CERTAIN SUBCLASSES OF ANALYTIC AND BI-UNIVALENT FUNCTIONS INVOLVING THE q-DERIVATIVE OPERATOR

SERAP BULUT

Abstract

In this paper, we introduce and investigate two new subclasses $\mathcal{H}_{\Sigma}^{q, \alpha}$ and $\mathcal{H}_{\Sigma}^{q}(\beta)$ of analytic and bi-univalent functions in the open unit disk \mathbb{U}. For functions belonging to these classes, we obtain estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$.

1. Introduction

Let \mathcal{A} denote the class of all functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$. We also denote by \mathcal{S} the class of all functions in the normalized analytic function class \mathcal{A} which are univalent in \mathbb{U}.

Since univalent functions are one-to-one, they are invertible and the inverse functions need not be defined on the entire unit disk \mathbb{U}. In fact, the Koebe one-quarter theorem [3] ensures that the image of \mathbb{U} under every univalent function $f \in \mathcal{S}$ contains a disk of radius $1 / 4$. Thus every function $f \in \mathcal{A}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

[^0]In fact, the inverse function f^{-1} is given by

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1.1). For a brief history and interesting examples of functions in the class Σ, see [8] (see also [2]). In fact, the aforecited work of Srivastava et al. [8] essentially revived the investigation of various subclasses of the bi-univalent function class Σ in recent years; it was followed by such works as those by Frasin and Aouf [4], Xu et al. [9, 10] (see also the references cited in each of them).

Quantum calculus is ordinary classical calculus without the notion of limits. It defines q-calculus and h-calculus. Here h ostensibly stands for Planck's constant, while q stands for quantum. Recently, the area of q-calculus has attracted the serious attention of researchers. This great interest is due to its application in various branches of mathematics and physics. The application of q-calculus was initiated by Jackson $[5,6]$. He was the first to develop q-integral and q-derivative in a systematic way. Later, geometrical interpretation of q-analysis has been recognized through studies on quantum groups. It also suggests a relation between integrable systems and q-analysis. A comprehensive study on applications of q-calculus in operator theory may be found in [1].

For a function $f \in \mathcal{A}$ given by (1.1) and $0<q<1$, the q-derivative of function f is defined by (see $[5,6]$)

$$
\begin{equation*}
D_{q} f(z)=\frac{f(q z)-f(z)}{(q-1) z} \quad(z \neq 0) \tag{1.2}
\end{equation*}
$$

$D_{q} f(0)=f^{\prime}(0)$ and $D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right)$. From (1.2), we deduce that

$$
\begin{equation*}
D_{q} f(z)=1+\sum_{k=2}^{\infty}[k]_{q} a_{k} z^{k-1} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
[k]_{q}=\frac{1-q^{k}}{1-q} \tag{1.4}
\end{equation*}
$$

As $q \rightarrow 1^{-},[k]_{q} \rightarrow k$. For a function $g(z)=z^{k}$, we get

$$
\begin{aligned}
D_{q}\left(z^{k}\right) & =[k]_{q} z^{k-1} \\
\lim _{q \rightarrow 1^{-}}\left(D_{q}\left(z^{k}\right)\right) & =k z^{k-1}=g^{\prime}(z)
\end{aligned}
$$

where g^{\prime} is the ordinary derivative.

By making use of the q-derivative of a function $f \in \mathcal{A}$, we introduce two new subclasses of the function class Σ and find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses of the function class Σ.

Firstly, in order to derive our main results, we need to following lemma.
Lemma 1. [7] If $p \in \mathcal{P}$, then $\left|c_{k}\right| \leq 2$ for each k, where \mathcal{P} is the family of all functions p analytic in \mathbb{U} for which

$$
\Re(p(z))>0, \quad p(z)=1+c_{1} z+c_{2} z^{2}+\cdots
$$

for $z \in \mathbb{U}$.

2. Coefficient bounds for the function class $\mathcal{H}_{\Sigma}^{q, \alpha}$

Definition 1. A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{H}_{\Sigma}^{q, \alpha}(0<$ $q<1,0<\alpha \leq 1$) if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \quad \text { and } \quad\left|\arg \left(D_{q} f(z)\right)\right|<\frac{\alpha \pi}{2} \quad(z \in \mathbb{U}) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(D_{q} g(w)\right)\right|<\frac{\alpha \pi}{2} \quad(w \in \mathbb{U}) \tag{2.2}
\end{equation*}
$$

where the function g is given by

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{2.3}
\end{equation*}
$$

Remark 1. Note that we have the class $\lim _{q \rightarrow 1^{-}} \mathcal{H}_{\Sigma}^{q, \alpha}=\mathcal{H}_{\Sigma}^{\alpha}$ introduced by Srivastava et al. [8].

Theorem 1. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the function class $\mathcal{H}_{\Sigma}^{q, \alpha}(0<q<1,0<\alpha \leq 1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2[3]_{q} \alpha+(1-\alpha)[2]_{q}^{2}}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{[2]_{q}^{2}}+\frac{2 \alpha}{[3]_{q}} \tag{2.5}
\end{equation*}
$$

Proof. First of all, it follows from the conditions (2.1) and (2.2) that

$$
\begin{equation*}
D_{q} f(z)=[P(z)]^{\alpha} \quad \text { and } \quad D_{q} g(w)=[Q(w)]^{\alpha} \quad(z, w \in \mathbb{U}) \tag{2.6}
\end{equation*}
$$

respectively, where

$$
P(z)=1+p_{1} z+p_{2} z^{2}+\cdots \quad \text { and } \quad Q(w)=1+q_{1} w+q_{2} w^{2}+\cdots
$$

in \mathcal{P}. Now, upon equating the coefficients in (2.6), we get

$$
\begin{gather*}
{[2]_{q} a_{2}=\alpha p_{1},} \tag{2.7}\\
{[3]_{q} a_{3}=\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2},} \tag{2.8}\\
-[2]_{q} a_{2}=\alpha q_{1} \tag{2.9}
\end{gather*}
$$

and

$$
\begin{equation*}
[3]_{q}\left(2 a_{2}^{2}-a_{3}\right)=\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2} \tag{2.10}
\end{equation*}
$$

From (2.7) and (2.9), we obtain

$$
\begin{equation*}
p_{1}=-q_{1} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
2[2]_{q}^{2} a_{2}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{2.12}
\end{equation*}
$$

Also, from (2.8), (2.10) and (2.12), we find that

$$
2[3]_{q} a_{2}^{2}=\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}+q_{1}^{2}\right)=\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha-1}{\alpha}[2]_{q}^{2} a_{2}^{2}
$$

Therefore, we obtain

$$
a_{2}^{2}=\frac{\alpha^{2}}{2[3]_{q} \alpha+(1-\alpha)[2]_{q}^{2}}\left(p_{2}+q_{2}\right)
$$

Applying Lemma 1 for the above equality, we get the desired estimate on the coefficient $\left|a_{2}\right|$ as asserted in (2.4).

Next, in order to find the bound on the coefficient $\left|a_{3}\right|$, we subtract (2.10) from (2.8) . We thus get

$$
\begin{equation*}
2[3]_{q} a_{3}-2[3]_{q} a_{2}^{2}=\alpha\left(p_{2}-q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}-q_{1}^{2}\right) \tag{2.13}
\end{equation*}
$$

It follows from (2.11), (2.12) and (2.13) that

$$
a_{3}=\frac{\alpha^{2}}{2[2]_{q}^{2}}\left(p_{1}^{2}+q_{1}^{2}\right)+\frac{\alpha}{2[3]_{q}}\left(p_{2}-q_{2}\right)
$$

Applying Lemma 1 for the above equality, we get the desired estimate on the coefficient $\left|a_{3}\right|$ as asserted in (2.5).

Taking $q \rightarrow 1^{-}$in Theorem 1, we obtain the following result.

Corollary 1. [8] Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the class $\mathcal{H}_{\Sigma}^{\alpha}(0<\alpha \leq 1)$. Then

$$
\left|a_{2}\right| \leq \alpha \sqrt{\frac{2}{\alpha+2}} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{\alpha(3 \alpha+2)}{3}
$$

3. Coefficient bounds for the function class $\mathcal{H}_{\Sigma}^{q}(\beta)$

Definition 2. A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{H}_{\Sigma}^{q}(\beta)(0<$ $q<1,0 \leq \beta<1$) if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \quad \text { and } \quad \Re\left\{D_{q} f(z)\right\}>\beta \quad(z \in \mathbb{U}) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left\{D_{q} g(w)\right\}>\beta \quad(w \in \mathbb{U}) \tag{3.2}
\end{equation*}
$$

where the function g is defined by (2.3) .
Remark 2. Note that we have the class $\lim _{q \rightarrow 1^{-}} \mathcal{H}_{\Sigma}^{q}(\beta)=\mathcal{H}_{\Sigma}(\beta)$ introduced by Srivastava et al. [8].

Theorem 2. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the function class $\mathcal{H}_{\Sigma}^{q}(\beta)(0<q<1,0 \leq \beta<1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\beta)}{[2]_{q}}, \sqrt{\frac{2(1-\beta)}{[3]_{q}}}\right\} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2(1-\beta)}{[3]_{q}} \tag{3.4}
\end{equation*}
$$

Proof. First of all, it follows from the conditions (3.1) and (3.2) that

$$
\begin{equation*}
D_{q} f(z)=\beta+(1-\beta) P(z) \quad \text { and } \quad D_{q} g(w)=\beta+(1-\beta) Q(w) \quad(z, w \in \mathbb{U}) \tag{3.5}
\end{equation*}
$$

respectively, where

$$
P(z)=1+p_{1} z+p_{2} z^{2}+\cdots \quad \text { and } \quad Q(w)=1+q_{1} w+q_{2} w^{2}+\cdots
$$

in \mathcal{P}. Now, upon equating the coefficients in (3.5), we get

$$
\begin{align*}
& {[2]_{q} a_{2}=(1-\beta) p_{1}} \tag{3.6}\\
& {[3]_{q} a_{3}=(1-\beta) p_{2}} \tag{3.7}\\
& -[2]_{q} a_{2}=(1-\beta) q_{1} \tag{3.8}
\end{align*}
$$

and

$$
\begin{equation*}
[3]_{q}\left(2 a_{2}^{2}-a_{3}\right)=(1-\beta) q_{2} \tag{3.9}
\end{equation*}
$$

From (3.6) and (3.8), we obtain

$$
\begin{equation*}
p_{1}=-q_{1} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
2[2]_{q}^{2} a_{2}^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{3.11}
\end{equation*}
$$

Also, from (3.7) and (3.9), we have

$$
\begin{equation*}
2[3]_{q} a_{2}^{2}=(1-\beta)\left(p_{2}+q_{2}\right) \tag{3.12}
\end{equation*}
$$

Applying Lemma 1 for (3.11) and (3.12), we get the desired estimate on the coefficient $\left|a_{2}\right|$ as asserted in (3.3).

Next, in order to find the bound on the coefficient $\left|a_{3}\right|$, we subtract (3.9) from (3.7). We thus get

$$
\begin{equation*}
2[3]_{q} a_{3}-2[3]_{q} a_{2}^{2}=(1-\beta)\left(p_{2}-q_{2}\right) \tag{3.13}
\end{equation*}
$$

which, upon substitution of the value of a_{2}^{2} from (3.11), yields

$$
\begin{equation*}
a_{3}=\frac{(1-\beta)^{2}}{2[2]_{q}^{2}}\left(p_{1}^{2}+q_{1}^{2}\right)+\frac{(1-\beta)}{2[3]_{q}}\left(p_{2}-q_{2}\right) \tag{3.14}
\end{equation*}
$$

On the other hand, by using the equation (3.12) into (3.13), it follows that

$$
\begin{equation*}
a_{3}=\frac{1-\beta}{2[3]_{q}}\left(p_{2}+q_{2}\right)+\frac{1-\beta}{2[3]_{q}}\left(p_{2}-q_{2}\right)=\frac{1-\beta}{[3]_{q}} p_{2} . \tag{3.15}
\end{equation*}
$$

Applying Lemma 1 for (3.14) and (3.15), we get the desired estimate on the coefficient $\left|a_{3}\right|$ as asserted in (3.4).

Taking $q \rightarrow 1^{-}$in Theorem 2, we obtain the following result.
Corollary 2. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the class $\mathcal{H}_{\Sigma}(\beta)(0 \leq \beta<1)$. Then

$$
\left|a_{2}\right| \leq\left\{\begin{array}{cc}
\sqrt{\frac{2(1-\beta)}{3}} & , \quad 0 \leq \beta \leq \frac{1}{3} \\
1-\beta & , \quad \frac{1}{3} \leq \beta<1
\end{array} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{2(1-\beta)}{3}\right.
$$

Remark 3. Corollary 2 provides an improvement of the following estimates obtained by Srivastava et al. [8].

Corollary 3. [8] Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the class $\mathcal{H}_{\Sigma}(\beta)(0 \leq \beta<1)$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{3}} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{(1-\beta)(5-3 \beta)}{3}
$$

References

[1] A. Aral, V. Gupta and R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, USA, 2013.
[2] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, in Mathematical Analysis and Its Applications (S. M. Mazhar, A. Hamoui and N. S. Faour, Editors) (Kuwait; February 18-21, 1985), KFAS Proceedings Series, Vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988, pp. 53-60; see also Studia Univ. Babeş -Bolyai Math. 31 (2) (1986), 70-77.
[3] P.L. Duren, Univalent Functions, in: Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983.
[4] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011) 1569-1573.
[5] F.H. Jackson, On q-definite integrals, Quarterly J. Pure Appl. Math. 41 (1910), 193-203.
[6] F.H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh 46 (1908), 253-281.
[7] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Göttingen, 1975.
[8] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23 (2010) 1188-1192.
[9] Q.-H. Xu, Y.-C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012) 990-994.
[10] Q.-H. Xu, H.-G. Xiao and H.M. Srivastava, A certain general subclass of analytic and biunivalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012) 11461-11465.

Current address: Serap BULUT
Kocaeli University, Faculty of Aviation and Space Sciences, Arslanbey Campus, 41285 KartepeKocaeli, TURKEY

E-mail address: serap.bulut@kocaeli.edu.tr

[^0]: Received by the editors: March 03, 2016, Accepted: June 20, 2016.
 2000 Mathematics Subject Classification. Primary 30C45.
 Key words and phrases. Analytic functions; Univalent functions; Bi-univalent functions; Taylor-Maclaurin series expansion; Coefficient bounds and coefficient estimates; Taylor-Maclaurin coefficients; q-derivative operator.

