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ASYMPTOTIC DISTRIBUTION OF EIGENVALUES FOR

FOURTH-ORDER BOUNDARY VALUE PROBLEM WITH

DISCONTINUOUS COEFFICIENTS AND TRANSMISSION
CONDITIONS

MUSTAFA KANDEMIR

ABSTRACT. We investigate a fourth-order boundary value problem with dis-
continuous coefficients, functional many points and transmission conditions.
In this problem, boundary conditions contain not only endpoints of the con-
sidered interval, but also a point of discontinuity, a finite number internal
points and abstract linear functionals. We discuss asymptotic distribution of
its eigenvalues. Finally, we obtain asymptotic formulas for the eigenvalues of
the problem in sectors of the complex plane.

1. INTRODUCTION

In classical theory, boundary-value problems for ordinary differential equations
are usually considered for equations with continuous coefficients and for boundary
conditions which contain only end-points of the considered interval. However, this
paper deals with one nonclassical boundary-value problem for ordinary differential
equation with discontinuous coefficients and boundary conditions containing not
only end-points of the considered interval, but also a point of discontinuity and
internal points. This type problems are connected with different applied problems
which include various transfer problems such as heat transfer in heterogeneous
media. Naturally, transmission problems arise in various physical fields as the
theory of diffraction, elasticity, heat and mass transfer [10], [16], [17], [18].

The investigation of boundary value problem for which the eigenvalue parameter
appears both in the equation and boundary conditions originates from the works
of G. D. Birkhoff [4], [5]. There are many papers and books that the spectral
properties of such problem are investigated; see[2], [3], [6]. Some spectral properties
of such problems with discontinuous coefficients and the eigenvalue parameter both
in the differential equation and boundary conditions have been studied by O. Sh.
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134 MUSTAFA KANDEMIR

Mukhtarov, M. Kandemir and some others [7], [8], [9], [11], [12], [13]. In this study,
we shall consider fourth-order differential equation

p(x)u® + q(z)u = XNu, z €I, (1.1)

with the functional-transmission boundary conditions

3
Z )\4fs[aksu(s)(—l)
s=0
+ﬁksu(s ( ) + 5168 (+0) + VisU ( )(1)
0
+ [ @)y, (w)do

—1

1
+/u@uwamm
0
2 Ni.
+3°N G (ah)) =0, k=1,2,...8, (1.2)
=1 j=1
where I = I U, = [-1,0) U (0,1]; p(z) and ¢(x) are complex valued functions;

p(z) = p;j(z) and q(z) = g;(z) for @ € I;, j = 1,2; ok, Bry, Oks s Vrss Crs aTE cOM-
plex coefficients; aj ; € I; internal points and u(™) (F0) denotes limou(mk)(x).
r—F

Denote:

Figu —Z/\4 S/ () ¢s(x)d

and

BW*ZVS/ (2) g (@)

F1;, and Fy are abstract linear functionals. Fip + Fy, acts from Wf(—l, 0) +
W;f (0,1) into complex plane C continuously. In virtue of the general representation
of the continuous linear functionals in the L,(—1, 1) spaces and using the well-known
methods of real analysis it may be shown that there exists a function ¢, (x) €
W}(—1,0) + Wk(0,1) such that for every u € WF(—1,0) + W} (0,1), (% + % =1).

Wi(=1,0,1) := Wi(-1,0) + Wi(0,1), 1 < p < 00, ¢ =0,1,2,..., denotes the
Banach spaces of complex valued functions v = u(z) defined on [—1, 0)U(0, 1], which
belongs to W(—1,0) and W(0, 1) on intervals (-1, 0) and (0, 1), respectively, with
the norm

S

el 100 = (1l 0) + 16l or))
where W2(—1,0) and WJ(0, 1) are the usual Sobolev space [1].
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Note that, without loss of generality we consider the equation (1.1) instead of
more general equation

"

p()u'™® + p3(2)u” + po(z)u” + pr(x)u + po(x)u = Au, = € I. (1.3)
If p3 #£ 0, by using the substitution
U = ﬂew(m),
_ﬁ f1p3(t)dt7 T e [_170)
=4 " ,
155 Jo1pa(t)dt, @ € (0,1]

we can find that equation (1.3) takes the form
p(a)a™® + pa ()i + pr ()i + po(x)d = X',

where po, p1, po are continuous in I and A is the same eigenvalue parameter.
Therefore, we can write equation (1.1) instead of equation (1.3) from [14]. Also, it
is easy to verify that under this substitution the form of boundary conditions (1.3)
has not changed.

2. EIGENVALUES OF THE PROBLEM

Let u1; and ug;, j =1,2,3,4, denote some fundamental systems of solutions of
the differential equation (1.1) on I; and I, respectively. By defining

{ uij(z,A\) =0, z €1

ugj(x,\) =0, z € I 7=1234

the general solution of the equation (1.1) can be written in the form

u(z,\) = ZZCU]'UW'(.T,/\), (2.1)

v=1j=1
where ¢, ; are arbitrary constant numbers. Substituting (2.1) into boundary condi-
tions (2.1) yields a system of linear homogeneous equations
2 4

Li(u(2,N) = > Y cyiLi (uy;) =0, k=1,2,..,8 (2.2)

v=1j=1
for the determination of the constants c,;,v = 1,2, j = 1,2,3,4. Consequently,
the eigenvalues of the boundary value problem (1.1)-(1.2) consist of zeros of the
characteristic determinant
AN) = det(Lg (uvj))gyg> v =1,2,
j o= 1,2,3,4, k=1,2,..,8. (2.3)
First, according to considered problem, we shall divide the complex A-plane

into specific sectors, in which we shall find the asymptotic expression for solutions
of the differential equation, for boundary functionals and boundary value forms
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with transmission conditions. Then, by substituting these obtained asymptotic
expression into the equation A(A) = 0 we shall find the corresponding asymptotic
formulas for the eigenvalues of the problem. Note that, such formulas are not only of
interest in themselves, but also they may be used for establishing the completeness
and basis properties of the system of eigen-and associated functions of considered
problem. In this study, we shall investigate the cases of both argp; # argps and

argpy = arg ps.

3. ASYMPTOTIC DISTRIBUTION OF EIGENVALUES FOR THE CASE argp; # arg ps

3.1. Separation of the complex \—plane into specific sectors. Throughout
the paper we employ the notation

_1 _1
wip = (pj) *, wip=—(p) *
. _1 . _1
Wiz = Z(pj) 47 w]4:—2(p7) 47 .7:172
where z1 = 2| ei(arfz), —7 < arg z < 7. Divide the complex A—plane into eight

sectors S, k= 1,2,...,8, by the rays

Ik = {AeC| Redw,; =0, (—1)*ImAw,; <0
v=1,2 7=1,23,4}.

On all of these sectors each of the real valued functions Relw,; is of a single
sign, since these functions can vanish only on boundaries Sj. Let us consider one
of the sectors (S;) with fixed index k. Using the same considerations as in [14]
it is easy to verify that for equation (1.1) there exists a fundamental system of
particular solutions uij(z,A) on I, j =1,2,3,4, and ugj(z,\) on I, j =1,2,3,4,
respectively, which are analytic functions of A € Sy and for sufficiently large |A|,
and which with derivatives, can be expressed in the asymptotic form

. 1
wpj(z,\) = M (1+O(X))
S S Wy T 1
@A) = (wiy)® (14 0(3)),
v o= 1,2, j=1,2,3,4. (3.1)

Here, as usual, the expression O(%) denotes any function of the form @7 where
|f(z, )] for z € I;, j = 1,2, and sufficiently large |A| always remain less than a
constant.

Now let I}, k = 1,2,...,8, be arbitrary rays, which originate from the point
A =0, distinct from the rays [ and situated so as to from the sequence

llv llla l27 ll27 l37 év l47 lilv"wlSﬂ 1/8
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The rays I}, divide each sector Sy into two subsectors. Therefore, we have sixteen
sectors which we shall denote as Q;, i = 1,2, ...,16. As it seems from the construc-
tion, the sectors 2 = {1, o, ..., 216} can be distributed into two groups of

00 — {Q§i>,9§i>,...,9§”}, i=1,2
such that, the group Q) k = 1,2, includes those sectors Q;, i = 1,2,...,16, in
which

Redwy; — o0, v=1,2, j =1,2,3,4, as A — oo.

3.2. Asymptotic expressions for the characteristic determinant A()\) in
the () sectors. Each of the real valued functions Relwj, does not change sign
also in each sector €;, since each of them is a subsector of certain sector Sj.

Let wy; = uyj(z,A), v € I,, v =1,2, j = 1,2,...,8, are functions defining as
for the fundamental system in I,,, for which satisfied asymptotic expressions (3.1).
Only in one of the sectors of the groups Q) the conditions

Relwii — +oo, Redws; >0,
Re)\w13 — +OO, Re)w.)gg Z 0

and only in one of the sectors of the groups Q) the conditions

Relws; — 400, Redwqp > 0,

Relwas —  +00, Redwi3 >0
are holds for A — oco. We shall denote these sectors as Qél) and QBQ), respectively.
Besides, we shall denote by [A], A € C, any sum of the from A + f(\) when
f(A) = 0as A — oo.

First, let A vary in Q(()l). Substituting (3.1) into (1.2), remembering that
Wil = —Wi2, W13 = —Wid,
W21 = —Wa22, W2z = —Waq

and applying well-known Rieamann-Lebesgue Lemma [14, p. 117, Lemma 7), we
have

Lk(un)
3

= 2N (Own)” (omee 0 [1] + By [1])

s=0

0
+0um)” [ (14 0 @)

1
Nk, s

+3° G Qwnn)” Xk [1])

j=1
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3
= YN Ownn)” (ks [+ By [1]
s=0

+ [ e+ 056, (oo + 0)
3

= Z X% (Awi1)* (B [1] + [0])

s=0
= A [Bro + w1181 + w31 Bra + whi Brs) ,

Ly (u12)

4 —dw 2 3
= Ne M [ago + wizokt + wihake + wiyous)

Ly, (u13)
= X [Bro + w1381 + wisBra + wisBis] »

Li(u14)

4 —Aw 2 3
= Ne MM [agg + wiaap + wigone + wiags]

Lk(uzl)
3

= Z P ((Awm)s (5ks [1] + v [1])
s=0

+0wa)' [ (14 0(5) 6 ()ds

0
2
Nks

+ 37 G Qwan)* Xemnas [1]

j=1

= XD (w8r (Bks [1] + viee™ [1])

1
1
+wi et / e Mwn(l=2)(q 4 O(X))¢ks(1 —z)dz
0
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Nks

+ Y (W) e [1))
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= XN ([6k0 + w210k1 + w3 Ok2 + w3 Ok3)
et (Vo + wWa17k1 + W51 Vke + W51 Vhs)
N7,
, .
+ eMentia s ),
j=1

Li(ugg) = A ([0k0 + w220kt + w3ydkz + wiadks)
+eX2 [y + WaaYpr + WhoVha + Wi ks)
N}?S
) ,
+3 et gy (),
=1

Ly (u23)
= XN ([6k0 + wa3dk1 + wisdko + wis0k3]
e [Yro + wasVpa + WhsVra + Wgs%cs]
NZ,
2 4
3 i Wi,
i=1
Ly (u24)
= A ([0k0 + w2adp1 + w3402 + w3y dks]
+ % [y, 4 waaYky + WasVea + Wi Vhs)
N}\%S
, _
+ Z 24 has [W§4Cijs])
=1

(1)

determinant in Q" as asymptotic quasi-polynomial form

Al ()\) _ )\32€>\(w11+w13)
% ([Al] 6011)\0-)21 4+t [Ap] ealp)\wm
+ [Bi] oMWz 4o [B,] e“%)“”i")

—120']'1<O’j2<"'<0'jp:1,.].:1,27

A = An+ A, Ay = A, + Ay,
By Bi1 + Bio, ..., Bp = Bpl + Bpg

(3.6)

(3.8)

(3.9)

From the system that is obtained by using (3.2)-(3.9), we have the characteristic

(3.10)
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some complex numbers. Let us denote
Ag () s= NPeXnren) ([Ag] emnen
+ [AQ] eo12>\w21 4+ 4 [Ap] empx\wzl) 7 (3.11)

A%?’ ()\) — /\326)\(w11+w13) ([Bl] 21 w23

+ [Ba] €722 ... 4 [B,] €720 %23) | (3.12)
and

Ar(N) =251 (\) + AN

Now, let the sector Q(()l) divide two sectors as Q(()ll) and Q((é) We assume that one
of the expressions Al; (\) and Al; ()\) vanish in one of the sectors Q((Jll) and 9612).
Therefore, let the characteristic determinant A; () has the asymptotic representa-
tion in the form (3.11) in Q(()ll) and in the form (3.12) in Q(()ll). Here, all determinants
are different from each other. Also, it is easy to see that A;; and Aj5 determinants
for first coefficient of (3.11)

[510 + w11y +whBra + W:ﬂﬁmJ
Bao + w11Ba1 + wi1 Bag + whi Bas

All - :
[Bso + w11Bs1 + wi1Bea + w Bss]

810 + w2401 + w3012 + w013
820 + w2421 + w3402 + Wi, a3

(650 + w2401 + w3082 + w3, 0s3]

{510 + w118y +wh Brp + W?1513J
Bao + w1181 + Wi By + Wi Bas

A = :
[Bso + w118s1 + w31 Bes + Wi B3]

[’710 + waaYyy + WiyY1e W%ﬂlﬂ
Yoo + WaaYa1 + WigVaz + WisVas

(V80 + wWaavs1 + Wiavse + WiaVss)
We can obtain that the other determinants of (3.11) in the same way. Bj; and B
determinants for first coefficient of (3.12)

{510 + w1 By +wh Bre + w%lﬁm}

B Bao + w11Ba1 + Wi Bag + Wi Bay
1= .

[Bso + w118s1 + w31 Bss + W B3]
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Y10 T W24711 +‘4024'712 + wisv13
Yoo + W2aYa1 + WisVaa + WisYVa3

[’Yso + waaYg) + Wiy Vse + w§4’783}

{510 +wn By +wi By + W%Bls:
Bag + w1181 + Wiy Bas + wi o]

BlQ =

[Bso + w11Bs1 + wi1Bsa + w31 Bss]

[710 + waaY1 + WhgY12 + WheY13
Yoo + W2aYa1 + WisYao + WisYo3

(V80 + waavs1 + Wiavss + WisVss)

The other determinants of (3.12) can be obtained in the same way. It can be shown

analogically that, the characteristic determinant Ay (\) in the sector Qéz) has the
next asymptotic quasi-polynomial representation

where

Now, let us denote

and

Let the sector Q(()z)

Ay () = A3 wartwaa)
X ([Ml] 611«11/\0111 + -+ [Mgo] ell«hp)\wll
+ [Nl] eum)\wm 4+ [N(p] e/LQ‘pAwls) (313)

—l=puj <pjp < <pj,=1 =12,

My = M+ Ma,..., My = My + Mya,
N1 = Nj1+ Nio, ..., N¢:N¢1 —|—th2.

A%} () 1= AR Awntwn) ([ ] etnden
+ [My] ehr2Awil oy [Mtﬁ] efhg,)\wu) , (3.14)
A%y (N) 1= ABZeAwntwa) (1] ghardwns

+ [Np] a0 4o - [N 20 (3.15)

Ax (N) = AT (V) + AT ().

divide two sectors as Q(()Ql) and Q(()QQ). We assume that one of the

expressions A%, (A\) and A%, ()\) vanish in one of the sectors Q(()21) and Q(()QQ). There-
fore, let the characteristic determinant As (A) has the asymptotic representation in

the form (3.14) in

Q((fl) and in the form (3.15) in Q(()Zz). Here, all determinants are
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different from each other and some of them in the form. M;; and M;> determinants
for first coefficient of (3.14)

2 3

a1 +wiiony + wiiaz + wipaas
2 3

Qo0 + w1121 + Wi Qg + Wi Q3

Mll =

2 3
[aso + wirasy + wiass + wi) ass]

810 + w24011 + w3012 + w013
820 + w2421 + w3022 + Wi, da3

(80 + waads1 + w3082 + w3, 0ss]

2 3

10 + w1011 + w12 + wijais
2 3

Q9o + w1121 + W22 + Wi Q23

Mo =
2 3
[aso + wirasy + wiass + wi) ass]

810 + w2401 + w3012 + w013
520 + OJ24521 + w%4522 + W§4523

(80 + waads1 + w3082 + w3, 0]

We can obtain that the other determinants of (3.14) in the same way. Nq1 and Nio
determinants for first coefficient of ((3.15)

[510 +wi1fy +wh Bra + W‘;’1513J

N Bao + w11Ba1 + wi1Bag + Wi Bas
1= .

[Bso + w11Bs1 + wi1Bea + w Bes]

010 + w2401 + w3012 + w013
820 + w2421 + w3022 + Wi, 023

[680 + w2081 + w3082 + w3, 0s3]

2 3

10 + w1011 + Wi o2 + wijaas
2 3

Q0 + w1101 + Wi o2 + Wi Qo3

Nip =

2 3
[0 + wiras1 + wi sz + wi oss]
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510 + wasd11 + w%4512 + w§4513
820 + waad21 + wiydoe + w3,da3

[050 + wa4bs1 + w3y082 + w3, s3]

The other determinants of (3.15) can be obtained in the same way.

3.3. Asymptotic distribution of eigenvalues for argp; # argps. Now we can
obtain the asymptotic formulas for the eigenvalues of the boundary value problem

for argp; # argpo.

Theorem 1. We assume that the following conditions be satisfied

1) argp; # argps.

2) q(CE) € LP(_lv 1)7 p>1

3) A;,B; 20, i=1and i = p; M;,N;,# 0, i =1 and i = ¢.

4) The linear functionals Fiy + Fy in the spaces W} (—1,0) + W (0,1) are
continuous.

Then, the boundary value problem (1.1)-(1.2) has in each sector Sy an precisely
numerable number eigenvalues, whose asymptotic distribution may be expressed by
the following formulas.

. 1 1 .
X, = p;ﬂ'nl(l + O(E»’ ji=1,2, (3.16)
. 1 1
XNF2 = —pTani(1 + O(-) j=12 (3.17)
. 1 1 )
PYAS :p;m(pro(ﬁ)), j=12, (3.18)
, 1 1
TS = —pTan(l + O(-)). j=1.2 (3.19)

Proof. By the rays l;-, the complex A-plane is divided into eight sectors D;, j =
1,2,...,8. Let D; be that sector which contains the rays ;. We shall distribute these
sectors into two groups

p® ={p{ . p{,...D{"} i =1,2.

Obviously that sector of the group D*) contains two sectors of the group Q%) by
Dék) denote that sectors of the group D®) which contain Qék), k =1,2. As seems
from the consideration in subsection 3.1 and 3.2 the asymptotic expressing (3.10)

and (3.13) hold also in the sectors D(()l) and D(()2), respectively. Let Dgl) and DEQ)
are the other sectors of the groups D) and D) respectively. Only in one of the
sectors of the groups D™ the conditions

Relwis — +oo, Redwss >0,

Redwiy — +o0, Redway >0
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and only in one of the sectors of the groups D® the conditions
Redwas —  +00, Redwia >0,
Relwsay — 400, Redwiy >0 .

hold for A — oco. By the similar way as in subsection 3.1 and 3.2, one can prove
that the characteristic determinants have the asymptotic quasi-polynomial repre-
sentation given by

Ag ()\) _ )\3267)\(w11+w13) ([Kl] 67711/\“"21
+- 4+ [K] eMrAwz1
+ [T1] €717 o 4 [T)] e2rAw2s) (3.20)
and
Ay ()\) _ )\3267/\(w21+w23) ([Ul] 6511)@11
NI [UQ] eS1oAwit
+ [Vi] 8212918 o [V, ef2eP9s) (3.21)
in the sectors D(()l) and D(()Z), respectively, where
_1:77]1 <77_]2 < <77jr:17 j:1727
Ky = K1+ Koy, K = K1 + Kpa,
Iy = Tu+T,..., T =T+ Tho
and
—1=8 <&p<---<§,=1,7=12
Up = Un+Ui, ..., Uy=Up + Uy,
Vi = Vii+Vig, ., Vo =Vo1 + Vpa.
Let us denote
A3 (A) i= AP Mentens) ([ ] emiten

+[Kp] ematnn 4o 4 K, emren) (3.22)

A3y (V) 1= NP Mwntws) ([7y] gnaiAwas
T e g L] (323)
and
Az (N) = A% (\) + A% (A).
Let the sector D(()l) is divided into two sectors as D(()ll) and D((é). We assume that

) and

one of the expressions A3; (A\) and A3, ()\) vanish in one of the sectors Déi
Dé;). Therefore, let the characteristic determinant Ag (A) has the asymptotic rep-

resentation in the form (3.22) in Déll) and in the form (3.23) in D(();). By the similar
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way for the sector D(()2) the characteristic determinant Ay (A) has the asymptotic

quasi-polynomial representation in the form in D((ﬁ)

AL (V) = A3 M wartwss) ([U1] gfniwn

+ [Ua] 512210 o [U,] ef10291) | (3.24)
and in D((é)

Al (V) = A3 M wartwss) e bz Awis

+ [Va] €522213 . 4 [V,] eb2eren3) (3.25)

and

Ag(N) = AL (V) + AL
Hence, let the characteristic determinant A4 (A) has the asymptotic representation
in the form (3.24) in D(()Ql) and in the form (3.25) in D((é). Here, all determinants
are different from each other and some determinants are in the following form

2 3

Qa1 + Wi + Wi + wipers
2 3

Qo0 + w1121 + Wi Qo2 + Wi Qo3

K =

2 3
[aso + wiioagr + wijase + W11a83]

010 + w2011 + w§4512 + W§4513
820 + waad21 + w3022 + Wi, da3

(80 + waads1 + w3082 + w3, 053]

2 3

a0 + wiionl +wiiae + wiiaas
2 3

Q20 + w111 + Wi Qo + Wi Qs

Ky =

2 3
[ago + wias) + wijasy +wijass]

[’Ylo + w24y + w§4712 + w413
Yoo + W2aYa1 + WisYaa + WisYa3

(780 + wWaavs1 + WisVs2 +WiiVss)

The other determinants can be obtained in the same way. According to the condi-
tion 3 of the theorem, principal term of first and last coefficients of the asymptotic
quasipolynomials (3.10), (3.13), (3.20) and (3.23) are different from zero, that is
A;,B; #0,i=1andi=p; M;,;N; #0, i=1andi=¢; K;,T; #0, i =1 and
i=7r; U,V; #0, i=1and i = o.

Since A(A) = A;(\) when X vary in sector Dj(-z) and all quasi-polynomials A;(\)
have the same form. Therefore, it is enough to investigate only one of them. Hence,
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we shall investigate the equation A(A) = 0 only in the sector Qél) . We know that

Q((jl) consists of the sectors Q((Jll) and Q((Jlg). Therefore, from (3.11), we can write the
equation

[A1] oAW1 [As)] eorAwan Ly [A,] ef1eAw21 — (3.26)
in Q(()ll) and from (3.12), the equation
[Bilemhon 4 [Bylershn 4o (Bl en =0 (327)

in Q(()lz). By virtue of the [15, p. 100, Lemma 1] the equations (3.26) and (3.27)
have an infinite number of roots A,, which contain in strips

h
Egp = {)\ € C||ReAway| < 21}

and

h
FEos = {)\ c (Cl |Re)\w23\ < 22}

in the sectors lel) and Q(()lg), respectively, of finite width A1, he > 0 and have the
asymptotic expressions
2mn

’AZUJ21| = (1—|—0(i))’

O1p — 011

I — +0(i))' (3.28)

and
2mn

’/\?LOJ23| = (1—|—0(711))’

O2p — 021

I — +0(i))'. (3.29)

Taking into account A2 € Foy, A8 € Egy and A2 € Q(()ll) D= Q(()IQ) from (3.26) and
(3.27)

= (o) i1+ 0( )

1 1
= pymni(l+0(-)), n=F1,F2, ..
and
_ 1
A= (was) 17rm'(1+0(ﬁ))

1 1
= p247m(1+0(ﬁ)), n=F1,F2,..,
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where there is only one possible choice for the sign of the integer n. Similarly, from
(3.14) and (3.15), we can write the following asymptotic expression in Q(()Zl) and
0022 , respectively,
1 1
A =pimni(1+0(=)), n=FLF2, ..,
n
and )
1
N =pian(l+0(=)), n=F1,F2,....
n

The other formulas in (3.16)-(3.19) can be obtained by the same procedure, which
we used in proving above asymptotic formulas. O

4. ASYMPTOTIC DISTRIBUTION OF EIGENVALUES FOR THE CASE argp; = argpa

4.1. Separation of the complex A—plane into specific sectors. In the case
argp; = argps, the lines

i, = {)eC|Relws; =0},

Is = {AeC|Relws =0}
and the lines

la = {XeC|Relwss =0},

ls = {)eC|Relwas =0}

coincide, then the lines dy = I; = I3 and dy = ls = l4 divide the complex A—plane
into four sectors S;-, j =1,2,3,4. On all of these sectors each of the real valued
functions ReAw,,; is a single sign, since these functions can vanish only on bound-
aries S}. Now let dj, k = 1,2,3,4, be arbitrary rays, which originate from the point
A =0, distinct from the rays d and situated so as to from the sequence

dla dll? d27 d/27 d37 d/37 d47 dﬁl

The rays dj divide each sector S} into two subsectors. Therefore, we have eight
sectors which we shall denote as G;, i = 1,2, ..., 8. As it seems from the construction,
the sectors G = {G1, Ga, ..., Gs} can be distributed into two groups of

¢ ={c.¢f) .6 6} i=12,

such that the group Gflk), k = 1,2, includes those sectors G®, i = 1,2,...,8, in
which

Redwy; — o0, v=1,2, j =1,2,3,4, as A — oo.
Only in one of the sectors of the groups G(*) the conditions

Re)\wn (Re)\wgl) — +00, Re/\w13 (Re)\OJ23) > 0,

and only in one of the sectors of the groups G(? the conditions

Redwi3 (Redwas) — +00, Redwir (Redwsr) > 0,
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hold for A — oco. These sectors denote as Gél) and GE)2) accordingly.

4.2. Asymptotic expressions for the characteristic determinant A()\) in

the G sectors. First, we shall consider A vary in Ggl). Let us substitute (3.1)
into (1.2). Therefore, we have the characteristic determinant as asymptotic quasi-
polynomial form

AS ()\) = )\326>\(W11+w21)
x ([Qll] eTuAWI L [Qqy] eT 1AW
Qa1 Querien)

where
—1:Tj1 <7'j2<"‘<7'jl:17 J=12.
Let us denote
Asy () == A3ZeAwintwar)
« ([Qll] eT11 AW NI [Qll] eT”)‘wM) R (4'1)

Asy (N) := A32Awntwa)
X ([Qa1] €779 - 4 [Q] €75M21) (4.2)
and
As (N) = Az (A) + Asp (V).

Let divide the sector G(()l) into two sectors as G(()ll) and G(()IQ). We assume that one

of the expressions Asy (A) and Ags (M) vanish in one of the sectors G((Jll) and 0612).
Hence, let the characteristic determinant A (A) has the asymptotic representation

in the form (4.1) in G(()ll) and in the form ((4.2) in GE)IQ) where

Flo + wi1Byy +whiBra + W%BBJ

0 Bao + w1182 + wiiBag + wii Baz
1= )

[Bso + w118s1 + w31 Bea + whi Bes]

810 + w24011 + w3012 + w013
520 + OJ24521 + w%4522 + W§4523

(80 + waads1 + w3082 + w3, 0ss]

{510 + wi1Byy + wiiBra +whi B
Bag + w1182 + wiy Bag + wi Bas)

Qu =

[Bso + w118s1 + w31 Bss + Wi Bas]
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010 + wa4d11 + w%4512 + W§4513
820 + waad21 + wiydoe + w3,da3

[580 + (JJ24(581 + w§4582 + UJ§’4(583]

Flo + wi1Byy +whiBra + W?lﬁlﬂ

0 Bao + w1182 + wiiBag + wiiBas
21 = )

[Bso + w118s1 + wi1 Bea + wi Bes]

010 + w24011 + w§4512 + w5’4613
820 + w2421 + w3022 + Wi, 023

[680 + w2081 + w3082 + w3, 0s3]

{510 + w1181 +wh B + W%ﬁm}

0 Bao + w11Ba1 + wi1Bag + whi Bas
2 = )

[Bso + w11Bs1 + wi1 Bea + w Bes]

P/IO +wasyyy + wéﬂm + W%ﬂuﬁ
V20 T W24 T WayVoo + WryVo3

(V80 + waavs1 + Wiavss + WiyVss)

By the same procedure in the sector G(()Q), we have the characteristic determinant
as asymptotic representation

Ag () = AP2Awiatuna)

X ([RH] efidwiz o [Rim] etimAwia

+[Ro1] €292 ... 1 [Ry,,] ef2mAwez)
where

—l=tj) <tjp< - <tjm=1,j=1,2.

Considering the above idea, we can write the following equalities in sectors Gé21)
and Gg)

Agy (N) := X32eMwistwas)

X ([Ru] etidwiz 4y [Rim] etlm/\wu) 7 (4.3)

Ago (/\) = A\3ZAMwiztwss)
% ([Raa] €2222 4 - - [Rypn] ef2m A2z (4.4)
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respectively, and
Ag (A) = Ag1 (N) + Ag (V).

The numbers R,; can be seen by the same procedure in sectors G621) and Géé).

4.3. Asymptotic distribution of eigenvalues for argp; = argps. Now we can
prove the next theorem for the problem (1.1)-(1.2).

Theorem 2. We assume that the following conditions be satisfied

1) argpy = argps.

2) q(z) € Lp(—-1,1), p> 1.

3) Qj1,Qji, Rj1, Rjm, # 0, j =1,2.

4) The linear functionals Fi; + Fy in the spaces W} (—1,0) + Wr(0,1) are
continuous.

Then, the boundary value problem (1.1)-(1.2) has an precisely number of eigen-
values whose asymptotic distribution may be expressed by the following formulas

1 1
M, = —pimn(1+0(.),

A2 = —pgﬂn(l + O(

n

);
);
))-

SEE

A= p%ﬂm’(l + O(

w =

A= —péwni(l + O(

Sl= 3

in each sector S}.

Proof. According to condition (3) of the Theorem, the principal terms of the first
and last coefficients of the asymptotic quasi-polynomials (4.1), (4.2), (4.3) and

(4.2) are different from zero. These quasi-polynomials in sectors Goll , G((Jl;, Gg)Zl)

and G2 have an infinite number of roots {3 {2}, {A2} and {\},}, respectively,
and they are contained in strips

h‘
By = {)\e(C| IReAw;a| < 2“} j=1,2,

ho.
Egj = {)\E(C| |Re/\wj2| < ;j}, j:1,2,

respectively, where h;; > 0. Again, in view of the [15, p. 100, Lemma 1] eigenvalues
of the problem have the asymptotic representation

; 2mn 1
Nwja| = -

1+06,)

Tjl — Tj1

(1 + O(Tll))‘ =12
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; 2mn 1
MNPl = 14+ 0(=
Pup| = |+ 00)
1
= |m+0()], j=12
Therefore, we have the sought asymptotic formulas
; _ 1
Moo= (@) i1+ 0(-)
frn(1+ 0~
= —pimn(1+0(.),
J = L2, n=7FL7F2, ..,
2 -1 1
NE = (@) i1+ 0(5)
1 1
= —pimni(l1+O0(=
pjani(1+0(-),
j = 1,2, n=F1,7F2,....
for eigenvalues of the problem (1.1)-(1.2). O
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