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SENSITIVITY ANALYSIS FOR A PARAMETRIC
MULTI-VALUED IMPLICIT QUASI VARIATIONAL-LIKE

INCLUSION

K. R. KAZMI AND SHAKEEL A. ALVI

Abstract. In this paper, using proximal-point mapping of strongly maximal
P -η-monotone mapping and the property of the fixed-point set of multi-valued
contractive mapping, we study the behaviour and sensitivity analysis of the
solution set of a parametric generalized implicit quasi-variational-like inclu-
sion involving strongly maximal P -η-monotone mapping in real Hilbert space.
Further, under suitable conditions, we discuss the Lipschitz continuity of the
solution set with respect to the parameter. The technique and results presented
in this paper can be viewed as extension of the techniques and corresponding
results given in [2,7-10,20,21].

1. Introduction

Variational inequality theory has become very effective and powerful tool for
studying a wide range of problems arising in mechanics, contact problems in elas-
ticity, optimization and control problems, management science, operation research,
general equilibrium problems in economics and transportation, unilateral, obstacle,
moving boundary valued problems etc. Variational inequalities have been general-
ized and extended in different directions using novel and innovative techniques.
In recent years, much attention has been given to develop general techniques

for the sensitivity analysis of solution set of various classes of variational inequali-
ties (inclusions). From the mathematical and engineering point of view, sensitivity
properties of various classes of variational inequalities can provide new insight con-
cerning the problem being studied and stimulate ideas for solving problems. The
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sensitivity analysis of solution set for variational inequalities have been studied ex-
tensively by many authors using quite different techniques. By using the projection
technique, Dafermos [5], Mukherjee and Verma [17], Noor [19] and Yen [23] studied
the sensitivity analysis of solution of some classes of variational inequalities with
single-valued mappings. By using the implicit function approach that makes use
of so-called normal mappings, Robinson [22] studied the sensitivity analysis of so-
lutions for variational inequalities in finite-dimensional spaces. By using resolvent
operator technique, Adly [1], Noor [20], and Agarwal et al. [2] studied the sensi-
tivity analysis of solution of some classes of quasi-variational inclusions involving
single-valued mappings.

Recently, by using projection and resolvent techniques, Ding and Luo [8], Liu
et al. [16], Park and Jeong [21], Ding [6,7], Khan [11] Kazmi and Khan [13,14]
and Huang et al. [10] studied the behaviour and sensitivity analysis of solution set
for some classes of generalized variational inequalities (inclusions) involving multi-
valued mappings.

The method based on proximal-point mapping is a generalization of projection
method and has been widely used to study the existence of solution and to develop
iterative schemes of variational (-like) inclusions. Recently Chidume, Kazmi and
Zegeye [4], Fang and Huang [9], and Kazmi and Khan [12] has introduced the notion
of η-proximal point mapping, P -proximal point mapping and P -η-proximal point
mapping and used these to study the various classes of variational (-like) inclusions.

Motivated by recent work going in this direction, we introduce the notion of
strongly maximal P -η-monotone mapping and discuss some of its properties. Fur-
ther, we define strongly P -η-proximal mapping for strongly maximal P -η-monotone,
an extension of η-proximal mappings [4], P -proximal mappings [9], strongly P -
proximal mappings [24], P -η-proximal mapping [12] and classical proximal map-
ping in Hilbert space, and prove that it is single-valued and Lipschitz continuous.
Further, we consider a parametric multi-valued implicit quasi-variational-like inclu-
sion problem (in short PMIQVLIP) in real Hilbert space. Further, using strongly
P -η-proximal mapping technique and the property of the fixed point set of multi-
valued mapping, we study the behaviour and sensitivity analysis of the solution set
for PMIQVLIP. Further, the Lipschitz continuity of solution set of PMIQVLIP is
proved under some suitable conditions. The results presented in this chapter gener-
alize and improve the results given by many authors, see for example [2,7,10,20,21].

2. Strongly P -η-proximal mappings

We assume that H is a real Hilbert space equipped with inner product 〈·, ·〉 and
norm ‖ · ‖; CB(H) is the family of all nonempty closed and bounded subsets of H;
C(H) is the family of all nonempty compact subsets of H; 2H is the power set of
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H; H(·, ·) is the Hausdroff metric on C(H), defined by

H(A,B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)}, A,B ∈ C(H).

First, we review and define the following concepts:

Definition 2.1[12]. Let η : H ×H → H be a mapping. Then a mapping P : H →
H is said to be

(i) η-monotone if

〈P (x)− P (y), η(x, y)〉 ≥ 0, ∀x, y ∈ H;

(ii) strictly η-monotone if

〈P (x)− P (y), η(x, y)〉 > 0, ∀x, y ∈ H

and equality holds if and only if x = y;
(iii) δ-strongly η-monotone if there exists a constant δ > 0 such that

〈P (x)− P (y), η(x, y)〉 ≥ δ‖x− y‖2, ∀x, y ∈ H.

Definition 2.2[4]. A mapping η : H×H → H is said to be τ -Lipschitz continuous,
if there exists a constant τ > 0 such that

‖η(x, y)‖ ≤ τ‖x− y‖, ∀x, y ∈ H.

Definition 2.3[4]. Let η : H × H → H be a single-valued mapping. Then a
multi-valued mapping M : H → 2H is said to be

(i) η-monotone if

〈u− v, η(x, y)〉 ≥ 0, ∀x, y ∈ H, ∀u ∈M(x), ∀ v ∈M(y);

(ii) strictly η-monotone if

〈u− v, η(x, y)〉 ≥ 0, ∀x, y ∈ H, ∀u ∈M(x), ∀ v ∈M(y),

and equality holds if and only if x = y.
(iii) γ-strongly η-monotone if there exists a constant γ > 0 such that

〈u− v, η(x, y)〉 ≥ γ‖x− y‖2, ∀x, y ∈ H, ∀u ∈M(x), ∀ v ∈M(y);

(iv) maximal η-monotone if M is η-monotone and (I + ρM)(H) = H for any
ρ > 0, where I stands for identity mapping.

Remark 2.1. If η(x, y) ≡ x− y, ∀x, y ∈ H, then from Definitions 2.1 and 2.3, we
recover the usual definitions of monotonicity of mappings P and M .

Definition 2.4[12]. Let η : H ×H → H and P : H → H be mappings. Then a
multi-valued mapping M : H → 2H is said to be maximal P -η-monotone if M is
η-monotone and (P + ρM)(H) = H for any ρ > 0.
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Definition 2.5. Let η : H × H → H and P : H → H be mappings. A multi-
valued mapping M : H → 2H is said to be γ-strongly maximal P -η-monotone if M
is γ-strongly η-monotone and (P + ρM)H = H for any ρ > 0.
Remark 2.2.

(i) IfM is η-monotone, Definition 2.5 reduces to Definition 2.4 given by Kazmi
and Khan [12] in Banach space.

(ii) If M is η-monotone and P ≡ I, Definition 2.5 reduces to definition of
maximal η-monotone mapping given by Chidume et al. [4] in Banach space.

(iii) If η(x, y) ≡ x−y for all x, y ∈ H then Definition 2.5 reduces to the definition
of γ-strongly maximal monotone mapping given by Zeng et al. [24].

(iv) If η(x, y) ≡ x − y for all x, y ∈ H and M is monotone, Definition 2.5
reduces to the definition of maximal P -monotone mapping given by Fang
and Huang [9].

The following theorem gives some properties of γ-strongly maximal P -η-monotone
mappings.

Theorem 2.1. Let η : H × H → H be a mapping; let P : H → H be a strictly
η-monotone mapping and let M : H → 2H be a γ-strongly maximal P -η-monotone
multi-valued mapping. Then

(a) 〈u − v, η(x, y)〉 ≥ 0, ∀ (v, y) ∈ Graph(M) implies (u, x) ∈ Graph(M),
where Graph(M) := {(u, x) ∈ H ×H : u ∈M(x)};

(b) the mapping (P + ρM)−1 is single-valued for all ρ > 0.
Proof (a). Proof is on similar lines of proof of Theorem 2.1(a)[12].

Proof (b). For any given z ∈ H and constant ρ > 0, let x, y ∈ (P + ρM)−1(z).
Then

ρ−1(z − P (x)) ∈M(x)

and
ρ−1(z − P (y)) ∈M(y).



SENSITIVITY ANALYSIS FOR A PARAMETRIC INCLUSION 193

Now

0 = ρ〈ρ−1(z − P (x))− ρ−1(z − P (y)), η(x, y)〉
+〈P (x)− P (y), η(x, y)〉

≥ γ‖x− y‖2 + 〈P (x)− P (y), η(x, y)〉
≥ γ‖x− y‖2,

using γ-strongly η-monotonicity of M and strictly η-monotonicity of P . Hence,
preceeding inequality implies that x = y, which implies (P + ρM)−1 is single-
valued. This completes the proof of (b).

By Theorem 2.1, we define strongly P -η-proximal mapping for a γ-strongly max-
imal η-monotone mapping M as follows:

RMP,η(z) = (P + ρM)−1, ∀ z ∈ H, (2.3)

where ρ > 0 is a constant, η : H × H → H is a mapping and P : H → H is a
strictly η-monotone mapping.

Remark 2.3.
(i) If η(x, y) ≡ x − y for all x, y ∈ H and M is η-monotone, then strongly

P -η-proximal mapping reduces to P -proximal mapping given by Fang and
Huang [9].

(ii) If P ≡ I and M is η-monotone, then strongly P -η-proximal mapping re-
duces to η-proximal mapping given by Chidume et al. [4] in Banach space.

Next, we prove that strongly P -η-proximal mapping is Lipschitz continuous.

Theorem 2.2. Let P : H → H be a δ-strongly η-accretive mapping; let η :
H × H → H be a τ -Lipschitz continuous mapping and let M : H → 2H be a γ-
strongly maximal η-monotone multi-valued mapping. Then strongly P -η-proximal
mapping RMP,η is

τ

δ + ργ
-Lipschitz continuous, that is,

‖RMP,η(x)−RMP,η(y)‖ ≤ τ

δ + ργ
‖x− y‖, ∀x, y ∈ H.

Proof. Let x, y ∈ H. From definition of RMP,η, we have R
M
P,η(x) = (P + ρM)−1(x).

This implies that

ρ−1(x− P (RMP,η(x))) ∈M(RMP,η(x)).

Similarly, we have

ρ−1(y − P (RMP,η(y))) ∈M(RMP,η(y)).

Since M is γ-strongly η-monotone, we obtain

γ‖RMP,η(x)−RMP,η(y)‖

≤ ρ−1〈(x−P (RMP,η(x)))−(y−P (RMP,η(y))), η(RMP,η(x), RMP,η(y))〉
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= ρ−1〈x−y, η(RMP,η(x), RMP,η(y))〉−ρ−1〈P (RMP,η(x))−P (RMP,η(y)), η(RMP,η(x), RMP,η(y))〉.
Since P is δ-strongly η-monotone and η is τ -Lipschitz continuous, then the pre-

ceding inequality implies

ργ‖RMP,η(x)−RMP,η(y)‖ ≤ τ‖x− y‖ ‖RMP,η(x)−RMP,η(y)‖ − δ‖RMP,η(x)−RMP,η(y)‖2,
which gives

‖RMP,η(x)−RMP,η(y)‖ ≤ τ

δ + ργ
‖x− y‖ ∀x, y ∈ H.

This completes the proof.

Remark 2.4.
(i) Theorems 2.1-2.2 generalize Proposition 2.1 and Theorems 2.1-2.2 [9] and

corresponding result in [24].
(ii) Lemmas 2.6 and 2.8 [4] and Theorems 2.1-2.2 [12] can be extended using

the technique of Theorems 2.1-2.2.

3. Formulation of problem

Let Λ and Ω be open subsets of a real Hilbert space H such that (Λ, d1) and
(Λ, d2) are metric spaces, in which the parameters λ and µ takes values, respectively.

Let P : H → H; η : H ×H → H; N,M : H ×H × Ω → H; g,m : H × Λ → H
be single-valued mappings such that g 6≡ 0 and let A,B,C,D : H ×Ω→ C(H) and
F : H×Λ→ C(H) be multi-valued mappings. Suppose that W : H×H×Λ→ 2H

is a multi-valued mapping such that for each (t, λ) ∈ H ×Λ, W (·, t, λ) : H → 2H is
strongly maximal P -η-monotone and range(g−m)(H×{λ})∩domainW (·, y, λ) 6= ∅,
where (g−m)(x, λ) = g(x, λ)−m(x, λ) for any (x, λ) ∈ H ×λ. For each (f, λ, µ) ∈
H × Λ× Ω, we consider the parametric multi-valued implicit quasi-variational-like
inclusion problem (PMIQVLIP):

Find x = x(λ, µ) ∈ H, u = u(x, µ) ∈ A(x, µ), v = v(x, µ) ∈ B(x, µ), w =
w(x, µ) = c(x, µ), y = y(x, µ) ∈ D(x, µ) and z = z(x, λ) ∈ F (x, λ) such that
(g −m)(x, λ) ∈ domainW (·, z, λ) and

f ∈ N(u, v, µ)−M(w, y, µ) +W ((g −m)(x, λ), z, λ). (3.1)

Some special cases:
(1) If E ≡ H; (Λ, d1) ≡ (Λ, d2); P ≡ I, an identity mapping; η(x, t) ≡ x − t

for all x, t ∈ H, and W (·, z, λ) is maximal monotone for each fixed (z, λ) ∈
H × Λ, then PMIQVLIP (3.1) reduces to the problem:
Find x = x(λ) ∈ H, u = u(x, λ) ∈ A(x, λ), v = v(x, λ) ∈ B(x, λ),

w = w(x, λ) ∈ C(x, λ), y = y(x, λ) ∈ D(x, λ) and z = z(x, λ) ∈ F (x, λ)
such that (g −m)(x, λ) ∈ domainW (·, z, λ) and

f ∈ N(u, v, λ)−M(w, y, λ) +W ((g −m)(x, λ), z, λ),
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which has been studied by Liu et al. [16].
(2) If E ≡ H; (Λ, d1) ≡ (Ω, d2); P ≡ I; η(x, t) ≡ x− t for all x, t ∈ H;M ≡ 0;

f ≡ 0, and W (·, z, λ) is maximal monotone for each fixed (z, λ) ∈ H × Λ,
then PMIQVLIP (3.1) reduces to the problem:
Find x = x(λ) ∈ H, u = u(x, λ) ∈ A(x, λ), v = v(x, λ) ∈ B(x, λ) and

z = z(x, λ) ∈ F (x, λ) such that (g −m)(x, λ) ∈ domainW (·, z, λ) and

0 ∈ N(u, v, λ) +W ((g −m)(x, λ), z, λ),

which has been studied by Ding [6].
(3) If E ≡ H; (Λ, d1) ≡ (Ω, d2); P ≡ I; η(x, t) ≡ x − t for all x, t ∈ H; f ≡ 0;

M ≡ C ≡ D ≡ m ≡ 0; g ≡ I and A(x, λ) ≡ B(x, λ) ≡ F (x, λ) ≡ x
for all (x, λ) ∈ H × Λ and W (·, z, λ) is maximal monotone for each fixed
(z, λ) ∈ H × Λ. Then PMIQVLIP (3.1) reduces to the problem:
Find x ∈ H such that

0 ∈ N(x, x, λ) +W (x, x, λ),

which has been studied by Agarwal et al. [2].
(4) If E ≡ H; (Λ, d1) ≡ (Ω, d2); P ≡ I; η(x, t) ≡ x − t for all x, t ∈ H; f ≡ 0;

M ≡ B ≡ C ≡ D ≡ E ≡ m ≡ 0; A(x, λ) ≡ x for all (x, λ) ∈ H × Λ;
N(x, t, λ) ≡ N1(x, λ) and W (x, y, λ) ≡W1(x, λ), for all (x, y, λ) ∈ H×H×
Λ, where N1,W1 : H×Λ→ 2H , be such thatW1(·, λ) is maximal monotone
for each fixed λ ∈ Λ, then PMIQVLIP (3.1) reduces to the problem:

0 ∈ N1(x, λ) +W1(g(x, λ), λ),

which has been studied by Adly [1].

For a suitable choices of the mappings A,B,C,D, F,N,M,W, g, P,m, η, it is
easy to see that PMIQVLIP (3.1) includes a number of known classes of quasi-
variational-like inequalities (inclusions) studied by many authors as special cases
see for example [1-6,8,16,19-21] and the references therein.
Now, for each fixed (λ, µ) ∈ Λ× Ω, the solution set S(λ, µ) of PMIQVLIP (3.1)

is denoted as

S(λ, µ) :=
{
x = x(λ, µ) ∈ H : u = u(x, µ) ∈ A(x, µ), v = v(x, µ) ∈ B(x, µ)

w = w(x, µ) ∈ C(x, µ), y = y(x, µ) ∈ D(x, µ), z = z(x, λ) ∈ F (x, λ),

such that f ∈ N(u, v, µ)−M(w, y, µ) +W ((g −m)(x, λ), z, λ)
}
. (3.2)

The aim of the paper is to study the behaviour and sensitivity analysis of the
solution set S(λ, µ), and the conditions on mappings A,B,C,D, F,N,M,W, g, P,
m, η under which the solution set S(λ, µ) of PMIQVLIP (3.1) is nonempty and
Lipschitz continuous with respect to the parameters λ ∈ Λ, µ ∈ Ω.

We need the following results:
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Lemma 3.1[18]. Let (X, d) be a complete metric space. Suppose that Q : X →
C(X) satisfies

H(Q(x), Q(t) ≤ νd(x, y), ∀x, t ∈ X,

where ν ∈ (0, 1) is a constant. Then the mapping Q has fixed point in E.

Lemma 3.2[15]. Let (X, d) be a complete metric space and let T1, T2 : X → C(X)
be θ-H-contraction mappings, then

H(F (T1), F (T2)) ≤ (1− θ)−1 sup
x∈X
H(T1(x), T2(x)),

where F (T1) and F (T2) are the sets of fixed points of T1 and T2, respectively.

4. Sensitivity analysis of the solution set S(λ, µ)

First, we define the following concepts.

Definition 4.1[13]. A mapping g : H × Λ→ H is said to be

(i) (Lg, lg)-mixed Lipschitz continuous, if there exist constants Lg, lg > 0 such
that

‖g(x1, λ1)− g(x2, λ2)‖ ≤ Lg‖x1− x2‖+ lg‖λ1− λ2‖, ∀ (x1, λ1), (x2, λ2) ∈ H ×Λ;

(ii) s-strongly monotone, if there exists a constant s > 0 such that

〈g(x1, λ)− g(x2, λ), x1 − x2〉 ≥ s‖x1 − x2‖2, ∀ (x1, λ), (x2, λ) ∈ H × Λ.

Definition 4.2[13]. A multi-valued mapping A : H × Ω → C(H) is said to be
(LA, lA)-H-mixed Lipschitz continuous, if there exist constants LA, lA > 0 such that

H(A(x1, µ1), A(x2, µ2)) ≤ LA‖x1−x2‖+ lA‖µ1−µ2‖, ∀ (x1, µ1), (x2, µ2) ∈ H×Ω.

Definition 4.3[13]. Let A,B : H × Ω → C(H) be multi-valued mappings. A
mapping N : H ×H × Ω→ H is said to be

(i) (L(N,1), L(N,2), lN )-mixed Lipschitz continuous, if there exist constants L(N,1),
L(N,2), lN > 0 such that

‖N(x1, y1, µ1)−N(x2, y2, µ2)‖ ≤ L(N,1)‖x1−x2‖+L(N,2)‖y1−y2‖+ lN‖µ1−µ2‖,

∀ (x1, y1, µ1), (x2, y2, µ2) ∈ H ×H × Ω;

(ii) ξ-strongly mixed monotone with respect to A and B, if there exists a con-
stant ξ > 0 such that

〈N(u1, v1, µ)−N(u2, v2, µ), x− y〉 ≥ ξ‖x− y‖2,

∀ x, y ∈ H, µ ∈ Ω, u1 ∈ A(x, µ), u2 ∈ A(y, µ), v1 ∈ B(x, µ), v2 ∈ B(y, µ);
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(iii) σ-generalized mixed pseudocontractive with respect to A and B, if there
exists a constant σ > 0 such that

〈N(u1, v1, µ)−N(u2, v2, µ), x− y〉 ≤ σ‖x− y‖2,

∀ x, y ∈ H, µ ∈ Ω, u1 ∈ A(x, µ), u2 ∈ A(y, µ), v1 ∈ B(x, µ), v2 ∈ B(y, µ);

Now, we have the following fixed-point formulation of PMIQVLIP (3.1).

Lemma 4.1. For each (f, λ, µ) ∈ H×Λ×Ω, (x, u, v, w, y, z) with x ∈ x(λ, µ) ∈ H,
u = u(x, µ) ∈ A(x, µ), v = v(x, µ) ∈ B(x, µ), w = w(x, µ) ∈ C(x, µ), y = y(x, µ) ∈
D(x, µ) and z = z(x, λ) ∈ F (x, λ) such that (g −m)(x, λ) ∈ domainW (·, z, λ) is a
solution of PMIQVLIP (3.1) if and only if the multi-valued mappingG : H×Λ×Ω→
2H defined by

G(t, λ, µ) =
⋃

u∈A(t,µ),v∈B(t,µ),w∈C(t,µ),y∈D(t,µ),z∈F (x,λ)

[
t−(g−m)(t, λ)

+R
W (·,z,λ)
P,η [P ◦ (g −m)(t, λ)− ρN(u, v, µ) + ρM(w, y, µ) + ρf ]

]
, t ∈ H, (4.1)

has a fixed point, where P : H → H; P ◦ (g − m) denotes P composition of
(g −m); RW (·,z,λ)

P,η = (P + ρW (·, z, λ))−1 and ρ > 0 is a constant.

Proof. For each (f, λ, µ) ∈ H×Λ×Ω, PMIQVLIP (3.1) has a solution (x, u, v, w, y, z)
if and only if

f ∈ N(u, v, µ)−M(w, y, µ)+W ((g−m)(x, λ), z, λ)

⇔ P◦(g−m)(x, λ)−ρN(u, v, µ)+ρM(w, y, µ)+ρf ∈ (P+ρW (·, z, λ))((g−m)(x, λ)).

Since for each (z, λ) ∈ H × Λ, W (·, z, λ) is maximal strongly P -η-monotone,
by definition of strongly P -η-proximal mapping RW (·,z,λ)

P,η of W (·, z, λ), preceding
inclusion holds if and only if

(g −m)(x, λ) = R
W (·,z,λ)
P,η [P ◦ (g −m)(x, λ)− ρN(u, v, µ) + ρM(w, y, µ) + ρf ],

that is x ∈ G(x, λ, µ). This completes the proof.

Theorem 4.1. Let the multi-valued mappings A,B,C,D : H × Ω → C(H) and
F : H ×Λ→ C(H) be H-Lipschitz continuous in the first arguments with constant
LA, LB , LC , LD and LF , respectively; let the mappings η : H × H → H be τ -
Lipschitz continuous and P : H → H be δ-strongly η-monotone. Let the mappings
g,m : H × Λ → H be such that (g − m) is s-strongly monotone and L(g−m)-
Lipschitz continuous in the first argument and let the mapping P ◦ (g − m) be
r-strongly monotone and LP◦(g−m)-Lipschitz continuous in the first argument; let
the mapping N : H×H×Ω→ H be ξ-strongly mixed monotone with respect to A
and B and (L(N,1), L(N,2))-mixed Lipschitz continuous in first two arguments and
let the mapping M : H × H × Ω → H be σ-generalized mixed pseudocontractive
with respect to C and D, and (L(M,1), L(M,2))-mixed Lipschitz continuous in first
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two arguments. Suppose that the multi-valued mapping W : H × H × Λ → 2H

is such that for each (t, λ) ∈ H × Λ, W (·, t, λ) : H → 2H is γ-strongly maximal
P -η-monotone with range (g −m)(H × {λ}) ∩ domainW (·, t, λ) 6= ∅. Suppose that
there exist constants k1, k2 > 0 such that

‖RW (·,x1,λ1)
P,η (t)−RW (·,x2,λ2)

P,η (t)‖ ≤ k1‖x1 − x2‖+ k2‖λ1 − λ2‖, (4.2)

∀ x1, x2, t ∈ H; λ1, λ2 ∈ Λ,

and suppose for ρ > 0, the following condition holds:

θ = q + ε(ρ); (4.3)

where

q := k1LF+
√

1− 2s+ L2
(g−m); ε(ρ) :=

τ

δ + ργ
[p+
√

1− 2ρ(ξ − σ) + 2ρ2(L2
N + L2

M )];

p :=
√

1− 2r + L2
p◦(g−m); LN := LAL(N,1)+LBL(N,2); LM := LCL(M,1)+LDL(M,2);∣∣∣∣ρ− ξ − σ + (eδ − p)eγ

2(L2
N + L2

M )− e2γ2

∣∣∣∣ <
√

[ξ − σ − (eδ − p)eγ2]− [2(L2
N + L2

M − e2γ2][1− (eδ − p)2]

2(L2
N + L2

M )− e2γ2
,

ξ − σ > (eδ − p)eγ +
√

[2(L2
N + L2

M )− e2γ2][1− (eδ − p)2]; ξ > σ; (4.4)

2(L2
N+L2

M ) > e2ν2; (eδ−p), e := (1−q)/τ , q ∈ (0, 1).

Then, for each fixed f ∈ H, the multi-valued mapping G defined by (4.1) is a
compact-valued uniform θ-H-contraction mapping with respect to (λ, µ) ∈ Λ × Ω,
where θ is given by (4.3)-(4.4). Moreover, for each (λ, µ) ∈ Λ× Ω, the solution set
S(λ, µ) of PMIQVLIP (3.1) is nonempty and closed.

Proof. Let (x, λ, µ) be an arbitrary element of H×Λ×Ω.. Since A,B,C,D, F are
compact-valued, then for any sequences {un} ⊂ A(x, µ), {vn} ⊂ B(x, µ), {wn} ⊂
C(x, µ), {yn} ⊂ D(x, µ), {zn} ⊂ F (x, λ), there exist subsequences {uni} ⊂ {un},
{vni} ⊂ {vn}, {wni} ⊂ {wn}, {yni} ⊂ {yn}, {zni} ⊂ {zn} and elements u ∈
A(x, µ), v ∈ B(x, µ), w ∈ C(x, µ), y ∈ D(x, µ), z ∈ F (x, λ) such that uni → u,
vni → v, wni → w, yni → y, zni → z as i → ∞. By using Theorem 2.2, (4.2) and
the mixed Lipschitz continuity of N and M , we estimate

‖RW (·,zni ,λ)

P,η [P◦(g−m)(x, λ)−ρN(uni , vni , µ)+ρM(wni , yni , µ)+ρf ]

−RW (·,z,λ)
P,η [P ◦(g−m)(x, λ)−ρN(u, v, µ)+ρM(w, y, µ)+ρf ]‖

≤ ‖RW (.,zni ,λ)

P,η [P◦(g−m)(x, λ)−ρN(uni , vni , µ)+ρM(wni , yni , µ)+ρf ]

−RW (·,z,λ)
P,η [P◦(g−m)(x, λ)−ρN(uni , vni , µ)+ρM(wni , yni , µ)+ρf ]‖

+‖RW (·,z,λ)
P,η [P◦(g−m)(x, λ)−ρN(uni , vni , µ)+ρM(wni , yni , µ)+ρf ]

−RW (·,z,λ)
P,η [P ◦(g−m)(x, λ)−ρN(u, v, µ)+ρM(w, y, µ)+ρf ]‖
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≤ k1‖zni−z‖+ρ
τ

δ + ργ

[
‖N(uni , vni , µ)−N(u, v, µ)‖+‖M(wni , yni , µ)−M(w, y, µ)‖

]
≤ k1‖zni−z‖+ρ

τ

δ + ργ

[
L(N,1)‖uni−u‖+L(N,2)‖vni−v‖+L(M,1)‖wni−w‖+L(M,2)‖yni−y‖

]
→ 0, as i→∞.

(4.5)
Thus (4.1) and (4.5) yield that G(x, λ, µ) ∈ C(H).

Now, for each fixed (λ, µ) ∈ Λ × Ω, we prove that G(x, λ, µ) is a uniform θ-
H-contraction mapping. Let (x1, λ, µ), (x2, λ, µ) be arbitrary elements of H ×
Λ × Ω and any t1 ∈ G(x1, λ, µ), there exist u1 = u1(x1, µ) ∈ A(x1, µ), v1 =
v1(x1, µ) ∈ B(x1, µ), w1 = w1(x1, µ) ∈ C(x1, µ), y1 = y1(x1, µ) ∈ D(x1, µ) and
z1 = z1(x1, λ) ∈ F (x1, λ) such that

t1 = x1−(g−m)(x1, λ)+R
W (·,z1,λ)
P,η [P◦(g−m)(x1, λ)−ρN(u1, v1, µ)+ρM(w1, y1, µ)+ρf ].

(4.6)
It follows from the compactness of A(x2, µ), B(x2, µ), C((x2, µ), D(x2, µ) and

F (x2, λ) andH-Lipschitz continuity ofA,B,C,D, F that there exist u2 = u2(x2, µ) ∈
A(x2, µ), v2 = v2(x2, µ) ∈ B(x2, µ), w2 = w2(x2, µ) ∈ C(x2, µ), y2 = y2(x2, µ) ∈
D(x2, µ) and z2 = z2(x2, λ) ∈ F (x2, λ) such that

‖u1 − u2‖ ≤ H(A(x1, µ), A(x2, µ)) ≤ LA‖x1 − x2‖,
‖v1 − v2‖ ≤ H(B(x1, µ), B(x2, µ)) ≤ LB‖x1 − x2‖,
‖w1 − w2‖ ≤ H(C(x1, µ), C(x2, µ)) ≤ LC‖x1 − x2‖,
‖y1 − y2‖ ≤ H(D(x1, µ), D(x2, µ)) ≤ LD‖x1 − x2‖,

‖z1 − z2‖ ≤ H(F (x1, λ), F (x2, λ)) ≤ LF ‖x1 − x2‖. (4.7)

Let

t2 = x2−(g−m)(x2, λ)+R
W (·,z2,λ)
P,η [P◦(g−m)(x2, λ)−ρN(u2, v2, µ)+ρM(w2, y2, µ)+ρf ],

(4.8)
then we have t2 ∈ G(x2, λ, µ).

Next, using Theorem 2.2 and (4.1), we estimate

‖t1−t2‖ ≤ ‖x1−x2−((g−m)(x1, λ)−(g−m)(x2, λ))‖

+‖RW (·,z1,λ)
P,η [P ◦ (g −m)(x1, λ)− ρN(u1, v1, µ) + ρM(w1, y1, µ) + ρf ]

−RW (·,z2,λ)
P,η [P ◦ (g −m)(x1, λ)− ρN(u1, v1, µ) + ρM(w1, y1, µ) + ρf ]‖

+‖RW (·,z2,λ)
P,η [P ◦ (g −m)(x1, λ)− ρN(u1, v1, µ) + ρM(w1, y1, µ) + ρf ]

−RW (·,z2,λ)
P,η [P ◦ (g −m)(x2, λ)− ρN(u2, v2, µ) + ρM(w2, y2, µ) + ρf ]‖
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≤ ‖x1 − x2 − ((g −m)(x1, λ)− (g −m)(x2, λ))‖+ k1‖z1 − z2‖

+
τ

δ + ργ
‖x1 − x2 − (P ◦ (g −m)(x1, λ)− P ◦ (g −m)(x2, λ)

+‖x1 − x2 − ρ(N(u1, v1, µ)−N(u2, v2, µ)−M(w1, y1, µ) +M(w2, y2, µ))‖
]
.

(4.9)
Since (g−m) is s-strongly monotone and L(g−m)-Lipschitz continuous, we have

‖x1−x2−((g−m)(x1, λ)−(g−m)(x2, λ))‖2

≤ ‖x1−x2‖2−2〈(g−m)(x1, λ)−(g−m)(x2, λ), x1−x2〉+‖(g−m)(x1, λ)−(g−m)(x2, λ)‖2

≤ (1−2s+L2
(g−m))‖x1−x2‖2. (4.10)

Similarly, since P ◦ (g−m) is r-strongly monotone and LP◦(g−m)-Lipschitz con-
tinuous, we have

‖x1−x2−(P ◦(g−m)(x1, λ)−P ◦(g−m)(x2, λ))‖2 ≤ (1−2r+L2
P◦(g−m))‖x1−x2‖2.

(4.11)
Since N is (L(N,1), L(N,2))-mixed Lipschitz continuous; M is (L(M,1), L(M,2))-

mixed Lipschitz continuous and the multi-valued mappingsA,B,C,D areH-Lipschitz
continuous, we have

‖N(u1, v1, µ)−N(u2, v2, µ)‖ ≤ L(N,1)‖u1 − u2‖+ L(N,2)‖v1 − v2‖
≤ L(N,1)H(A(x1, µ), A(x2, µ)) + L(N,2)H(B(x1, µ), B(x2, µ))

≤ (LAL(N,1) + LBL(N,2))‖x1 − x2‖, (4.12)

and

‖M(w1, y1, µ)−N(w2, y2, µ)‖ ≤ (LCL(M,1) + LDL(M,2))‖x1 − x2‖. (4.13)

Further, since N is ξ-strongly mixed monotone with respect to A and B, M
is σ-generalized mixed pseudocontractive with respect to C and D then, using
‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2), we have

‖x1−x2−ρ(N(u1, v1, µ)−N(u2, v2, µ)−M(w1, y1, µ)+M(w2, y2, µ))‖2

≤ ‖x1−x2‖2−2ρ
[
〈N(u1, v1, µ)−N(u2, v2, µ), x1−x2〉

−〈M(w1, y1, µ)−M(w2, y2, µ), x1 − x2〉
]

+ 2ρ2
[
‖N(u1, v1, µ)−N(u2, v2, µ)‖2

+‖M(w1, y1, µ)−M(w2, y2, µ)‖2
]

≤ ‖x1−x2‖2−2ρ(ξ−σ)‖x1−x2‖2

+2ρ2[(LAL(N,1) + LBL(N,2))
2 + (LCL(M,1) + LDL(M,2))

2
]
‖x1 − x2‖2

≤
(

1−2ρ(ξ−σ)+2ρ2
[
(LAL(N,1)+L(N,2))

2+(LCL(M,1)+LDL(M,2))
2
])
‖x1−x2‖2.

(4.14)
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Now, from (4.9)-(4.14), we have

‖t1 − t2‖ ≤ θ ‖x1 − x2‖, (4.15)

where

θ = q + ε(ρ); q := k1LF +
√

1− 2s+ L2
(g−m);

ε(ρ) :=
τ

δ + ργ

[√
1− 2s+ L2

P◦(g−m) +
√

1− 2ρ(ξ − σ) + 2ρ2(L2
N + L2

M );

LN := (LAL(N,1) + LBL(N,2)); LM := (LCL(M,1) + LDL(M,2)).

Hence, we have

d(t1, G(x2, λ, µ)) = inf
t2∈G(x2,λ,µ)

‖t1 − t2‖ ≤ θ‖x1 − x2‖.

Since t1 ∈ G(x1, λ, µ) is arbitrary, we obtain

sup
t1∈G(x1,λ,µ)

d(t1, G(x2, λ, µ)) ≤ θ‖x1 − x2‖.

By using same argument, we can prove

sup
t2∈G(x2,λ,µ)

d(G(x1, G(x1, λ, µ), t2) ≤ θ‖x1 − x2‖.

By the definition of the Hausdorff metric H on C(H), we have

H
(
G(x1, λ, µ), G(x2, λ, µ)

)
≤ θ‖x1 − x2‖, (4.16)

that is, G(x, λ, µ) is a uniform θ-H-contraction mapping with respect to (λ, µ) ∈
Λ × Ω. Also, it follows from condition (4.3)-(4.4) that θ < 1 and hence G(x, λ, µ)
is a multi-valued contraction mapping which is uniform with respect to (λ, µ) ∈
Λ × Ω. By Lemma 3.1 for each (λ, µ) ∈ Λ × Ω, G(x, λ, µ) has a fixed point x =
x(λ, µ) ∈ H, that is, x = x(λ, µ) ∈ G(x, λ, µ) and hence Lemma 4.1 ensure that
S(λ, µ) 6= ∅. Further, for any sequence {xn} ⊂ S(λ, µ) with lim

n→∞
xn = x0, we have

xn ∈ G(xn, λ, µ) for all n ≥ 1. By virtue of (4.16), we have

d(x0, G(x0, λ, µ)) ≤ ‖x0 − xn‖+H
(
G(xn, λ, µ), G(x0, λ, µ)

)
≤ (1 + θ)‖xn − x0‖ → 0 as n→∞,

that is, x0 ∈ G(x0, λ, µ) and hence x0 ∈ S(λ, µ). Thus S(λ, µ) is closed in H. This
completes the proof.



202 K. R. KAZMI AND SHAKEEL A. ALVI

5. Lipschitz continuity

Now, we prove that the solution set S(λ, µ) of PMIQVLIP (3.1) is H-Lipschitz
continuity for each (λ, µ) ∈ Λ× Ω.

Theorem 5.1. Let the multi-valued mappings A,B,C,D and F be H-mixed Lip-
schitz continuous with pairs of constants (LA, lA), (LB , lB), (LC , lC), (LD, lD) and
(LF , lF ), respectively. Let the mappings η, P be the same as in Theorem 4.1; let the
mapping (g −m) be s-strongly monotone and (L(g−m), l(g−m))-Lipschitz continu-
ous; let the mapping P ◦ (g−m) be r-strongly monotone and (LP◦(g−m), lP◦(g−m))-
Lipschitz continuous. Let the mapping N be ξ-strongly mixed monotone with
respect to A and B and (L(N,1), L(N,2), lN )-mixed Lipschitz continuous, and let
the mapping M be σ-generalized mixed pseudomonotone with respect to C and
D, and (L(M,1), L(M,2), lM )-mixed Lipschitz continuous. Suppose that the multi-
valued mapping W is same as in Theorem 4.1 and conditions (4.2),(4.3),(4.4) hold,
then for each (λ, µ) ∈ Λ × Ω, the solution set S(λ, µ) of PMIQVLIP (3.1) is a
H-Lipschitz continuous mapping from Λ× Ω into H.

Proof. For each (λ, µ), (λ̄, µ̄) ∈ Λ×Ω, it follows from Theorem 4.1 that S(λ, µ) and
S(λ̄, µ̄) are both nonempty and closed subsets of H. It also follows from Theorem
4.1 that G(x, λ, µ) and G(x, λ̄, µ̄) both are multi-valued θ-H-contraction mappings
with same contractive constant θ ∈ (0, 1). By Lemma 3.2, we obtain

H(S(λ, µ), S(λ̄, µ̄)) ≤
( 1

1− θ

)
sup
x∈H

H(G(x, λ, µ), G(x, λ̄, µ̄)), (5.1)

where θ is given by (4.3)-(4.4).

Now, for any a ∈ G(x, λ, µ), there exist u = u(x, µ) ∈ A(x, µ), v = v(x, µ) ∈
B(x, µ), w = w(x, µ) ∈ C(x, µ), y = y(x, µ) ∈ D(x, µ) and z = z(x, λ) ∈ F (x, λ)
satisfying

a = x−(g−m)(x, λ)+R
W (·,z,λ)
P,η [P ◦(g−m)(x, λ)−ρN(u, v, µ)+ρM(w, y, µ)+ρf ].

(5.2)
It is easy to see that there exist ū = u(x, µ̄) ∈ A(x, µ̄), v̄ = v(x, µ̄) ∈ B(x, µ̄),

w̄ = w(x, µ̄) ∈ C(x, µ̄), ȳ = y(x, µ̄) ∈ D(x, µ̄) and z̄ = z(x, λ̄) ∈ F (x, λ̄) such that

‖u− ū‖ ≤ H(A(x, µ), A(x, µ̄)) ≤ lA‖µ− µ̄‖,

‖v − v̄‖ ≤ H(B(x, µ), B(x, µ̄)) ≤ lB‖µ− µ̄‖,

‖w − w̄‖ ≤ H(C(x, λ), C(x, µ̄)) ≤ lC‖µ− µ̄‖,

‖y − ȳ‖ ≤ H(D(x, µ), D(x, µ̄)) ≤ lD‖µ− µ̄‖,

‖z − z̄‖ ≤ H(F (x, λ), F (x, λ̄)) ≤ lF ‖λ− λ̄‖. (5.3)
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Let

b = x−(g−m)(x, λ̄)+R
W (·,z̄,λ̄)
P,η

[
P ◦(g−m)(x, λ̄)−ρN(ū, v̄, µ̄)+ρM(w̄, ȳ, µ̄)+ρf

]
.

(5.4)
Clearly, b ∈ G(x, λ̄, µ̄).

Since N and M are mixed Lipschitz continuous and in view of (4.3) and (5.1)-
(5.4) and with t = P ◦ (g −m)(x, λ̄)− ρN(ū, v̄, µ̄) + ρM(w̄, ȳ, µ̄), we have

‖a−b‖ ≤ ‖(g−m)(x, λ)−(g−m)(x, λ̄)‖

+‖RW (·,z,λ)
P,η [P ◦ (g −m)(x, λ)− ρN(u, v, µ) + ρM(w, y, µ) + ρf ]−RW (·,z,λ)

P,η (t)‖

+‖RW (·,z,λ)
P,η (t)−RW (·,z̄,λ)

P,η (t)‖+‖RW (·,z̄,λ)
P,η (t)−RW (·,z̄,λ̄)

P,η (t)‖

≤ ‖(g−m)(x, λ)−(g−m)(x, λ̄)‖+ τ

δ + ργ

[
‖P ◦(g−m)(x, λ)−P ◦(g−m)(x, λ̄)‖

+ρ‖N(u, v, µ)−N(ū, v̄, µ̄)‖+ ρ‖M(w, y, µ)−M(w̄, ȳ, µ̄)‖
]

+k1‖z−z̄‖+k2‖λ−λ̄‖

≤ l(g−m)‖λ− λ̄‖+
τ

δ + ργ
lP◦(g−m)‖λ− λ̄‖+ ρ

(
lAL(N,1) + lBL(N,2) + lN

+lCL(M,1) + lDL(M,2) + lM

)
‖µ− µ̄‖

]
+ k1lF ‖λ− λ̄‖+ k2‖λ− λ̄‖

≤ θ1(‖λ−λ̄‖+‖µ−µ̄‖),
where

θ1 := max{(l(g−m)+k1lF+k2+
τ

δ + ργ
LP◦(g−m)),

τ

δ + ργ
(lAL(N,1) + lBL(N,2) + lN + lCL(M,1) + lDL(M,2) + lM )}

Hence, we obtain

sup
a∈G(x,λ,µ̄)

d(a,G(x, λ̄, µ)) ≤ θ1‖λ, µ)− (λ̄, µ̄)‖∗,

where ‖(λ, µ)‖∗ = ‖λ‖+ ‖µ‖.

By using similar argument, we have

sup
b∈G(x,λ̄,µ̄)

d(G(x, λ, µ), b) ≤ θ1‖(λ, µ)− (λ̄, µ̄)‖∗.

Hence, it follows that

H(G(x, λ, µ), G(x, λ̄, µ̄)) ≤ θ1‖(λ, µ)− (λ̄, µ̄)‖∗, ∀ (x, λ, µ), (x, λ̄, µ̄) ∈ H × Λ× Ω.

By Lemma 5.1, we obtain

H(S(λ, µ), S(λ̄, µ̄)) ≤
( θ1

1− θ

)
‖(λ, µ)− (λ̄, µ̄)‖∗,



204 K. R. KAZMI AND SHAKEEL A. ALVI

which implies that S(λ, µ) is H-Lipschitz continuous in (λ, µ) ∈ Λ × Ω, and this
completes the proof.
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