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SEMI-PARALLEL TENSOR PRODUCT SURFACES IN
SEMI-EUCLIDEAN SPACE [Ej

MEHMET YILDIRIM AND KAZIM ILARSLAN

ABSTRACT. In this article, the tensor product surfaces are studied that arise
from taking the tensor product of a unit circle centered at the origin in Euclid-
ean plane E2 and a non-null, unit planar curve in Lorentzian plane E% Also we
have shown that the tensor product surfaces in 4-dimensional semi-Euclidean
space with index 2, E%, satisfying the semi-parallelity condition E(X, Y)h=0
if and only if the tensor product surface is a totally geodesic surface in E%.

1. INTRODUCTION

B. Y. Chen initiated the study of the tensor product immersion of two im-
mersions of a given Riemannian manifold [6]. This concept originated from the
investigation of the quadratic representation of submanifold. Inspired by Chen’s
definition, F. Decruyenaere, F. Dillen, L. Verstraelen and L. Vrancken studied in
[8] the tensor product of two immersions of, in general, different manifolds. Under
some conditions, this realizes an immersion of the product manifold.

Let M and N be two differentiable manifolds and assume that

f:M—E™,
and
g: N —TE"
are two immersions. Then the direct sum and tensor product maps are defined

respectively by
f®h:Mx N —E™™

(p.q) = f(P) @ h(q) = (f'®),- .-, f™(p),h' (q), ..., h"(q))

and
f®h: Mx N —E™

(p,q) — f(p) ® h(q) = (F* )L (), -, Fr )R (Q),-- ., " (P)R"(q))
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Necessary and sufficient conditions for f ® h to be an immersion were obtained
in [7]. It is also proved there that the pairing (,®) determines a structure of a
semiring on the set of classes of differentiable manifolds transversally immersed in
Euclidean spaces, modulo orthogonal transformations. Some semirings were studied
in [8]. In the special case, a tensor product surface is obtained by taking the tensor
product of two curves. In many papers, minimality and totally reality properties
of a tensor product surfaces were studied for example [2], [10], [11], [12]. The
relations between a tensor product surface and a Lie group was shown in [15], [16].
In [2], Bulca and Arslan studied tensor product surfaces in 4- dimensional Euclidean
space E*and they show that tensor product surfaces satisfying the semi-parallelity
condition R(X,Y).h = 0 are totally umbilical surface.

In this article, we investigate a tensor product surface M which is obtained from
two curves. One of them is a unit circle centered at the origin in Euclidean plane 2
and a non-null, unit planar curve in Lorentzian plane E?. Firstly, we investigated
some geometric properties of the tensor product surface in pseudo-Euclidean 4-
space Ej then we obtain the sufficient and necessary conditions for the surface
satisfying the semi parallelity condition R(X,Y).h = 0.

We remark that the notions related with pseudo- Riemannian geometry are taken
from [14].

2. PRELIMINARIES

In the present section we give some definitons about Riemannian submanifolds
from [5] and [4]. Let ¢ : M — E™ be an immersion from an m—dimensional
connected Riemannian manifold M into an n— dimensional Euclidean space E™ .
We denote by g the metric tensor of E" as well as induced metric on M. Let V be
the Levi- Civita connection of E” and V the induced connection on M. Then the
Gaussian and Weingarten formulas are given by

VxY = VxY +h(X,Y)
(2.1)
VxN = —AxyX +VxN
where X, Y are vector fields tangent to M and N is normal to M. Moreover, h is
the second fundamental form, V= is linear connection induced in the normal bundle
T+ M, called normal connection and Ay is the shape operator in the direction of
N that is related with h by
<HMX,)Y),N >=< AnyX,Y >. (2.2)
If the set {X1,.., X;n} is a local basis for x(M) and {Ny, ..., N;—p, } is an orthonor-
mal local basis for (M), then h can be written as

h=3 % hiNa, (2.3)

a=14,j=1
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where
h?j =< h(Xi,Xj),Na > .

The covariant differentiation Vi of the second fundamental form A on the direct
sum of the tangent bundle and the normal bundle TM @ T+ M of M is defined by

(Vxh)(Y, Z) = Vxh(Y,Z) = l(VxY, Z) = h(Y,Vx Z), (2.4)
for any vector fields X,Y and Z tangent to M. Then we have the Codazzi equation
as

(Vxh)(Y,Z) = (Vyh)(X, Z). (2.5)
We denote by R the curvature tensor associated with V;
R(X, Y)Z =-VxVyZ+VyVxZ+ V[X7y]Z, (26)

and denote by R the curvature tensor associated with V+
RE(X,Y)n = VyVxn = Vx Vi1 = Vix - (2.7)

The equations Gauss and Ricci are given by

<RX,Y)Z,W >=< h(X,W),h(Y,Z) > — < h(X,Z), (Y, V) >, (2.8)

< R(X,Y)n, &> — < RH(X,Y)n, & >=< [A,, A X,Y >, (2.9)
for any vector fields X,Y, Z, W tangent to M and £, n normal vector fields to M.

The Gaussian curvature of M is defined by
K =< h(X1, X1), h(X2, X2) > — ||h(X1, X5)|? (2.10)
where the set { X1, X2} is a linearly independent subset of x(M).

The normal curvature Ky of M is defined by

1/2
n—2 /

Ky=1{ > <R Xy, X3)Na, Ns >° (2.11)
l1=a<p
where {N,, Nz} is an orthonormal basis of x*(M). From (2.11) we conclude that
Ky = 0 if and only if V7 is a flat normal connection of M .

Further, the mean curvature vector fl of M is defined by
1 n—m
= — 2.12

Let us consider the product tensor R of the curvature tensor R with the second
fundamental form h is defined by

(R(X,Y).h)(2,T) = Vx(Vyh(Z,T)) = Vy(Vxh(Z,T)) = Vixy|h(Z,T)) (2.13)



136 MEHMET YILDIRIM AND KAZIM ILARSLAN

for all X,Y, Z, T tangent to M. -
_ The surface M is said to be semi - parallel (or semi-symmetric ) if R.h =0, i.e.
R(X,Y).h=019], [17]. It is easily seen that

(R(X,Y).h)(Z,T) = R*(X,Y)h(Z,T)-hR(X,Y)Z,T)—~h(Z,R(X,Y)T) (2.14)
Lemma 2.1. [9] Let M C E"™ be a smooth surface given with the patch X(u,v).
Then the following equalities are hold;

(RO X000 X0 = (g, — 0, +260)) 130 Xa)

n—2
+ 20 hiphfa (h(X1, X1) — h(X2, X3))

(RO6 X000 X0 = (D H(ng, — h) ) 1 Xo)
+(Sntai, - ) (1061, 30) = 062, )
(ROG X)) (X0 X0) = (05, — 0ty - 280 ) 131 Xo)

+ 57 Bk (h(Xy, X3) — h(Xa, X2)

a=1

(2.15)
Semi parallel surfaces classified by J. Deprez [9].

Theorem 2.1. [9]Let M be a surface in n- dimensional Euclidean space E™. Then
M is semi-parallel if and only if locally;

i) M is aquivalent to 2-sphere, or

it)M has trivial normal connection, or

iii) M is an isotropic surface in B®> C B" satisfying ||HH2 =3K.

3. TENSOR PRODUCT SURFACES OF A EUCLIDEAN PLANE CURVE AND A
LORENTZIAN PLANE CURVE

Minimal and pseudo-minimal tensor product surfaces of a Lorentzian plane curve
and a Euclidean plane curve was studied by I. Mihai and et al. in [13]. They also
gave some examples of non-minimal pseudo-umbilical tensor product surfaces. It is
well konown that the tensor product of two immersions is not commutative.Thus
the tensor product surfaces of a Euclidean plane curve and a Lorentzian plane curve
is a new surface in 4-dimensional semi-Euclidean space with index 2.

In the following section, we will consider the tensor product immersions which
is obtained from a Euclidean plane curve and a Lorentzian plane curve. Let ¢; :
R —E? be a Euclidean plane curve and c; : R —E? be a non-null Lorentzian plane
curve. Put ¢;(t) = (a1(t), az(t)) and ca(s) = (81(s), Ba(8)).

Then their tensor product surface is given by

x:cl®czzR2—>E§
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z(t,s) = (a1(t)B1(s), a1 (t)B5(s), a2(t)B1(s), 2(t) By (s))-
The metric tensor on E? and Ej is given by
g = —da? + da3

and

g = —da? + dad — dx? + da?,

respectively.

If we take ¢; as a Euclidean unit circle ¢;(t) = (cost,sint) at centered origin
and cy(s) = (a(s),B(s)) is a spacelike or timelike curve with unit speed then the
surface patch becomes

M : x(t,s) = (a(s) cost, B(s) cost, a(s)sint, 5(s) sint) (3.1)

An orthonormal frame tangent to M is given by

1 Oz
en = T
' llezl| Ot
= ﬁ(—a(s) sint, —f(s) sint, a(s) cost, 5(s) cost),
2
(3.2)
G
2 T s
= (a'(s)cost, g (s)cost, o (s)sint, 8 (s)sint).
The normal space of M is spanned by
ng = (5,(3) cost, o (s) cos t,ﬁ/(s) sin t,a/(s) sint), (3.3)
ny = H ! ” (—B(s)sint, —a(s)sint, 5(s) cost, a(s) cost)
C2
where
gler,e1) = —g(ne,ng) = 9(62|(|SC)27822(S)) = £1, (3.4)
gle2,e2) = —gni,m) = 9(0,2(5)7012(5)) =é2

and €1 = F1, g5 = F1.
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By covariant differentiation with respect to e; and es a straightforward calcula-
tion gives

Ve, €1 = aggaea — beang

Veleg = —agj1€e; — b€1n2

?elnl = —b6161 — aginy (35)
Velng = 71)6262 —+ agony

?6261 = —beina

Ve,02 = —ceam
Ve,n1 = —cezes (3.6)

vez’ﬁa = —b€161

where a, b and ¢ are Christoffel symbols and as in follows
aa’ — B8’

a = a(s) = s (37)

l[e211?

af —a'p

b=>b(s) = ——— (3.8)

llez|?
c=c(s) = B —a'B. (3.9)

In addition, from (2.3) second fundamental form of this structure is written as,
2
h= 3> eahijna, (3.10)
i,j,a=1
where

h%l = h%l =0
h%Q == h‘%l == 0 h%2 == h‘%l - b (3.11)

hi, =c h2, =0

By considering equations (3.8) and 3.9, we conclude that

Corollary 3.1. If b= 0 then c is also zero.

Also by using Corollary 3.1 and (8.11), we have

Corollary 3.2. M is a totally geodesic surface in B3 if and only if b = 0 which
means that co is a straightline passing through the origin.

If b = 0, from (3.8), we get ca(s) = B(s)(A,1). Since M is a non-degenerate
surface, the position vector of ¢y cannot be a null then A # £1. In this case, we
can write the parametric equation of tensor product surface M as follows

M :x(t,s) = (AB(s) cost, B(s) cost, A\B(s)sint, B(s)sint), A # +1, A € R.

Indeed, this surface fully lies in a cone surface passing through the origin (but not
light cone) in 4-dimensional semi-Euclidean space with index 2, E3, with equation
—23 + X222 — 22 + X223 = 0 where A # +1 and A € R.



SEMI-PARALLEL TENSOR PRODUCT SURFACES 139

The induced covariant differentiation on M as in follows,

Ve, e1 = ageg,
Ve, €2 = —agieq,
?@61 _ 0. (3.12)
V6262 = 0.
Vénl = ag2na,
(3.13)
Véng = agany,
Vinl = 0
i ’ 3.14
ijng = 0 ( )

where the equalities (3.13) and (3.14) define the normal connection on M.

Lemma 3.1. Let x = ¢1 ® ¢co be a tensor product immersion of a Euclidean unit
circle ¢y at centered origin and unit speed non-null Lorentzian curve co in E% .
Then the shape operators of M in direction of n1 and ny are given by respectively,

o b€1 0 . 0 bEl
A"l_{o 052]’ Anz_[bsz 0}

By a simple calculation, we see that Gauss and Ricci equations of M are identical
and they are given by as follow

(3.15)

a' —a’e; = b%e; — beey, (3.16)
and Codazzi equation of M is
b = 2abe; — aces. (3.17)
Thus we give the following theorem.

Theorem 3.1. If M is a tensor product surface of a Fuclidean unit circle at cen-
tered origin and a mon-null unit speed Lorentzian curve in B3 then the Christoffel
symbols of M satisfy the following Riccati equation

(a+b) =1 (a+b)° —cey(a+b). (3.18)

Theorem 3.2. Let M be a tensor product surface given with the surface patch
(8.1). Then there exist following relation between Gaussian curvature K and normal
curvature K

KN = |K| = |b2€1 —bC€2|

Theorem 3.3. Let M be a tensor product surface given with the surface patch (3.1)
. Then the followings are equivalent,
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i) V' is a flat connection,

i) Ky =K =0,

i) b =0 or £1b = eqc.

Now, we suppose that M is a semi parallel surface, i.e., R.h = 0. From (2.15) we

get

b2ei(c—b+2bsy —2c55) = O,
bea(b—ber +ce2)(c—b) = 0,,. (3.19)
be1 (2b%e1 + be — ¢ — 2bees)

I
o

Theorem 3.4. Let M be a tensor product surface given with the surface patch

(3.

1). Then M s a semi parallel surface if and only if
i) For ey = eq, eitherb=0 orb=rc,
ii)FOT €1 75 &9, b=0.

Corollary 3.3. Let M be a tensor product surface given with the surface patch

(3.

1) with €1 # &9 then M is a semi parallel surface if and only if M is a a totally

X - A
geodesic surface in Es.
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