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SEMI-PARALLEL TENSOR PRODUCT SURFACES IN
SEMI-EUCLIDEAN SPACE E42

MEHMET YILDIRIM AND KAZIM İLARSLAN

Abstract. In this article, the tensor product surfaces are studied that arise
from taking the tensor product of a unit circle centered at the origin in Euclid-
ean plane E2 and a non-null, unit planar curve in Lorentzian plane E21. Also we
have shown that the tensor product surfaces in 4-dimensional semi-Euclidean
space with index 2, E42, satisfying the semi-parallelity condition R(X,Y ).h = 0
if and only if the tensor product surface is a totally geodesic surface in E42.

1. Introduction

B. Y. Chen initiated the study of the tensor product immersion of two im-
mersions of a given Riemannian manifold [6]. This concept originated from the
investigation of the quadratic representation of submanifold. Inspired by Chen’s
definition, F. Decruyenaere, F. Dillen, L. Verstraelen and L. Vrancken studied in
[8] the tensor product of two immersions of, in general, different manifolds. Under
some conditions, this realizes an immersion of the product manifold.
Let M and N be two differentiable manifolds and assume that

f : M → Em,
and

g : N → En

are two immersions. Then the direct sum and tensor product maps are defined
respectively by

f ⊕ h : M ×N → Em+n

(p, q)→ f(p)⊕ h(q) = (f1(p), . . . , fm(p), h1(q), . . . , hn(q))

and
f ⊗ h : M ×N → Emn

(p, q)→ f(p)⊗ h(q) = (f1(p)h1(q), . . . , f1(p)hn(q), . . . , fm(p)hn(q))
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Necessary and suffi cient conditions for f ⊗ h to be an immersion were obtained
in [7]. It is also proved there that the pairing (⊕,⊗) determines a structure of a
semiring on the set of classes of differentiable manifolds transversally immersed in
Euclidean spaces, modulo orthogonal transformations. Some semirings were studied
in [8]. In the special case, a tensor product surface is obtained by taking the tensor
product of two curves. In many papers, minimality and totally reality properties
of a tensor product surfaces were studied for example [2], [10], [11], [12]. The
relations between a tensor product surface and a Lie group was shown in [15], [16].
In [2], Bulca and Arslan studied tensor product surfaces in 4- dimensional Euclidean
space E4and they show that tensor product surfaces satisfying the semi-parallelity
condition R(X,Y ).h = 0 are totally umbilical surface.
In this article, we investigate a tensor product surfaceM which is obtained from

two curves. One of them is a unit circle centered at the origin in Euclidean plane E2
and a non-null, unit planar curve in Lorentzian plane E21. Firstly, we investigated
some geometric properties of the tensor product surface in pseudo-Euclidean 4-
space E42 then we obtain the suffi cient and necessary conditions for the surface
satisfying the semi parallelity condition R(X,Y ).h = 0.
We remark that the notions related with pseudo- Riemannian geometry are taken

from [14].

2. Preliminaries

In the present section we give some definitons about Riemannian submanifolds
from [5] and [4]. Let ι : M → En be an immersion from an m−dimensional
connected Riemannian manifold M into an n− dimensional Euclidean space En .
We denote by g the metric tensor of En as well as induced metric on M . Let ∇̄ be
the Levi- Civita connection of En and ∇ the induced connection on M . Then the
Gaussian and Weingarten formulas are given by

∇̄XY = ∇XY + h(X,Y )

(2.1)

∇̄XN = −ANX +∇⊥XN
where X,Y are vector fields tangent to M and N is normal to M . Moreover, h is
the second fundamental form, ∇⊥ is linear connection induced in the normal bundle
T⊥M , called normal connection and AN is the shape operator in the direction of
N that is related with h by

< h(X,Y ), N >=< ANX,Y > . (2.2)

If the set {X1, .., Xm} is a local basis for χ(M) and {N1, ..., Nn−m} is an orthonor-
mal local basis for χ⊥(M), then h can be written as

h =
n−m∑
α=1

m∑
i,j=1

hαijNα, (2.3)
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where
hαij =< h(Xi, Xj), Nα > .

The covariant differentiation ∇̄h of the second fundamental form h on the direct
sum of the tangent bundle and the normal bundle TM ⊕ T⊥M of M is defined by

(∇̄Xh)(Y,Z) = ∇⊥Xh(Y,Z)− h(∇XY, Z)− h(Y,∇XZ), (2.4)

for any vector fields X,Y and Z tangent toM . Then we have the Codazzi equation
as

(∇̄Xh)(Y, Z) = (∇̄Y h)(X,Z). (2.5)

We denote by R the curvature tensor associated with ∇;
R(X,Y )Z = −∇X∇Y Z +∇Y∇XZ +∇[X,Y ]Z, (2.6)

and denote by R⊥ the curvature tensor associated with ∇⊥

R⊥(X,Y )η = ∇⊥Y∇⊥Xη −∇⊥X∇⊥Y η −∇⊥[X,Y ]η. (2.7)

The equations Gauss and Ricci are given by

< R(X,Y )Z,W >=< h(X,W ), h(Y,Z) > − < h(X,Z), h(Y,W ) >, (2.8)

< R̄(X,Y )η, ξ > − < R⊥(X,Y )η, ξ >=< [Aη, Aξ]X,Y >, (2.9)

for any vector fields X,Y, Z,W tangent to M and ξ, η normal vector fields to M .

The Gaussian curvature of M is defined by

K =< h(X1, X1), h(X2, X2) > −‖h(X1, X2)‖2 (2.10)

where the set {X1, X2} is a linearly independent subset of χ(M).
The normal curvature KN of M is defined by

KN =


n−2∑

1=α<β

< R⊥(X1, X2)Nα, Nβ >
2


1/2

(2.11)

where {Nα, Nβ} is an orthonormal basis of χ⊥(M). From (2.11) we conclude that
KN = 0 if and only if ∇⊥ is a flat normal connection of M .

Further, the mean curvature vector
→
H of M is defined by

→
H =

1

m

n−m∑
α=1

tr(ANα
)Nα (2.12)

Let us consider the product tensor R̄.h of the curvature tensor R with the second
fundamental form h is defined by

(R̄(X,Y ).h)(Z, T ) = ∇̄X(∇̄Y h(Z, T ))− ∇̄Y (∇̄Xh(Z, T ))− ∇̄[X,Y ]h(Z, T )) (2.13)
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for all X,Y, Z, T tangent to M.
The surface M is said to be semi - parallel (or semi-symmetric ) if R̄.h = 0, i.e.

R̄(X,Y ).h = 0 [9], [17]. It is easily seen that

(R̄(X,Y ).h)(Z, T ) = R⊥(X,Y )h(Z, T )−h(R(X,Y )Z, T )−h(Z,R(X,Y )T ) (2.14)

Lemma 2.1. [9] Let M ⊂ En be a smooth surface given with the patch X(u,v).
Then the following equalities are hold;

(R̄(X1, X2).h)(X1, X1) =

(
n−2∑
α=1

hα11(h
α
22 − hα11 + 2K)

)
h(X1, X2)

+
n−2∑
α=1

hα11h
α
12(h(X1, X1)− h(X2, X2))

(R̄(X1, X2).h)(X1, X2) =

(
n−2∑
α=1

hα12(h
α
22 − hα11)

)
h(X1, X2)

+

(
n−2∑
α=1

hα12h
α
12 −K

)
(h(X1, X1)− h(X2, X2))

(R̄(X1, X2).h)(X2, X2) =

(
n−2∑
α=1

hα22(h
α
22 − hα11 − 2K)

)
h(X1, X2)

+
n−2∑
α=1

hα22h
α
12(h(X1, X1)− h(X2, X2))


(2.15)

Semi parallel surfaces classified by J. Deprez [9].

Theorem 2.1. [9]Let M be a surface in n- dimensional Euclidean space En. Then
M is semi-parallel if and only if locally;
i) M is aquivalent to 2-sphere, or
ii)M has trivial normal connection, or
iii) M is an isotropic surface in E5 ⊂ En satisfying ‖H‖2 = 3K.

3. Tensor product surfaces of a Euclidean plane curve and a
Lorentzian plane curve

Minimal and pseudo-minimal tensor product surfaces of a Lorentzian plane curve
and a Euclidean plane curve was studied by I. Mihai and et al. in [13]. They also
gave some examples of non-minimal pseudo-umbilical tensor product surfaces. It is
well konown that the tensor product of two immersions is not commutative.Thus
the tensor product surfaces of a Euclidean plane curve and a Lorentzian plane curve
is a new surface in 4-dimensional semi-Euclidean space with index 2.
In the following section, we will consider the tensor product immersions which

is obtained from a Euclidean plane curve and a Lorentzian plane curve. Let c1 :
R→E2 be a Euclidean plane curve and c2 : R→E21 be a non-null Lorentzian plane
curve. Put c1(t) = (α1(t), α2(t)) and c2(s) = (β1(s), β2(s)).
Then their tensor product surface is given by

x = c1 ⊗ c2 : R2 → E42
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x(t, s) = (α1(t)β1(s), α1(t)β2(s), α2(t)β1(s), α2(t)β2(s)).

The metric tensor on E21 and E42 is given by

g = −dx21 + dx22

and

g = −dx21 + dx22 − dx23 + dx24,

respectively.
If we take c1 as a Euclidean unit circle c1(t) = (cos t, sin t) at centered origin

and c2(s) = (α(s), β(s)) is a spacelike or timelike curve with unit speed then the
surface patch becomes

M : x(t, s) = (α(s) cos t, β(s) cos t, α(s) sin t, β(s) sin t) (3.1)

An orthonormal frame tangent to M is given by

e1 =
1

‖c2‖
∂x

∂t

=
1

‖c2‖
(−α(s) sin t,−β(s) sin t, α(s) cos t, β(s) cos t),

(3.2)

e2 =
∂x

∂s

= (α
′
(s) cos t, β

′
(s) cos t, α

′
(s) sin t, β

′
(s) sin t).

The normal space of M is spanned by

n1 = (β
′
(s) cos t, α

′
(s) cos t, β

′
(s) sin t, α

′
(s) sin t), (3.3)

n2 =
1

‖c2‖
(−β(s) sin t,−α(s) sin t, β(s) cos t, α(s) cos t)

where

g(e1, e1) = −g(n2, n2) =
g(c2(s), c2(s))

‖c2‖2
= ε1, (3.4)

g(e2, e2) = −g(n1, n1) = g(c
′

2(s), c
′

2(s)) = ε2

and ε1 = ∓1, ε2 = ∓1.
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By covariant differentiation with respect to e1 and e2 a straightforward calcula-
tion gives

∇̄e1e1 = aε2e2 − bε2n1
∇̄e1e2 = −aε1e1 − bε1n2
∇̄e1n1 = −bε1e1 − aε1n2
∇̄e1n2 = −bε2e2 + aε2n1

(3.5)

∇̄e2e1 = −bε1n2
∇̄e2e2 = −cε2n1
∇̄e2n1 = −cε2e2
∇̄e2n2 = −bε1e1

(3.6)

where a, b and c are Christoffel symbols and as in follows

a = a(s) =
αα

′ − ββ
′

‖c2‖2
, (3.7)

b = b(s) =
αβ

′
− α′

β

‖c2‖2
, (3.8)

c = c(s) = α
′
β
′′
− α

′′
β
′
. (3.9)

In addition, from (2.3) second fundamental form of this structure is written as,

h =
2∑

i,j,α=1

εαh
α
ijnα, (3.10)

where
h111 = b h211 = 0
h112 = h121 = 0 h212 = h221 = b
h122 = c h222 = 0

(3.11)

By considering equations (3.8) and 3.9, we conclude that

Corollary 3.1. If b = 0 then c is also zero.

Also by using Corollary 3.1 and (3.11), we have

Corollary 3.2. M is a totally geodesic surface in E42 if and only if b = 0 which
means that c2 is a straightline passing through the origin.

If b = 0, from (3.8), we get c2(s) = β(s)(λ, 1). Since M is a non-degenerate
surface, the position vector of c2 cannot be a null then λ 6= ±1. In this case, we
can write the parametric equation of tensor product surface M as follows

M : x(t, s) = (λβ(s) cos t, β(s) cos t, λβ(s) sin t, β(s) sin t), λ 6= ±1, λ ∈ R.
Indeed, this surface fully lies in a cone surface passing through the origin (but not

light cone) in 4-dimensional semi-Euclidean space with index 2, E42, with equation
−x21 + λ2x22 − x23 + λ2x24 = 0 where λ 6= ±1 and λ ∈ R.
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The induced covariant differentiation on M as in follows,

∇e1e1 = aε2e2,
∇e1e2 = −aε1e1,
∇̄e2e1 = 0,
∇̄e2e2 = 0.

 (3.12)

∇⊥e1n1 = aε2n2,

∇⊥e1n2 = aε2n1,

 (3.13)

∇⊥e2n1 = 0,

∇⊥e2n2 = 0

}
(3.14)

where the equalities (3.13) and (3.14) define the normal connection on M .

Lemma 3.1. Let x = c1 ⊗ c2 be a tensor product immersion of a Euclidean unit
circle c1 at centered origin and unit speed non-null Lorentzian curve c2 in E21 .
Then the shape operators of M in direction of n1 and n2 are given by respectively,

An1 =

[
bε1 0
0 cε2

]
, An2 =

[
0 bε1
bε2 0

]
. (3.15)

By a simple calculation, we see that Gauss and Ricci equations ofM are identical
and they are given by as follow

a′ − a2ε1 = b2ε1 − bcε2, (3.16)

and Codazzi equation of M is

b′ = 2abε1 − acε2. (3.17)

Thus we give the following theorem.

Theorem 3.1. If M is a tensor product surface of a Euclidean unit circle at cen-
tered origin and a non-null unit speed Lorentzian curve in E21 then the Christoffel
symbols of M satisfy the following Riccati equation

(a+ b)
′

= ε1 (a+ b)
2 − cε2 (a+ b) . (3.18)

Theorem 3.2. Let M be a tensor product surface given with the surface patch
(3.1). Then there exist following relation between Gaussian curvature K and normal
curvature KN

KN = |K| =
∣∣b2ε1 − bcε2∣∣

Theorem 3.3. Let M be a tensor product surface given with the surface patch (3.1)
. Then the followings are equivalent,
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i) ∇⊥ is a flat connection,
ii) KN = K = 0,
iii) b = 0 or ε1b = ε2c.
Now, we suppose that M is a semi parallel surface, i.e., R̄.h = 0. From (2.15) we

get

b2ε1(c− b+ 2bε1 − 2cε2) = 0,
bε2(b− bε1 + cε2)(c− b) = 0,

bε1(2b
2ε1 + bc− c2 − 2bcε2) = 0,

 . (3.19)

Theorem 3.4. Let M be a tensor product surface given with the surface patch
(3.1). Then M is a semi parallel surface if and only if
i) For ε1 = ε2, either b = 0 or b = c,
ii)For ε1 6= ε2, b = 0.

Corollary 3.3. Let M be a tensor product surface given with the surface patch
(3.1) with ε1 6= ε2 then M is a semi parallel surface if and only if M is a a totally
geodesic surface in E42.
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Current address : K. İlarslan: Kırıkkale University, Faculty of Sciences and Arts, Department

of Mathematics, 71450 Kırıkkale/ Turkey
E-mail address : kilarslan@kku.edu.tr


