SEMI-PARALLEL TENSOR PRODUCT SURFACES IN SEMI-EUCLIDEAN SPACE \mathbb{E}_{2}^{4}

MEHMET YILDIRIM AND KAZIM İLARSLAN

Abstract

In this article, the tensor product surfaces are studied that arise from taking the tensor product of a unit circle centered at the origin in Euclidean plane \mathbb{E}^{2} and a non-null, unit planar curve in Lorentzian plane \mathbb{E}_{1}^{2}. Also we have shown that the tensor product surfaces in 4-dimensional semi-Euclidean space with index $2, \mathbb{E}_{2}^{4}$, satisfying the semi-parallelity condition $\bar{R}(X, Y) \cdot h=0$ if and only if the tensor product surface is a totally geodesic surface in \mathbb{E}_{2}^{4}.

1. Introduction

B. Y. Chen initiated the study of the tensor product immersion of two immersions of a given Riemannian manifold [6]. This concept originated from the investigation of the quadratic representation of submanifold. Inspired by Chen's definition, F. Decruyenaere, F. Dillen, L. Verstraelen and L. Vrancken studied in [8] the tensor product of two immersions of, in general, different manifolds. Under some conditions, this realizes an immersion of the product manifold.

Let M and N be two differentiable manifolds and assume that

$$
f: M \rightarrow \mathbb{E}^{m}
$$

and

$$
g: N \rightarrow \mathbb{E}^{n}
$$

are two immersions. Then the direct sum and tensor product maps are defined respectively by

$$
\begin{gathered}
f \oplus h: M \times N \rightarrow \mathbb{E}^{m+n} \\
(p, q) \rightarrow f(p) \oplus h(q)=\left(f^{1}(p), \ldots, f^{m}(p), h^{1}(q), \ldots, h^{n}(q)\right)
\end{gathered}
$$

and

$$
\begin{gathered}
f \otimes h: M \times N \rightarrow \mathbb{E}^{m n} \\
(p, q) \rightarrow f(p) \otimes h(q)=\left(f^{1}(p) h^{1}(q), \ldots, f^{1}(p) h^{n}(q), \ldots, f^{m}(p) h^{n}(q)\right)
\end{gathered}
$$

[^0]Necessary and sufficient conditions for $f \otimes h$ to be an immersion were obtained in [7]. It is also proved there that the pairing (\oplus, \otimes) determines a structure of a semiring on the set of classes of differentiable manifolds transversally immersed in Euclidean spaces, modulo orthogonal transformations. Some semirings were studied in [8]. In the special case, a tensor product surface is obtained by taking the tensor product of two curves. In many papers, minimality and totally reality properties of a tensor product surfaces were studied for example [2], [10], [11], [12]. The relations between a tensor product surface and a Lie group was shown in [15], [16]. In [2], Bulca and Arslan studied tensor product surfaces in 4- dimensional Euclidean space \mathbb{E}^{4} and they show that tensor product surfaces satisfying the semi-parallelity condition $\bar{R}(X, Y) . h=0$ are totally umbilical surface.

In this article, we investigate a tensor product surface M which is obtained from two curves. One of them is a unit circle centered at the origin in Euclidean plane \mathbb{E}^{2} and a non-null, unit planar curve in Lorentzian plane \mathbb{E}_{1}^{2}. Firstly, we investigated some geometric properties of the tensor product surface in pseudo-Euclidean 4space \mathbb{E}_{2}^{4} then we obtain the sufficient and necessary conditions for the surface satisfying the semi parallelity condition $\bar{R}(X, Y) . h=0$.

We remark that the notions related with pseudo- Riemannian geometry are taken from [14].

2. Preliminaries

In the present section we give some definitons about Riemannian submanifolds from [5] and [4]. Let $\iota: M \rightarrow \mathbb{E}^{n}$ be an immersion from an m-dimensional connected Riemannian manifold M into an n - dimensional Euclidean space \mathbb{E}^{n}. We denote by g the metric tensor of \mathbb{E}^{n} as well as induced metric on M. Let $\bar{\nabla}$ be the Levi- Civita connection of \mathbb{E}^{n} and ∇ the induced connection on M. Then the Gaussian and Weingarten formulas are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \\
& \bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N \tag{2.1}
\end{align*}
$$

where X, Y are vector fields tangent to M and N is normal to M. Moreover, h is the second fundamental form, ∇^{\perp} is linear connection induced in the normal bundle $T^{\perp} M$, called normal connection and A_{N} is the shape operator in the direction of N that is related with h by

$$
\begin{equation*}
<h(X, Y), N>=<A_{N} X, Y> \tag{2.2}
\end{equation*}
$$

If the set $\left\{X_{1}, . ., X_{m}\right\}$ is a local basis for $\chi(M)$ and $\left\{N_{1}, \ldots, N_{n-m}\right\}$ is an orthonormal local basis for $\chi^{\perp}(M)$, then h can be written as

$$
\begin{equation*}
h=\sum_{\alpha=1}^{n-m} \sum_{i, j=1}^{m} h_{i j}^{\alpha} N_{\alpha} \tag{2.3}
\end{equation*}
$$

where

$$
h_{i j}^{\alpha}=<h\left(X_{i}, X_{j}\right), N_{\alpha}>.
$$

The covariant differentiation $\bar{\nabla} h$ of the second fundamental form h on the direct sum of the tangent bundle and the normal bundle $T M \oplus T^{\perp} M$ of M is defined by

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\nabla_{X}^{\perp} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) \tag{2.4}
\end{equation*}
$$

for any vector fields X, Y and Z tangent to M. Then we have the Codazzi equation as

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\left(\bar{\nabla}_{Y} h\right)(X, Z) \tag{2.5}
\end{equation*}
$$

We denote by R the curvature tensor associated with ∇;

$$
\begin{equation*}
R(X, Y) Z=-\nabla_{X} \nabla_{Y} Z+\nabla_{Y} \nabla_{X} Z+\nabla_{[X, Y]} Z \tag{2.6}
\end{equation*}
$$

and denote by R^{\perp} the curvature tensor associated with ∇^{\perp}

$$
\begin{equation*}
R^{\perp}(X, Y) \eta=\nabla_{Y}^{\perp} \nabla_{X}^{\perp} \eta-\nabla_{X}^{\perp} \nabla_{Y}^{\perp} \eta-\nabla_{[X, Y]}^{\perp} \eta . \tag{2.7}
\end{equation*}
$$

The equations Gauss and Ricci are given by

$$
\begin{gather*}
<R(X, Y) Z, W>=<h(X, W), h(Y, Z)>-<h(X, Z), h(Y, W)> \tag{2.8}\\
<\bar{R}(X, Y) \eta, \xi>-<R^{\perp}(X, Y) \eta, \xi>=<\left[A_{\eta}, A_{\xi}\right] X, Y> \tag{2.9}
\end{gather*}
$$

for any vector fields X, Y, Z, W tangent to M and ξ, η normal vector fields to M.
The Gaussian curvature of M is defined by

$$
\begin{equation*}
K=<h\left(X_{1}, X_{1}\right), h\left(X_{2}, X_{2}\right)>-\left\|h\left(X_{1}, X_{2}\right)\right\|^{2} \tag{2.10}
\end{equation*}
$$

where the set $\left\{X_{1}, X_{2}\right\}$ is a linearly independent subset of $\chi(M)$.
The normal curvature K_{N} of M is defined by

$$
\begin{equation*}
K_{N}=\left\{\sum_{1=\alpha<\beta}^{n-2}<R^{\perp}\left(X_{1}, X_{2}\right) N_{\alpha}, N_{\beta}>^{2}\right\}^{1 / 2} \tag{2.11}
\end{equation*}
$$

where $\left\{N_{\alpha}, N_{\beta}\right\}$ is an orthonormal basis of $\chi^{\perp}(M)$. From (2.11) we conclude that $K_{N}=0$ if and only if ∇^{\perp} is a flat normal connection of M.

Further, the mean curvature vector \vec{H} of M is defined by

$$
\begin{equation*}
\vec{H}=\frac{1}{m} \sum_{\alpha=1}^{n-m} \operatorname{tr}\left(A_{N_{\alpha}}\right) N_{\alpha} \tag{2.12}
\end{equation*}
$$

Let us consider the product tensor \bar{R}. h of the curvature tensor \bar{R} with the second fundamental form h is defined by

$$
\begin{equation*}
\left.(\bar{R}(X, Y) \cdot h)(Z, T)=\bar{\nabla}_{X}\left(\bar{\nabla}_{Y} h(Z, T)\right)-\bar{\nabla}_{Y}\left(\bar{\nabla}_{X} h(Z, T)\right)-\bar{\nabla}_{[X, Y]} h(Z, T)\right) \tag{2.13}
\end{equation*}
$$

for all X, Y, Z, T tangent to M.
The surface M is said to be semi - parallel (or semi-symmetric) if $\bar{R} . h=0$, i.e. $\bar{R}(X, Y) . h=0[9],[17]$. It is easily seen that

$$
\begin{equation*}
(\bar{R}(X, Y) \cdot h)(Z, T)=R^{\perp}(X, Y) h(Z, T)-h(R(X, Y) Z, T)-h(Z, R(X, Y) T) \tag{2.14}
\end{equation*}
$$

Lemma 2.1. [9] Let $M \subset \mathbb{E}^{n}$ be a smooth surface given with the patch $X(u, v)$. Then the following equalities are hold;

$$
\begin{align*}
\left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{1}, X_{1}\right)= & \left(\sum_{\substack{n=1 \\
n-2}} h_{11}^{\alpha}\left(h_{22}^{\alpha}-h_{11}^{\alpha}+2 K\right)\right) h\left(X_{1}, X_{2}\right) \\
& +\sum_{\substack{n=1}} h_{11}^{\alpha} h_{12}^{\alpha}\left(h\left(X_{1}, X_{1}\right)-h\left(X_{2}, X_{2}\right)\right) \\
\left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{1}, X_{2}\right)= & \left(\sum_{\alpha=1}^{n-2} h_{12}^{\alpha}\left(h_{22}^{\alpha}-h_{11}^{\alpha}\right)\right) h\left(X_{1}, X_{2}\right) \\
& +\left(\sum_{\alpha=1}^{n-2} h_{12}^{\alpha} h_{12}^{\alpha}-K\right)\left(h\left(X_{1}, X_{1}\right)-h\left(X_{2}, X_{2}\right)\right) \\
\left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{2}, X_{2}\right)= & \left(\sum_{\alpha=1}^{n-2} h_{22}^{\alpha}\left(h_{22}^{\alpha}-h_{11}^{\alpha}-2 K\right)\right) h\left(X_{1}, X_{2}\right) \\
& +\sum_{\alpha=1}^{n-2} h_{22}^{\alpha} h_{12}^{\alpha}\left(h\left(X_{1}, X_{1}\right)-h\left(X_{2}, X_{2}\right)\right) \tag{2.15}
\end{align*}
$$

Semi parallel surfaces classified by J. Deprez [9].
Theorem 2.1. [9]Let M be a surface in n-dimensional Euclidean space \mathbb{E}^{n}. Then M is semi-parallel if and only if locally;
i) M is aquivalent to 2-sphere, or
ii) M has trivial normal connection, or
iii) M is an isotropic surface in $\mathbb{E}^{5} \subset \mathbb{E}^{n}$ satisfying $\|H\|^{2}=3 K$.

3. Tensor product surfaces of a Euclidean plane curve and a Lorentzian plane curve

Minimal and pseudo-minimal tensor product surfaces of a Lorentzian plane curve and a Euclidean plane curve was studied by I. Mihai and et al. in [13]. They also gave some examples of non-minimal pseudo-umbilical tensor product surfaces. It is well konown that the tensor product of two immersions is not commutative.Thus the tensor product surfaces of a Euclidean plane curve and a Lorentzian plane curve is a new surface in 4-dimensional semi-Euclidean space with index 2.

In the following section, we will consider the tensor product immersions which is obtained from a Euclidean plane curve and a Lorentzian plane curve. Let c_{1} : $\mathbb{R} \rightarrow \mathbb{E}^{2}$ be a Euclidean plane curve and $c_{2}: \mathbb{R} \rightarrow \mathbb{E}_{1}^{2}$ be a non-null Lorentzian plane curve. Put $c_{1}(t)=\left(\alpha_{1}(t), \alpha_{2}(t)\right)$ and $c_{2}(s)=\left(\beta_{1}(s), \beta_{2}(s)\right)$.

Then their tensor product surface is given by

$$
x=c_{1} \otimes c_{2}: \mathbb{R}^{2} \rightarrow \mathbb{E}_{2}^{4}
$$

$$
x(t, s)=\left(\alpha_{1}(t) \beta_{1}(s), \alpha_{1}(t) \beta_{2}(s), \alpha_{2}(t) \beta_{1}(s), \alpha_{2}(t) \beta_{2}(s)\right)
$$

The metric tensor on \mathbb{E}_{1}^{2} and \mathbb{E}_{2}^{4} is given by

$$
g=-d x_{1}^{2}+d x_{2}^{2}
$$

and

$$
\mathbf{g}=-d x_{1}^{2}+d x_{2}^{2}-d x_{3}^{2}+d x_{4}^{2}
$$

respectively.
If we take c_{1} as a Euclidean unit circle $c_{1}(t)=(\cos t, \sin t)$ at centered origin and $c_{2}(s)=(\alpha(s), \beta(s))$ is a spacelike or timelike curve with unit speed then the surface patch becomes

$$
\begin{equation*}
M: x(t, s)=(\alpha(s) \cos t, \beta(s) \cos t, \alpha(s) \sin t, \beta(s) \sin t) \tag{3.1}
\end{equation*}
$$

An orthonormal frame tangent to M is given by

$$
\begin{align*}
e_{1} & =\frac{1}{\left\|c_{2}\right\|} \frac{\partial x}{\partial t} \\
& =\frac{1}{\left\|c_{2}\right\|}(-\alpha(s) \sin t,-\beta(s) \sin t, \alpha(s) \cos t, \beta(s) \cos t) \tag{3.2}\\
e_{2} & =\frac{\partial x}{\partial s} \\
& =\left(\alpha^{\prime}(s) \cos t, \beta^{\prime}(s) \cos t, \alpha^{\prime}(s) \sin t, \beta^{\prime}(s) \sin t\right)
\end{align*}
$$

The normal space of M is spanned by

$$
\begin{align*}
& n_{1}=\left(\beta^{\prime}(s) \cos t, \alpha^{\prime}(s) \cos t, \beta^{\prime}(s) \sin t, \alpha^{\prime}(s) \sin t\right) \tag{3.3}\\
& n_{2}=\frac{1}{\left\|c_{2}\right\|}(-\beta(s) \sin t,-\alpha(s) \sin t, \beta(s) \cos t, \alpha(s) \cos t)
\end{align*}
$$

where

$$
\begin{align*}
& \mathbf{g}\left(e_{1}, e_{1}\right)=-\mathbf{g}\left(n_{2}, n_{2}\right)=\frac{g\left(c_{2}(s), c_{2}(s)\right)}{\left\|c_{2}\right\|^{2}}=\varepsilon_{1} \tag{3.4}\\
& \mathbf{g}\left(e_{2}, e_{2}\right)=-\mathbf{g}\left(n_{1}, n_{1}\right)=g\left(c_{2}^{\prime}(s), c_{2}^{\prime}(s)\right)=\varepsilon_{2}
\end{align*}
$$

and $\varepsilon_{1}=\mp 1, \varepsilon_{2}=\mp 1$.

By covariant differentiation with respect to e_{1} and e_{2} a straightforward calculation gives

$$
\begin{gather*}
\bar{\nabla}_{e_{1}} e_{1}=a \varepsilon_{2} e_{2}-b \varepsilon_{2} n_{1} \\
\bar{\nabla}_{e_{1}} e_{2}=-a \varepsilon_{1} e_{1}-b \varepsilon_{1} n_{2} \tag{3.5}\\
\bar{\nabla}_{1} e_{1} n_{1}=-b \varepsilon_{1} e_{1}-a \varepsilon_{1} n_{2} \\
\bar{\nabla}_{e_{1}} n_{2}=-b \varepsilon_{2} e_{2}+a \varepsilon_{2} n_{1} \\
\bar{\nabla}_{e_{2}} e_{1}=-b \varepsilon_{1} n_{2} \\
\bar{\nabla}_{2} e_{2}=-c \varepsilon_{2} n_{1} \tag{3.6}\\
\bar{\nabla}_{2} e_{2} n_{1}=-c \varepsilon_{2} e_{2} \\
\bar{\nabla}_{e_{2}} n_{2}=-b \varepsilon_{1} e_{1}
\end{gather*}
$$

where a, b and c are Christoffel symbols and as in follows

$$
\begin{align*}
& a=a(s)=\frac{\alpha \alpha^{\prime}-\beta \beta^{\prime}}{\left\|c_{2}\right\|^{2}}, \tag{3.7}\\
& b=b(s)=\frac{\alpha \beta^{\prime}-\alpha^{\prime} \beta}{\left\|c_{2}\right\|^{2}}, \tag{3.8}\\
& c=c(s)=\alpha^{\prime} \beta^{\prime \prime}-\alpha^{\prime \prime} \beta^{\prime} \tag{3.9}
\end{align*}
$$

In addition, from (2.3) second fundamental form of this structure is written as,

$$
\begin{equation*}
h=\sum_{i, j, \alpha=1}^{2} \varepsilon_{\alpha} h_{i j}^{\alpha} n_{\alpha} \tag{3.10}
\end{equation*}
$$

where

$$
\begin{array}{ll}
h_{11}^{1}=b & h_{11}^{2}=0 \\
h_{12}^{1}=h_{21}^{1}=0 & h_{12}^{2}=h_{21}^{2}=b \tag{3.11}\\
h_{22}^{1}=c & h_{22}^{2}=0
\end{array}
$$

By considering equations (3.8) and 3.9, we conclude that
Corollary 3.1. If $b=0$ then c is also zero.
Also by using Corollary 3.1 and (3.11), we have
Corollary 3.2. M is a totally geodesic surface in \mathbb{E}_{2}^{4} if and only if $b=0$ which means that c_{2} is a straightline passing through the origin.

If $b=0$, from (3.8), we get $c_{2}(s)=\beta(s)(\lambda, 1)$. Since M is a non-degenerate surface, the position vector of c_{2} cannot be a null then $\lambda \neq \pm 1$. In this case, we can write the parametric equation of tensor product surface M as follows

$$
M: x(t, s)=(\lambda \beta(s) \cos t, \beta(s) \cos t, \lambda \beta(s) \sin t, \beta(s) \sin t), \lambda \neq \pm 1, \lambda \in \mathbb{R}
$$

Indeed, this surface fully lies in a cone surface passing through the origin (but not light cone) in 4 -dimensional semi-Euclidean space with index $2, \mathbb{E}_{2}^{4}$, with equation $-x_{1}^{2}+\lambda^{2} x_{2}^{2}-x_{3}^{2}+\lambda^{2} x_{4}^{2}=0$ where $\lambda \neq \pm 1$ and $\lambda \in \mathbb{R}$.

The induced covariant differentiation on M as in follows,

$$
\left.\begin{array}{rl}
\nabla_{e_{1}} e_{1} & =a \varepsilon_{2} e_{2}, \\
\nabla_{e_{1}} e_{2} & -a \varepsilon_{1} e_{1} \\
\bar{\nabla}_{e_{2}} e_{1} & 0, \\
\bar{\nabla}_{e_{2}} e_{2} & =0 . \\
\nabla_{e_{1}}^{\perp} n_{1} & =a \varepsilon_{2} n_{2}, \\
\nabla_{e_{1}}^{\perp} n_{2} & =a \varepsilon_{2} n_{1},
\end{array}\right\}
$$

where the equalities (3.13) and (3.14) define the normal connection on M.
Lemma 3.1. Let $x=c_{1} \otimes c_{2}$ be a tensor product immersion of a Euclidean unit circle c_{1} at centered origin and unit speed non-null Lorentzian curve c_{2} in \mathbb{E}_{1}^{2}. Then the shape operators of M in direction of n_{1} and n_{2} are given by respectively,

$$
A_{n_{1}}=\left[\begin{array}{cc}
b \varepsilon_{1} & 0 \tag{3.15}\\
0 & c \varepsilon_{2}
\end{array}\right], \quad A_{n_{2}}=\left[\begin{array}{cc}
0 & b \varepsilon_{1} \\
b \varepsilon_{2} & 0
\end{array}\right]
$$

By a simple calculation, we see that Gauss and Ricci equations of M are identical and they are given by as follow

$$
\begin{equation*}
a^{\prime}-a^{2} \varepsilon_{1}=b^{2} \varepsilon_{1}-b c \varepsilon_{2} \tag{3.16}
\end{equation*}
$$

and Codazzi equation of M is

$$
\begin{equation*}
b^{\prime}=2 a b \varepsilon_{1}-a c \varepsilon_{2} \tag{3.17}
\end{equation*}
$$

Thus we give the following theorem.
Theorem 3.1. If M is a tensor product surface of a Euclidean unit circle at centered origin and a non-null unit speed Lorentzian curve in \mathbb{E}_{1}^{2} then the Christoffel symbols of M satisfy the following Riccati equation

$$
\begin{equation*}
(a+b)^{\prime}=\varepsilon_{1}(a+b)^{2}-c \varepsilon_{2}(a+b) \tag{3.18}
\end{equation*}
$$

Theorem 3.2. Let M be a tensor product surface given with the surface patch (3.1). Then there exist following relation between Gaussian curvature K and normal curvature K_{N}

$$
K_{N}=|K|=\left|b^{2} \varepsilon_{1}-b c \varepsilon_{2}\right|
$$

Theorem 3.3. Let M be a tensor product surface given with the surface patch (3.1) . Then the followings are equivalent,
i) ∇^{\perp} is a flat connection,
ii) $K_{N}=K=0$,
iii) $b=0$ or $\varepsilon_{1} b=\varepsilon_{2} c$.

Now, we suppose that M is a semi parallel surface, i.e., $\bar{R} . h=0$. From (2.15) we get

$$
\left.\begin{array}{ccc}
b^{2} \varepsilon_{1}\left(c-b+2 b \varepsilon_{1}-2 c \varepsilon_{2}\right) & = & 0 \\
b \varepsilon_{2}\left(b-b \varepsilon_{1}+c \varepsilon_{2}\right)(c-b) & = & 0 \tag{3.19}\\
b \varepsilon_{1}\left(2 b^{2} \varepsilon_{1}+b c-c^{2}-2 b c \varepsilon_{2}\right) & = & 0,
\end{array}\right\} .
$$

Theorem 3.4. Let M be a tensor product surface given with the surface patch (3.1). Then M is a semi parallel surface if and only if
i) For $\varepsilon_{1}=\varepsilon_{2}$, either $b=0$ or $b=c$,
ii)For $\varepsilon_{1} \neq \varepsilon_{2}, \quad b=0$.

Corollary 3.3. Let M be a tensor product surface given with the surface patch (3.1) with $\varepsilon_{1} \neq \varepsilon_{2}$ then M is a semi parallel surface if and only if M is a a totally geodesic surface in \mathbb{E}_{2}^{4}.

References

[1] K. Arslan, B. Bulca, B. Kılıc, Y. H. Kim , C. Murathan and G. Ozturk, Tensor Product Surfaces with Pointwise 1-Type Gauss Map, Bull. Korean Math.Soc. 48 (2011), 601-609.
[2] K. Arslan and C. Murathan, Tensor product surfaces of pseudo-Euclidean planar curves, Geometry and topology of submanifolds, VII (Leuven, 1994/Brussels, 1994) World Sci. Publ., River Edge, NJ (1995), 71-74.
[3] B. Bulca and K. Arslan, Semiparallel tensor product surfaces in \mathbb{E}^{4}, Int. Electron. J. Geom., 7,1,(2014), 36-43.
[4] M. do Carmo, Riemannian geometry, Birkhauser, 1993.
[5] B. Y. Chen, Geometry of Submanifolds, M. Dekker, New York 1973.
[6] B. Y. Chen, Differential Geometry of semiring of immersions, I: General Theory Bull. Inst. Math. Acad. Sinica 21 (1993), 1-34.
[7] F. Decruyenaere, F. Dillen, I. Mihai and L. Verstraelen, Tensor products of spherical and equivariant immersions Bull. Belg. Math. Soc.- Simon Stevin 1 (1994), 643-648.
[8] F. Decruyenaere, F. Dillen, L. Verstraelen and L. Vrancken, The semiring of immersions of manifolds, Beitrage Algebra Geom. 34 (1993), 209-215.
[9] J. Deprez, Semi- parallel Surfaces in Euclidean Space, J. Geom., 25 (1985), 192-200.
[10] K. İlarslan and E. Nesovic, Tensor product surfaces of a Lorentzian space curve and a Lorentzian plane curve, Bull. Inst. Math. Acad. Sinica 33 (2005), 151-171.
[11] K. İlarslan and E. Nesovic, Tensor product surfaces of a Euclidean space curve and a Lorentzian plane curve, Differential Geometry - Dynamical Systems 9 (2007),47-57.
[12] I. Mihai, and B. Rouxel, Tensor Product Surfaces of Euclidean Plane Curves, Results in Mathematics, 27 (1995), no.3-4, 308-315.
[13] I. Mihai, I. Van de Woestyne, L. Verstraelen and J. Walrave, Tensor product surfaces of a Lorentzian plane curve and a Euclidean plane curve. Rend. Sem. Mat. Messina Ser. II 3(18) (1994/95), 147-158.
[14] B. O‘Neill, Semi - Riemannian Geometry, with applications to relavity, Academic Press. New York, (1983)
[15] S. Özkaldı Karakuş and Y. Yayli, Bicomplex number and tensor product surfaces in \mathbb{R}_{2}^{4}, Ukrainian Math. J. 64 (2012), no. 3, 344-355.
[16] S. Özkaldi and Y. Yayli, Tensor product surfaces in \mathbb{R}^{4} and Lie groups, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 1, 69-77.
[17] Z. I., Szabo, Structure theorems on Riemannian spaces satisfying $R(X, Y) R=0$, I. The local version, J. Differential Geometry, 17 (1982), 531-582.

Current address: M. Yıldırım: Kırıkkale University, Faculty of Sciences and Arts, Department of Mathematics, 71450 Kırıkkale/ Turkey

E-mail address: myildirim@kku.edu.tr
Current address: K. İlarslan: Kırıkkale University, Faculty of Sciences and Arts, Department of Mathematics, 71450 Kırıkkale/ Turkey

E-mail address: kilarslan@kku.edu.tr

[^0]: Received by the editors: March 18, 2016, Accepted: May 14, 2016.
 2010 Mathematics Subject Classification. Primary 53C40; Secondary 53C15.
 Key words and phrases. Tensor product immersion, Euclidean circle, Lorentzian curves, semiparallel surface, normal curvature.

