowed with a semi-symmetric non-metric connection. We give an example,
investigating integrabilities of horizontal and vertical distributions of CR−sub
manifolds endowed with a semi-symmetric non-metric connection. We also
consider parallel horizontal distributions of CR−submanifolds.

1. Introduction

In 1963, Yano [23] introduced the notion of f -structure on a C∞ m-dimensional
manifold M , as a non-vanishing tensor field f of type (1, 1) on M which satisfies
f3 + f = 0 and has constant rank r. It is known that r is even, say r = 2n.
Moreover, TM splits into two complementary subbundles Imf and ker f and the
restriction of f to Imf determines a complex structure on such subbundle. It is also
known that the existence of an f -structure onM is equivalent to a reduction of the
structure group to U(n)×O(s) (see [9]), where s = m− 2n. In 1970, Goldberg and
Yano [12] introduced globally frame f -manifolds (also called metric f - manifolds
and f .pk-manifolds). A wide class of globally frame f -manifolds was introduced in
[9] by Blair according to the following definition: a metric f -structure is said to be
a K-structure if the fundamental 2-form Φ, defined usually as Φ(X,Y ) = g(X, fY ),
for any vector fields X and Y on M , is closed and the normality condition holds,
that is, [f, f ]+2

∑s
i=1 dη

i⊗ξi = 0, where [f, f ] denotes the Nijenhuis torsion of f . A
K-manifold is called an S-manifold if dηk = Φ, for all k = 1, . . . , s. The S-manifolds
have been studied by several authors (see, for instance, [2],[3],[5],[10],[11]).
On the other hand, the notion of a CR−submanifold of Kaehlerian manifolds

was introduced by A. Bejancu in [6]. Later, the concept of CR−submanifolds has
been developed by [4], [8], [13], [14], [16], [18], [19], [20], [22] and others.
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Let ∇ be a linear connection in an n−dimensional differentiable manifold M .
The torsion tensor T and the curvature tensor R of ∇ are given respectively by [7]

T (X,Y ) = ∇XY −∇YX − [X,Y ] ,

R (X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The connection ∇ is symmetric if the torsion tensor T vanishes, otherwise it is
non-symmetric. The connection ∇ is a metric connection if there is a Riemannian
metric g in M such that ∇g = 0, otherwise it is non-metric. It is well known
that a linear connection is symmetric and metric if it is the Levi-Civita connection.
In [17], Friedmann and Schouten introduced the notion of semi-symmetric linear
connections. More precisely, if ∇ is a linear connection in a differentiable manifold
M , the torsion tensor T of ∇ is given by T (X,Y ) = ∇XY − ∇YX − [X,Y ], for
any vector fields X and Y on M . The connection ∇ is said to be symmetric if the
torsion tensor T vanishes, otherwise it is said to be non-symmetric. In this case,
∇ is said to be a semi-symmetric connection if its torsion tensor T is of the form
T (X,Y ) = η(Y )X − η(X)Y , for any X,Y , where η is a 1-form on M . Moreover,
if g is a (pseudo)-Riemannian metric on M , ∇ is called a metric connection if
∇g = 0, otherwise it is called non-metric. It is well known that the Riemannian
connection is the unique metric and symmetric linear connection on a Riemannian
manifold. In 1932, Hayden [15] defined a metric connection with torsion on a
Riemannian manifold. In [1] Agashe and Chafle defined a semi-symmetric non-
metric connection on a Riemannian manifold and studied some of its properties.
Later, the concept of semi-symmetric non-metric connection has been developed by
(see, for instance, [3], [21]) and others. In this paper we study CR−submanifolds
of an S−manifold endowed with a semi-symmetric non-metric connection. We
consider integrabilities of horizontal and vertical distributions of CR−submanifolds
with a semi-symmetric non-metric connection. We also consider parallel horizontal
distributions of CR−submanifolds.
The paper is organized as follows: In section 2, we give a brief introduction

to S−manifolds. In section 3, we study CR−submanifolds of S-manifolds. We
find necessary conditions for the induced connection on a CR−submanifold of
an S−manifold with semi-symmetric non-metric connection to be also a semi-
symmetric non-metric connection. In section 4, We study integrabilities of hori-
zontal and vertical distributions of CR−submanifolds with a semi-symmetric non-
metric connection.

2. S−Manifolds

A (2n+s)−dimensional differentiable manifold M̃ is called ametric f -manifold if
there exist an (1, 1) type tensor field f , s vector fields ξ1, . . . , ξs, s 1-forms η

1, . . . , ηs
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and a Riemannian metric g on M̃ such that

f2 = −I +

s∑
i=1

ηi ⊗ ξi, ηi(ξj) = δij , fξi = 0, ηi ◦ f = 0, (2.1)

g(fX, fY ) = g(X,Y )−
s∑
i=1

ηi(X)ηi(Y ), (2.2)

for any X,Y ∈ Γ(TM̃), i, j ∈ {1, . . . , s}. In addition we have:
ηi(X) = g(X, ξi), g(X, fY ) = −g(fX, Y ). (2.3)

Moreover, a metric f -manifold is normal if

[f, f ] + 2

s∑
α=1

dηα ⊗ ξα = 0

where [f, f ] is Nijenhuis tensor of f .
Then a 2-form F is defined by F (X,Y ) = g(X, fY ), for any X,Y ∈ Γ(TM̃),

called the fundamental 2-form. Then M̃ is said to be an S-manifold if the f
structure is normal and

η1 ∧ ... ∧ ηs ∧ (dηα)n 6= 0, F = dηα

for any α = 1, ..., s. In the case s = 1, an S−manifold is a Sasakian manifold.
Now, if ∇̃ denotes the Riemannian connection associated with g, then [7](

∇̃Xf
)
Y =

s∑
α=1

{
g (fX, fY ) ξα + ηα (Y ) f2X

}
, (2.4)

for all X,Y ∈ Γ(TM̃). From (2.4), it is deduced that

∇̃Xξα = −fX, (2.5)

for any X,Y ∈ Γ(TM̃), α ∈ {1, ..., s}.

3. CR−Submanifold of S−Manifolds

Definition 3.1. An (2m+s)−dimensional Riemannian submanifoldM of S−manifold
M̃ is called a CR−submanifold if ξ1, ξ2, ... , ξs is tangent to M and there exists on
M two differentiable distributions D and D⊥ on M satisfying:

(i) TM = D ⊕D⊥ ⊕ sp{ξ1, ..., ξs};
(ii) The distribution D is invariant under f, that is fDx = Dx for any x ∈M ;
(iii) The distribution D⊥ is anti-invariant under f, that is, fD⊥x ⊆ T⊥x M for

any x ∈M, where TxM and TxM⊥ are the tangent space of M at x.

We denote by 2p and q the real dimensions of Dx and D⊥x respectively, for any
x ∈M. Then if p = 0 we have an anti-invariant submanifold tangent to ξ1, ξ2, ..., ξs
and if q = 0, we have an invariant submanifold.
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Example 3.1. In what follows, (R2n+s, f, η, ξ, g) will denote the manifold R2n+s

with its usual S-structure given by

ηα =
1

2
(dzα −

n∑
i=1

yidxi), ξα = 2
∂

∂zα

f(

n∑
i=1

(Xi
∂

∂xi
+ Yi

∂

∂yi
) +

s∑
α=1

Zα
∂

∂zα
) =

n∑
i=1

(Yi
∂

∂xi
−Xi

∂

∂yi
) +

s∑
α=1

n∑
i=1

Yiyi
∂

∂zα

g =

s∑
α=1

ηα ⊗ ηα +
1

4
(

n∑
i=1

dxi ⊗ dxi + dyi ⊗ dyi),

(x1, ..., xn, y1, ..., yn, z1, ..., zs) denoting the Cartesian coordinates on R2n+s. The
consider a submanifold of R8 defined by

M = X(u, v, k, l, t1, t2) = 2(u, 0, k, v, l, 0, t1, t2).

Then local frame of TM

e1 = 2
∂

∂x1
, e2 = 2

∂

∂y1
,

e3 = 2
∂

∂x3
, e4 = 2

∂

∂y2
,

e5 = 2
∂

∂z1
= ξ1, e6 = 2

∂

∂z2
= ξ2

and

e∗1 = 2
∂

∂x2
, e∗2 = 2

∂

∂y3

from a basis of T⊥M . We determine D1 = sp{e1, e2} and D2 = sp{e3, e4}, then
D1, D2 are invariant and anti-invariant distribution. Thus TM = D1 ⊕ D2 ⊕
sp{ξ1, ξ2} is a CR−submanifold of R8.

Let ∇̃ be the Levi-Civita connection of M̃ with respect to the induced metric g.
Then Gauss and Weingarten formulas are given by

∇̃XY = ∇∗XY + h(X,Y ) (3.1)

and
∇̃XN = −ANX +∇∗⊥X N (3.2)

for any X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M). ∇∗⊥ is the connection in the normal
bundle, h is the second fundamental from of M̃ and AN is the Weingarten endomor-
phism associated with N . The second fundamental form h and the shape operator
A related by

g(h(X,Y ), N) = g(ANX,Y ) (3.3)

for any X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M).
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A CR−submanifold is said to be D−totally geodesic if h(X,Y ) = 0 for any
X,Y ∈ Γ(D) and it is said to be D⊥−totall geodesic if h(Z,W ) = 0 for any
Z,W ∈ Γ(D⊥).
The projection morphisms of TM to D and D⊥ are denoted by P and Q respec-

tively. For any X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M) we have

X = PX +QX +

s∑
α=1

ηα(X)ξα, 1 ≤ α ≤ s (3.4)

fN = BN + CN (3.5)

where BN (resp. CN) denotes the tangential (resp. normal) component of ϕN.
Now, we define a connection ∇ as

∇XY = ∇̃XY +
s∑

α=1

ηα (Y )X.

Theorem 3.1. Let ∇̃ be the Riemannian connection on a S−manifold M̃ . Then
the linear connection which is defined as

∇XY = ∇̃XY +

s∑
α=1

ηα(Y )X, ∀X,Y ∈ Γ(TM) (3.6)

is a semi-symmetric non metric connection on M̃.

Proof. Using new connection and the fact that the Riemannian connection is torsion
free, the torsion tensor T of the connection ∇ is given by

T (X,Y ) =

s∑
α=1

{ηα(Y )X − ηα(X)Y } (3.7)

for all X,Y ∈ Γ(TM). Moreover, by using (3.6) again, for all X,Y, Z ∈ Γ(TM)

and since ∇̃ is a metric connection, we have

(∇Xg)(Y,Z) = −
s∑

α=1

{g(X,Y )ηα(Z)− g(X,Z)ηα(Y )}. (3.8)

From (3.7) and (3.8) we conclude that the linear connection ∇ is a semi-symmetric
non-metric connection on M̃ . �

Theorem 3.2. Let M be a CR submanifold of S-manifold M̃ . Then

(∇Xf)Y =

s∑
α=1

{g(X,Y )ξα − ηα(Y )(X + fX)} (3.9)

for all X,Y ∈ Γ(TM).
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Proof. From (3.6), we get

(∇Xf)Y =

s∑
α=1

{g(X,Y )ξα − ηα (Y )X − ηα (Y ) fX}

for all X,Y ∈ Γ(TM). Therefore we obtain the result from (2.4). �

Corollary 3.1. Let M be a CR submanifold of S-manifold M̃ with semi-symmetric
non-metric connection ∇. Then

∇Xξα = −fX +X (3.10)

for all X ∈ Γ(TM).

We denote by same symbol g both metrics on M̃ and M . Let ∇ be the semi-
symmetric non-metric connection on M̃ and ∇ be the induced connection on M .
Then,

∇XY = ∇XY +m(X,Y ) (3.11)

where m is a Γ(T⊥M)−valued symmetric tensor field on CR- submanifold M . If
∇∗ denotes the induced connection from the Riemannian connection ∇, then

∇XY = ∇∗XY + h(X,Y ), (3.12)

where h is the second fundamental form. Using (3.1) and (3.4), we have

∇XY +m(X,Y ) = ∇∗XY + h(X,Y ) +

s∑
α=1

ηα(Y )X.

Equating tangential and normal components from both the sides, we get

m(X,Y ) = h(X,Y )

and

∇XY = ∇∗XY +

s∑
i=1

ηα(Y )X. (3.13)

Thus ∇ is also a semi-symmetric non-metric connection. From (3.2) and (3.13), we
have

∇XN = ∇∗XN +

s∑
α=1

ηα(N)X

= −ANX +∇⊥XN +

s∑
α=1

ηα(N)X,

where X ∈ Γ(TM) and N ∈ Γ(T⊥M).
Now, Gauss and Weingarten formulas for a CR-submanifolds of a S-manifold

with a semi-symmetric non-metric connection is

∇XY = ∇XY + h(X,Y ) (3.14)
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∇XN = −ANX +∇⊥XN +

s∑
α=1

ηα(N)X (3.15)

for any X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M), h second fundamental form of M and
AN is the Weingarten endomorphism associated with N.

Theorem 3.3. The connection induced on CR−submanifold of a S-manifold with
semi-symmetric non-metric connection is also a semi-symmetric non-metric con-
nection.

Proof. From (3.7) and (3.8), we get

T̄ (X,Y ) = T (X,Y ) and (∇Xg)(Y, Z) = (∇Xg)(Y,Z)

for any X,Y ∈ Γ(TM), where T is the torsion tensor of ∇. �

4. Integrability and Parallel of Distributions

Lemma 4.1. LetM be a CR−submanifold of an S−manifold M̃ with semi-symmetric
non-metric connection. Then,

P∇XfPY − PAfQYX − fP∇XY = −
s∑

α=1

ηα (Y ) (PX + fPX) , (4.1)

Q∇XfPY −QAfQYX − th (X,Y ) = −
s∑

α=1

ηα (Y )QX, (4.2)

h (X, fPY )− fQ∇XY +∇⊥XfQY = nh (X,Y )−
s∑

α=1

ηα (Y ) fQX, (4.3)

for all X,Y ∈ Γ(TM).

Proof. By direct covariant differentiation, we have

∇XfY =
(
∇Xf

)
Y + f

(
∇XY

)
.

for any X,Y ∈ Γ(TM). By virtue of (3.4),(3.9),(3.14) and (3.15) we get

∇XfPY + h (X, fPY ) +
(
−AfQYX +∇⊥XfQY

)
=

s∑
α=1
{g (X,Y ) ξα − ηα (Y ) (fX +X)}+ f∇XY + fh (X,Y ) .
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Using (3.4) again, we have

P∇XfPY +Q∇XfPY + h (X, fPY )− PAfQYX −QAfQYX +∇⊥XfQY

=
s∑

α=1
{g (X,Y )Pξα + g (X,Y )Qξα − ηα (Y )PX

−ηα (Y )QX − ηα (Y ) fPX − ηα (Y ) fQX}
+fP∇XY + fQ∇XY + th (X,Y ) + nh (X,Y ) .

Equations (4.1)-(4.3) follow by comparing the horizontal, vertical and normal com-
ponents. �

Lemma 4.2. LetM be a CR−submanifold of an S−manifold M̃ with semi-symmetric
non-metric connection. Then,

−AfWZ − fP∇ZW − th (Z,W ) =

s∑
α=1

g (Z,W ) ξα, (4.4)

∇⊥ZfW = fQ∇ZW + nh (Z,W ) (4.5)

for any Z,W ∈ Γ(D⊥).

Proof. From (3.9), we have(
∇Zf

)
W =

s∑
α=1

{
g (fZ, fW ) ξα + ηα (W )

(
f2Z − fZ

)}
for any Z,W ∈ Γ(D⊥). Since ηα (W ) = 0 for W ∈ Γ(D), using (2.2) we get(

∇Zf
)
W =

s∑
α=1

g (fZ, fW ) ξα =

s∑
α=1

g (Z,W ) ξα.

Therefore

∇ZfW − f∇ZW =

s∑
α=1

g (Z,W ) ξα.

In above equation, using (3.14) and (3.15), we have

−AfWZ +∇⊥ZfW − f∇ZW − fh (Z,W ) =

s∑
α=1

g (Z,W ) ξα

−AfWZ +∇⊥ZfW − fP∇ZW − fQ∇ZW − th (Z,W )− nh (Z,W )

=
s∑

α=1
g (Z,W ) ξα.

Now comparing tangent and normal parts in above equation, we obtain (4.4) and
(4.5). �
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Lemma 4.3. LetM be a CR−submanifold of an S−manifold M̃ with semi-symmetric
non-metric connection. Then,

∇XfY − fP∇XY =

s∑
α=1

g (X,Y ) ξα + th (X,Y ) , (4.6)

h (X, fY ) = fQ∇XY + nh (X,Y ) (4.7)

for any X,Y ∈ Γ(D).

Proof. From (3.9), we have(
∇Xf

)
Y =

s∑
α=1

{
g (fX, fY ) ξα + ηα (Y )

(
f2X − fX

)}
for any X,Y ∈ Γ(D). Using ηα (Y ) = 0 for each Y ∈ Γ(D) and (2.2) we obtain(

∇Xf
)
Y =

s∑
α=1

g (fX, fY ) ξα

=

s∑
α=1

g (X,Y ) ξα.

Moreover, we have

∇XfY − f∇XY =

s∑
α=1

g (X,Y ) ξα.

Now using (3.14), we have

∇XfY + h (X, fY )− f∇XY − fh (X,Y ) =

s∑
α=1

g (X,Y ) ξα

∇XfY + h (X, fY )− fP∇XY − fQ∇XY − th (X,Y )− nh (X,Y )

=

s∑
α=1

g (X,Y ) ξα.

Now comparing tangent and normal parts, we obtain (4.6) and (4.7). �

Lemma 4.4. LetM be a CR−submanifold of an S−manifold M̃ with semi-symmetric
non-metric connection. Then,

∇Xξα = −fPX +X, ∀X ∈ Γ(TM) (4.8)

h (X, ξα) = −fQX, ∀X ∈ Γ(TM) (4.9)

AV ξα ∈ D⊥, ∀V ∈ Γ(T⊥M) (4.10)
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Proof. Using (3.14) in (3.10), we easily obtain

∇Xξα = −fX +X ⇒ ∇Xξα + h (X, ξα) = −fX +X

which gives
∇Xξα + h (X, ξα) = −fPX − fQX +X.

Now comparing tangent and normal parts, we get

∇Xξα = −fPX +X and h (X, ξα) = −fQX.
On the other hand, using (3.3) we have

g (AV ξα, X) = g (h (X, ξα) , V ) = g (0, V ) = 0

for X ∈ Γ(D) and V ∈ Γ(T⊥M). Using (4.9) in the above equation, we get

g (AV ξα, X) = 0, ∀X ∈ Γ(D) which leads to AV ξα ∈ Γ(D⊥)

also

g (AV ξα, X) = 0, ∀X ∈ Γ(D)⇒ g (AV ξα, X) = ηα (AVX) = 0

which gives (4.10). �

Theorem 4.1. LetM be a CR−submanifold of a S-manifold M̃ with semi-symmetric
non-metric connection. Then the distribution D is not integrable.

Proof. For any X,Y ∈ Γ(D), we have

g([X,Y ], ξi) = −g(Y, ∇̃Xξi) + g(X, ∇̃Y ξi).
Using (3.10) and (3.14), we have

g([X,Y ], ξi) = −g(Y,∇Xξi −X) + g(X,∇Y ξi − Y )

= −g(Y, fX) + g(X, fY ).

Thus D is integrable if and only if g(X, fY ) = g(Y, fX). From (2.3), the proof is
complete. �

Theorem 4.2. Let M be a CR−submanifold of an S−manifold M̃ with semi-
symmetric non-metric connection. The distribution D⊕ Sp{ξ1, ..., ξs} is integrable
if and only if

h (X, fY ) = h (Y, fX)

for any X,Y ∈ Γ(D ⊕ Sp{ξ1, ..., ξs}).

Proof. From (4.7), we have

h (X, fPY ) = fQ∇XY + nh (X,Y ) , ∀X,Y ∈ Γ(D ⊕ sp{ξ1, ..., ξs}). (4.11)

Interchanging X and Y, we have

h (Y, fPX) = fQ∇YX + nh (Y,X) , ∀X,Y ∈ Γ(D ⊕ sp{ξ1, ..., ξs}). (4.12)

Adding (4.11) and (4.12), we obtain

h (X, fY )− h (Y, fX) = fQ [X,Y ] .
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Then we have [X,Y ] ∈ Γ(D ⊕ sp{ξ1, ..., ξs}) if and only if h (X, fY ) = h (Y, fX) .
�

Corollary 4.1. Let M be a CR−submanifold of an S−manifold M̃ with semi-
symmetric non-metric connection. The distribution D⊕ Sp{ξ1, ..., ξs} is integrable
if and only if

ANfX = −fANX
for any X ∈ Γ(D ⊕ sp{ξ1, ..., ξs}).

Definition 4.1. A CR−submanifold is said to be mixed totally geodesic if h(X,Z) =
0, for any X ∈ Γ(D) and Z ∈ Γ(D⊥).

Lemma 4.5. LetM be a CR−submanifold of an S−manifold M̃ with semi-symmetric
non-metric connection. Then M is mixed totaly geodesic if and only if one of the
following satisfied;

AVX ∈ D
(
∀X ∈ Γ(D), V ∈ Γ(T⊥M)

)
, (4.13)

AVX ∈ D⊥
(
∀X ∈ Γ(D⊥), V ∈ Γ(T⊥M)

)
. (4.14)

Proof. For X ∈ Γ(D), V ∈ Γ(T⊥M) and Y ∈ Γ(D⊥), consider AVX, then from
(3.3) we get

g (AVX,Y ) = g (h (X,Y ) , V )

= 0⇔ AVX ∈ Γ(D).

Hence, we have

g (h (X,Y ) , V ) = 0⇔ h (X,Y ) = 0

⇔ AVX ∈ Γ(D) ∀X ∈ Γ(D), V ∈ Γ(T⊥M),

which gives (4.13). In a similar way is deduced relation (4.14). �

Definition 4.2. The horizontal (resp.vertical) distribution on D (resp. D⊥) is
said to be parallel with respect to the connection ∇ on M if

∇XY ∈ Γ(D)
(
resp.∇ZW ∈ Γ(D⊥)

)
for any X,Y ∈ Γ(D) (resp. Z,W ∈ Γ(D⊥)).

Theorem 4.3. Let M be a ξα−horizontal CR−submanifold of an S−manifold M̃
with semi-symmetric non-metric connection. Then, the horizontal distribution D
is parallel if and only if

h (X, fY ) = h (Y, fX) = fh (X,Y ) (4.15)

for all X,Y ∈ Γ(D).

Proof. Since every parallel is involutive then the first equality follows immediately.
Now since D is parallel, we have

∇XfY ∈ Γ(D), ∀X,Y ∈ Γ(D).
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Then from (4.2), we have

th (X,Y ) = 0 ∀X,Y ∈ Γ(D). (4.16)

From (4.3), D is parallel if and only if

h (X, fY ) = nh (X,Y ) .

But we have
fh (X,Y ) = th (X,Y ) + nh (X,Y ) ,

and from (4.9), fh (X,Y ) = nh (X,Y ) , which completes the proof. �

Theorem 4.4. Let M be a CR−submanifold of an S−manifold M̃ with semi-
symmetric non-metric connection. The distribution D⊥⊕Sp{ξ1, ..., ξs} is integrable
if and only if

AfXY −AfYX =

s∑
α=1

{ηα (X)Y − ηα (Y )X} (4.17)

for all X,Y ∈ Γ(D⊥ ⊕ sp{ξ1, ..., ξs}).

Proof. If X,Y ∈ Γ(D⊥ ⊕ sp{ξ1, ..., ξs}), then from (4.1) and (4.2) we have

−PAfQYX − fP∇XY = 0, (4.18)

−QAfQYX − th (X,Y ) = −
s∑

α=1

ηα(Y )X. (4.19)

Adding (4.18) and (4.19), we have

−AfYX − fP∇XY − th (X,Y ) = −
s∑

α=1

ηα(Y )X. (4.20)

Now interchanging X and Y , we have

−AfXY − fP∇YX − th (X,Y ) = −
s∑

α=1

ηα(X)Y. (4.21)

Subtracting (4.20) and (4.21), we obtain

−AfYX +AfXY − fP [X,Y ] =

s∑
α=1

{−ηα (Y )X + ηα (X)Y } .

Hence P [X,Y ] = 0, we obtain

⇔ AfXY −AfYX =

s∑
α=1

{ηα (X)Y − ηα (Y )X} .

Therefore D⊥ is integrable ⇔ (4.17) holds. �
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Corollary 4.2. LetM be CR−submanifold of an S−manifold M̃ with semi-symmetric
non metric connection. Then, the distribution D⊥ is integrable if and only if

AfYX = AfXY (4.22)

for all X,Y ∈ Γ(D⊥).

Proof. The proof can be obtained directly from (4.17). �

Lemma 4.6. LetM be a CR−submanifold of an S−manifold M̃ with semi-symmetric
non-metric connection. Then, the distribution D⊥ is parallel if and only if

−AfWZ =

s∑
α=1

g (Z,W ) ξα + th (Z,W ) (4.23)

for all Z,W ∈ Γ(D⊥).

Proof. From (4.4), we have

−AfWZ − fP∇ZW =

s∑
α=1

g (X,Y ) ξα + th (Z,W ) ∀Z,W ∈ Γ(D⊥).

If D⊥ is parallel then we get

∇ZW ∈ Γ(D⊥)⇔ P∇ZW = 0,

which gives (4.23). �

Lemma 4.7. LetM be a CR−submanifold of an S−manifold M̃ with semi-symmetric
non-metric connection. Then the distribution D⊥ is parallel if and only if

AfWZ ∈ Γ(D⊥) (4.24)

for any Z,W ∈ Γ(D⊥).

Proof. For any Z,W ∈ Γ(D⊥), from (3.9) we have(
∇Zf

)
W =

s∑
α=1

{
g (fZ, fW ) ξα + ηα (W )

(
f2Z − fZ

)}
.

Using (3.14) and (3.15) we obtain

∇ZfW − f∇ZW

=

s∑
α=1

{
g (fZ, fW ) ξα + ηα (W )

(
f2Z − fZ

)}
−AfWZ +∇⊥ZfW − f∇ZW − fh (Z,W )

=

s∑
α=1

{
g (fZ, fW ) ξα + ηα (W )

(
f2Z − fZ

)}
.
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Taking inner product with Y ∈ Γ(D) in the above equation, we have

g (−AfWZ, Y ) + g
(
∇⊥ZfW, Y

)
− g (f∇ZW,Y )− g (fh (Z,W ) , Y )

=

s∑
α=1

{
g (fZ, fW ) g (ξα, Y ) + ηα (W ) g

(
f2Z, Y

)
− ηα (W ) g (fZ, Y )

}
.

Then we have

−g(AfWZ, Y ) = g(f∇ZW,Y ) = −g(∇ZW, fY ).

This imply that
g (AfWZ, Y ) = 0⇔ AfWZ ∈ Γ(D⊥).

Therefore we obtain

∇ZW ∈ D⊥ ⇔ AfWZ ∈ Γ(D⊥), ∀Z,W ∈ Γ(D⊥).

�
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