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A TRACE FORMULA FOR THE STURM-LIOUVILLE TYPE
EQUATION WITH RETARDED ARGUMENT

FATMA HIRA

ABSTRACT. In this paper, we deal with a discontinuous Sturm-Liouville prob-
lem with retarded argument and eigenparameter-dependent boundary condi-
tions. We obtain the asymptotic formulas for the eigenvalues and the regular-

ized trace formula for the problem.

1. INTRODUCTION

In this paper, we consider a discontinuous Sturm-Liouville problem which con-
tains an eigenparameter not only differential equation, but also boundary condi-
tions, with retarded argument. Namely, the problem consists of the Sturm-Liouville

equation:
™ ™
v (@) +q@y@-AE)+Ny@) =0, ae(0,2)u (S|, @1
with boundary conditions:
(A} + 1)y (0) — (Ao + az) ' (0) =0, 1.2)
(AB1 +B1) y (m) — (ABa + Ba) ¥ (m) = 0, (1.3)
and transmission conditions:
™ ™
y<§—0)—5y(5+0>:0, (1.4)
(T _o) s/ (T -
y<2 0) 5y (2+0) 0, (1.5)

where the real-valued function ¢ (z) is continuous in [0, %) U (

7r] and has a finite

ol
limit ¢ (g + 0) = lim; . 240 ¢ () ; the real-valued function A (x) > 0 is continuous
in [0, 3)U(5, 7] and has a finite limit A (5 £0) = lim, . z+0 A (z); 2—A (2) > 0, if
T € [07 %) ,x=A(x) > T ifx € (g,w] ; A is an eigenparameter; & # 0, oy, o}, B, f3;

(¢ = 1,2) are arbitrary real numbers.
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Gelfand and Levitan [1] firstly obtained a trace formula for a self adjoint Sturm-
Liouville differential equation. This investigation was continued in many directions,
such as Dirac systems [2-4], the case of continuous [5-11], discontinuous [12,13] or
matrix Sturm-Liouville operator [14-16] and also Sturm-Liouville problems with re-
tarded argument [17-19]. In the survey paper [20], the history and the current state
of the theory of the regularized trace of the linear operators were presented. There
are lots of works about computation of eigenvalues and eigenfunctions of contin-
uous and discontinuous boundary value problems with retarded argument [21-25].
A discontinuous boundary value problem with retarded argument and with trans-
mission conditions at the points of discontinuity was investigated in [25]. For the
same problem, regularized sums from the eigenvalues, oscillations of eigenfunctions
and the solutions of inverse nodal problem was given in [19]. That problem is a
special case when the boundary conditions do not contain an eigenparameter in our
problem.

Firstly, we obtain the asymptotic formula of the characteristic function w (A)
whose zeros are eigenvalues of the problem. Then, we calculate the asymptotic
formulas for the eigenvalues. Finally, we get a formula of the regularized trace for
the problem (1.1)-(1.5). To derive this trace formula we will use similar contour
integration method in [12,19] with some modifications.

2. THE ASYMPTOTIC FORMULAS FOR THE EIGENVALUES AND TRACE FORMULA

We define a solution of (1.1) by
6 () = { 6, (x,2), ze0,),

oo (T, N), z € g,ﬂ'] ,
as follows: Let ¢; (z, A) be a solution of (1.1) on [0, g], satisfying the initial condi-
tions

#1 (0, X)) = Aoy + aa, ¢ (0,)) = A} + . (2.1)
55T

After defining this solution, we shall define the solution ¢, (z,A) of (1.1) on [%, 7]
by means of the solution ¢, (z, A) by the initial conditions

() =a (), w(G)=ra Gy e

Consequently, the function ¢ (x,\) defined on [0, g) U (%,ﬂ is a solution of
(1.1), which satisfies the boundary condition (1.2) and the transmission conditions
(1.4) and (1.5).

Then the following integral equations hold:

¢1 (2, A) = (Aady + az) cos (Axz) + % (A} 4 1) sin (A\x)
1

. (2.3)
3 a@sin @ =)o (- A )
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and

by (2, A) = 6", (Z,\) cos(A(z— %)) + 1571(;5/1 (5,\)sin (A (z— %))

_iﬂxq(ﬂsin( (z—7)) oy (T — A(7),\) dr.

2

(2.4)

Solving the equations (2.3) and (2.4) by the method of successive approximation,
we obtain the following asymptotic representation for |A\| — oo :

1 (z,\) = Aahcos (Az) + ag cos (A\x) + o sin (\z)

_%/2 q(m)sin(A(z —A(1)))dr
0
~2 [ a@)sin(\ (@ — 27 + A (7)) dr
0

+§ {al sin (\z) — O;Q/Oq (r)sin (A (z — A (7)) dr (2.5)

@ xq( Jsin (A ( — 27 + A (1)) dr

—/ ) cos ( A(7)))dr

_? 0 q( )cos (A (& — 27 + A (1)) d }JFO((JI;WC)’

&) (z,)) = —A\%alysin (\z) i

+A {—042 sin (Az) 4+ o cos (Az) — %/2 ; q(1T)cos (A (z—A(7)))dr

_7/ ) cos ( a:—27'+A(7')))d7'}

+ aj cos (Ax) — 72/0 q(t)cos(A(z — A(r)))dr
— [ q(7)cos (A (x727+A(T)))d77%’1 q(r)sin(A(z — A (7)) dr

0, 0

v om0 2 A @) a0 (257,

by (2, X) = Aahd ™! cos (Az) + aad ! cos (Az) 4+ 6 ' sin (Ax)
_ 5“2‘;1/8 q(7)sin(\ (z — A(7)))dr (2.7)
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and
By (2, \) = —A\2abd ™ sin (A\z)
+A {—042(51 sin (Az) + o0 " cos (\z) — 0/%71/ q(t)cos (A (z —A(1)))dr
0

O‘/Zg_l/oxq (T)cos (A (z — 27+ A(1))) dT} +0 (e“m)“"”) )

(2.8)

The solution ¢ (x, \) defined above is a nontrivial solution of (1.1) satisfying the

boundary condition (1.2) and the transmission conditions (1.4) and (1.5). Putting

¢ (x, ) into the boundary condition (1.3), we get the following characteristic equa-
tion

w(A) = (A3 +B1) 6 (m,A) — (ABy + By) ¢' (m,A) = 0. (2.9)

The eigenvalues of the problem (1.1)-(1.5) are the zeros of (2.9), and the eigen-
values are discrete and simple (see [22, 23, 26]).
Putting the expressions (2.7) and (2.8) into (2.9), we obtain

w(A) = /\30/2 /2571 sin (A7) + A2t { {0/26/1 — ) B + a;fé /Wq (1) cos (AA (7)) dr
0
+%/O q(7)cos (A (21 — A (1)) dT] cos (AT) + [aaBh + By

+%/ ¢ (r)sin (VA (7)) dr + “’zf’z/oﬂq ()sin (A (27 — A (7)) dT] sin (M)}

1+ 0 (AmAlr)
(2.10)
Let we define
ANA (7)) = ;/qu(r) cos (AA (7)) dr,
B(M\A(r)) = %/ q(7t)cos (A (21 — A(1)))dr,
O (2.11)
CONA () = L /0 ¢ () sin (AA (7)) dr,
D(M\NA(T)) = %/0 q(r)sin(A (21 — A(7)))dr.
From (2.11), (2.10) can be written as
w(X) = AayB50 " sin (Am) + A0 {[ahB8] — a1 B + ahBy(A (N A(T))
+B (X, A (7)))] cos (Am) + [y + By + ahB5(C (X, A (7)) (2.12)

+D (A, A(7)))]sin (Am)} + O (AelmAlm)
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Theorem 1. The eigenvalues of the problem (1.1)-(1.5) have the following asymp-
totic representation for n— oo :

Ay =20 - T {gi—zi—i—A(nA())—i-B(nA())}+O<nl2), (2.13)

where A (A, A (T)) and B (\, A (1)) are given by (2.11) and X will be defined below.
Proof. Let we define

wo () = Aah 856 sin (Ar), (2.14)
and denote by )\in, n € NU{0}, the zeros of (2.14) except that zero is multiplicity
4, then A%, = A}, = 0 and

o_J n—-1 n>1,
/\n—{ n4l n<-—1, (2.15)

[similar to ref 27]. Denote by C,,, the circle of radius €, 0 < ¢ < 3 with the centers
at the points A\. Thus, on the contour C,,, from (2.12) and (2.14), we have

w()\)_ 6——06— T co e
wo()\)_1+ {(B; a:+A(>\A())+B(A,A())) t (Arr)

(2.16)
+2 B onam+p0am}+o(5).
Expanding In w((’\)\)) by the Maclaurin formula, we obtain
% ( - a——}-A()\ Ar ))+B()\,A(7))) cot (Ar)
+7 + gz FCOA (D) +D(/\,A(T))}
(8 o i
_2)\2{<5/2 — 0724-/1()\ JA(T ))+B()\,A(7'))> cot? (Ar)
2
H(Z4Zrcnam+pnam)
LA -
+2<62 o TANAE) FBOA( ))>
+g2+C()\A())+D)\A cot ( )\77} ()\13)
(2.17)

Using the Rouche theorem in (2.12), it follows that w () has the same number of
zeros inside the contour as wp (A\). Then, we have

A =20 46, (2.18)

for sufficiently large n, where |e,| < 5. Substituting from (2.18) into (2.12), we get
€n =0 (%) .We continue making \,, more precise. Using the residue theorem, we
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have
Ay N0 =L fln @ () gy
oo 271 wo (M)
Crn
_ 1 Bi o cot (A)
——% (62_042+A()\ A( ))—i—B()\,A(T))) h\ d\
1 B, 1 1
~ 9 ( +ﬁ2+C(A,A(7))+D(A,A(7))>)\d/\+0<n2>
1 | 51 al 1
(2.19)
thus we have the asymptotic formula (2.13). O

Theorem 2. The following formula of the reqularized trace for the problem (1.1)-
(1.5) holds:

A2 +A0+Z(A2+A2 2(n—1)?

- +W<g;_z;+A(nA())+BnA >)
_i(giZiJrA(OA())JrB(OAT))) (2.20)
(B3-S a0a0)+ B

2)
)

+<Z?+52+C(o A (7)) + D (0,A(r

where A (XN, A (7)), B(A,A(7)), C (A, A(T)) and D (A, A (1)) are given by (2.11).

Proof. Denote by I'y,, the counterclockwise square contours EFGH with F =
(No—14+e)(1—4), F = (No—14¢e)(1+414),G = (No—1+¢)(-1+14), H =
(No —1+4¢)(—1—14) and Ny is an integer. Asymptotic formula of A, implies that
for all sufficiently large No, the numbers A, with |n| < Ny, are inside I'y,, and
the numbers \,, with |n| > Np, are outside I'y,. Obviously, A\ do not lie on the
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contour I'y,. It follows that

S (2= (0)7) =

+AO+Z( A2, —2(n—1)°)
1 w(A)
T 2mi ()d/\
g
__ 1 &_ﬂ
T 2mi 2(52 +4
T

o
No

21

ﬁ,'f'C(/\A())-‘rD(/\,A(T)))d)\
2
I'ng
R O R SYIWA AT)Qcot%m
o (5-Sranam+soam) <
1 B 21
+o— ( +ﬁz+0()\A())+D(>\,A(T))> A
I'ng
1 B al
I'n

L ANAM) +BOAG)
< 5,

—+B—+C(A A(r ))+D(>\,A(T))> cot (Ar)

o)

By residue calculations, we get

dX

(2.21)
A20+>\3+§ (/\i+Xi (n—1)2)
— 2 <g:13:1+A(n,A( ))+B(n,A(7—))> EMo-D+D)
—2<é/1—02/1+A(0 A (1) + B(0, A(T))>
5w

A (0,A (1)) +B(O,A(7))>2
P

+2cnamp0am) +o(n).

(MA(T)+ B\ A (T))) cot (Am) dA
Lz
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which implies that

No
A30+/\§+Z(/\i+>&n—2(n—1)2

n=1

+2(2-Lramam)+BmAm))

T \P2
2 /
= (O A0.A M)+ BO.A(M) (223)
T\By
B _
— (= = = + A0, A(1) + B(0,A(7))
By
az By ? 1
— 4+ == A D(0,A — .
+ (aé + 3, +C(0,A(r))+ D (0, (T))) +0 <N0>
Passing to the limit as Ny — oo in (2.23), we get the regularized trace formula
(2.20). O
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