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INVERSE NODAL PROBLEM FOR A STURM-LIOUVILLE
OPERATOR WITH DISCONTINUOUS COEFFICIENT

A. SINAN OZKAN

Abstract. Inverse nodal problem for Sturm—Liouville equation with discon-
tinuity coeffi cient is studied. A uniqueness theorem and an algorithm for
recovering the coeffi cients of the problem from a known sequence related to
the nodal points are given.

1. Introduction

Inverse nodal problems consist in recovering the coeffi cients of operators from
the zeros (nodes) of the eigenfunctions. McLaughlin (1988) seems to have been
the first to consider this kind of inverse problem for the regular Sturm—Liouville
equations with Dirichlet boundary conditions[17]. She showed that the potential of
the problem can be determined by a given dense subset of nodal points. In 1989,
Hald and McLaughlin generalized this result to more general boundary conditions
and provide some numerical schemes for the reconstruction of the potential [13].
From then on, their results have been generalized to various problems. Inverse
nodal problems for Sturm—Liouville operators without discontinuities have been
studied in the several papers ([8], [10], [12], [13], [14], [19], [21], [22] and [24]).
The first result on inverse nodal problems for the Sturm-Liouville operators with a
discontinuity condition was obtained by Shieh and Yurko[20]. This study includes
discontinuity conditions at the middle of interval. Inverse nodal problem for Sturm-
Liouville operator with boundary conditions dependent on the spectral parameter
were investigated in [4], [23] and [18]. Additionally, the studies [5] and [6] include
inverse nodal problems for differential pencils.
In the present paper, we consider the boundary value problem L = L (q, h,H)

generated by the Sturm—Liouville equation

`y := −y[2] + q(x)y = λy, x ∈ (0, 1) (1)
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subject to the boundary conditions

U(y) := y[1](0)− hy(0) = 0 (2)

V (y) := y[1](1) +Hy(1) = 0 (3)

and transfer conditions{
y(d+ 0) = y(d− 0)

y[1](d+ 0) = y[1](d− 0)− βy(d− 0) (4)

where y[1] = py′, y[2] = p (py′)
′
, q(x) and p(x) are real valued functions in L2(0, 1);

h, H and β are real numbers and λ is the spectral parameter. We assume that
p(x) > 0 and γ(d)

γ(1) is a rational number in (0, 1)
The equation (1) appears in some physical applications. A Sturm—Liouville equa-

tion with the coeffi cients which are piecewise constant functions can be regard as
special form of (1). Spectral problems for differential equations with discontinuous
coeffi cients were investigated in several works (see [1], [2], [3], [7], [9], [11], [15] and
[16]). These works contain inverse problems according to the various spectral data.

2. Preliminaries

Let a function ϕ(x, λ) be the solution of (1) under the initial conditions

ϕ(0, λ) = 1, ϕ[1](0, λ) = h (5)

and the jump conditions (4). It can be calculated that ϕ(x, λ) =
{
ϕ1(x, λ), x < d
ϕ2(x, λ), x > d

satisfies the following integral equations:

ϕ1(x, λ) = cos ργ(x) + h
sin ργ(x)

ρ
(6)

+
1

ρ

∫ x

0

sin ρ [γ(x)− γ(t)] q
p
(t)ϕ(t, λ)dt

ϕ2(x, λ) = cos ργ(x) + h
sin ργ(x)

ρ

− β

2ρ
[sin ργ(x)− sin ρ (2γ(d)− γ(x))] (7)

+
βh

2ρ2
[cos ργ(x)− cos ρ (2γ(d)− γ(x))]

+
β

2ρ2

∫ d

0

[cos ρ (γ(x)− γ(t))− cos ρ (2γ(d)− γ(x)− γ(t))] q
p
(t)ϕ(t, λ)dt

+
1

ρ

∫ x

0

sin ρ [γ(x)− γ(t)] q
p
(t)ϕ(t, λ)dt (8)

where γ(x) =
∫ x
0

dt

p(t)
and ρ =

√
λ.
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Using above integral equation we can obtain the following asymptotic relations
for |ρ| → ∞.

ϕ1(x, λ) = cos ργ(x) +

h+ 1
2

x∫
0

q(u)

p(u)
du

 sin ργ(x)

ρ
+ o

(
1

ρ
exp τx

)
, (9)

ϕ2(x, λ) = cos ργ(x) +

h− β

2
+
1

2

x∫
0

q(u)

p(u)
du

 sin ργ(x)

ρ
(10)

+
β

2

sin ρ (2γ(d)− γ(x))
ρ

+ o

(
1

ρ
exp τx

)
,

where τ = |Imρ|. By substituting γ(u) = γ(1)t to the integrals in (9) and (10) we
obtain

ϕ1(x, λ) = cos ργ(x) + f(x)
sin ργ(x)

ρ
+ o

(
1

ρ
exp τx

)
, (11)

and

ϕ2(x, λ) = cos ργ(x) +

(
f(x)− β

2

)
sin ργ(x)

ρ
+ (12)

+
β

2

sin ρ (2γ(d)− γ(x))
ρ

+ o

(
1

ρ
exp τx

)
,

where f(x) = h+ γ(1)
2

γ(x)/γ(1)∫
0

q1(t)dt, q1(t) =
(
qoγ−1

)
(γ(1)t)

Let {λn}n≥0 be the set of eigenvalues of (1)-(4) and ϕ(x, λn) be the eigenfunction
corresponding to the eigenvalue λn. It can be proven easily that the numbers λn
are real, simple and satisfy the following asymptotic relation for n→∞:

ρn =
√
λn =

nπ

γ(1)
+

A

nπ
− β

2nπ
cos

2nπγ(d)

γ(1)
+ o

(
1

n

)
(13)

1√
λn

=
γ(1)

nπ

(
1− Aγ(1)

n2π2
− βγ(1)

2n2π2
cos

2nπγ(d)

γ(1)

)
+ o

(
1

n2

)
(14)

where A = h+H − β

2
+
γ(1)

2

1∫
0

q1(t)dt.

3. Main results

Let X =
{
xjn : n ∈ N

}
be the set of nodal points of the eigenfunctions. Consider

the set Y =

{
yjn : y

j
n =

γ
(
xjn
)

γ (1)
, xjn ∈ X

}
and the problem L̃ together with L. It

is assumed in what follows that if a certain symbol s denotes an object related to
the problem L then s̃ denotes the corresponding object related to the problem L̃.
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Theorem 1. Let Y0 ⊂ Y be dense set on (0, 1). If
1∫
0

q(u)

p(u)
du = 0, p(x) = p̃(x) and

Y0 = Ỹ0 then q(x) = q̃(x) a.e. in (0, 1) , h = h̃, H = H̃ and β = β̃. Thus, the
coeffi cients q(x), h, H and β are uniquely determined by Y0.

First, it must be given the following lemma, related to the asymptotic formulae
for the elements of Y.

Lemma 1. The elements of Y satisfy the following asymptotic formulae for suffi -
ciently large n,

yjn =
j + 1

2

n
− γ (1)

n2π2

[
A+

β

2
cos

2nπγ(d)

γ(1)

](
j + 1

2

n

)
+

+
γ (1)

n2π2
f(xjn) + o

(
1

n2

)
, xjn ∈ (0, d) (15)

yjn =
j + 1

2

n
− γ (1)

n2π2

[
A+

β

2
cos

2nπγ(d)

γ(1)

](
j + 1

2

n

)
+

+
γ (1)

n2π2

(
f(xjn)−

β

2
− β

2
cos

2nπγ(d)

γ(1)

)
(16)

+ o

(
1

n2

)
, xjn ∈ (d, 1)

Proof. Use the asymptotic formulae (11) and (12) to get

ϕ1(x
j
n, λn) = cos ρnγ(x

j
n) + f(x

j
n)
sin ρnγ

(
xjn
)

ρn
+ o

(
1

ρn

)
, (17)

and

ϕ2(x
j
n, λn) = cos ρnγ(x

j
n) +

(
f(xjn)−

β

2

)
sin ρnγ

(
xjn
)

ρn
+ (18)

+
β

2

sin ρn
(
2γ(d)− γ(xjn)

)
ρn

+ o

(
1

ρn

)
,

Let us consider the second case: ϕ2(x
j
n, λn) = 0. The first case is similar. It is

calculated that,

tan
(
ρnγ

(
xjn
)
− π

2

)
=

(
f(xjn)− β

2

)
ρn

− β

2ρn
cos 2ρnγ(d) + o

(
1

ρn

)
This yields
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γ
(
xjn
)
=

1

ρn

(
j +

1

2

)
π −

(
f(xjn)− β

2

)
ρ2n

+

− β

2ρ2n
cos 2ρnγ(d) + o

(
1

ρ2n

)
.

We can complete the proof using (13) and (14) . �

Proof of Theorem1. Since the set X0 :=

{
j + 1

2

n
, j = 0, n− 1, n > 0

}
is dense on

(0, 1), for each fixed x in (0, 1) , there exist a sequence (j(n)) such that
j(n) + 1

2

n
converges to x. Thus the set Y is also dense on (0, 1).

Denote Kj
n :=

n2π2

γ (1)

(
yjn −

j(n)+ 1
2

n

)
and m := s.n, with s is denominator of γ(d)γ(1) .

Therefore, we can show from Lemma 1 that the following limits are exist and finite:

lim
m→∞

Kj(m)
m = F (x) (19)

where

F (x) =


− (h+H)x+ h+ γ(1)

2

x∫
0

q1(t)dt, x ∈ [0, d)

− (h+H)x+ h− β + γ(1)
2

x∫
0

q1(t)dt, x ∈ (d, 1]
(20)

Direct calculation yields

q1(x) = 2 {F ′(x) + F (0)− F (1) + γ(1) [F (d+ 0)− F (d− 0)]} , (21)

q(x) = q1

(
γ(x)

γ(1)

)
, (22)

h = F (0), H = F (d+ 0)− F (d− 0)− F (1) and (23)

β = F (d− 0)− F (d+ 0). (24)

It is clear that, if p(x) = p̃(x) and Y0 = Ỹ0 then F (x) = F̃ (x) and so q(x) = q̃(x)

a.e. in (0, 1) , h = h̃, H = H̃ and β = β̃. �

Corollary 1. If Y0 is given by (15) and (16), q(x), h, H and β can be reconstructed
by the formulae (21)-(24).

Corollary 2. If
1∫
0

q(u)

p(u)
du = 0, p(x) = p̃(x) and X = X̃ then q(x) = q̃(x) a.e.

in (0, 1) , h = h̃, H = H̃ and β = β̃. Thus, the coeffi cients q(x), h, H and β are
uniquely determined by the nodal points.

Example 1. Let p(x) = 1, d be a rational number in (0, 1) and Y0 be given by the
following asymptotics
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yjn =
j + 1

2

n
+

1

n2π2
[1− cos 2nπd]

(
j + 1

2

n

)
+

+
1

n2π2

(
1 +

1

2π
sin2 πyjn

)
+ o

(
1

n2

)
, xjn ∈ (0, d) (25)

yjn =
j + 1

2

n
+

1

n2π2
[1− cos 2nπd]

(
j + 1

2

n

)
+

+
1

n2π2

(
1

2π
sin2 πyjn − cos 2nπd

)
(26)

+ o

(
1

n2

)
, xjn ∈ (d, 1)

It can be calculated from (19) and (20) that,

F (x) =

{
1 + 1

2π sin
2 πx, x ∈ [0, d)

1
2π sin

2 πx− 1, x ∈ (d, 1]

By (21)-(24), it is obtained that

q(x) = sin 2πx, h = 1, H = −1 and β = 2.
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