

RESULTS ON $\alpha-*$ CENTRALIZERS OF PRIME AND SEMIPRIME RINGS WITH INVOLUTION

EMINE KOÇ AND ÖZNUR GÖLBAŞI

ABSTRACT. Let R be a prime or semiprime ring equipped with an involution * and α be an automorphism of R. An additive mapping $T:R\to R$ is called a left (resp. right) $\alpha-^*$ centralizer of R if $T(xy)=T(x)\alpha(y^*)$ (resp. $T(xy)=\alpha(x^*)T(y)$) holds for all $x,y\in R$, where α is an endomorphism of R. A left (resp. right) Jordan $\alpha-^*$ centralizer $T:R\to R$ is an additive mapping such that $T(x^2)=T(x)\alpha(x^*)$ (resp. $T(x^2)=\alpha(x^*)T(x)$) holds for all $x\in R$. In this paper, we obtain some results about Jordan $\alpha-^*$ centralizer of R with involution.

1. Introduction

This paper deals with the study of α -*centralizers of prime and semiprime rings with involution * and was motivated by work of [8] and [6]. Throughout, R will represent an associative ring with center Z. Recall that a ring R is prime if xRy=0 implies x=0 or y=0, and semiprime if xRx=0 implies x=0. An additive mapping $x\mapsto x^*$ satisfying $(xy)^*=y^*x^*$ and $(x^*)^*=x$ for all $x,y\in R$ is called an involution and R is called a *-ring.

According B. Zalar [10], an additive mapping $T:R\to R$ is called a left (resp. right) centralizer of R if T(xy)=T(x)y (resp. T(xy)=xT(y)) holds for all $x,y\in R$. If T is both left as well right centralizer, then it is called a centralizer. This concept appears naturally C^* -algebras. In ring theory it is more common to work with module homorphisms. Ring theorists would write that $T:R_R\to R_R$ is a homomorphism of a ring module R into itself instead of a left centralizer. In case $T:R\to R$ is a centralizer, then there exists an element $\lambda\in C$ such that $T(x)=\lambda x$ for all $x\in R$ and $\lambda\in C$, where C is the extended centroid of R. A left (resp. right) Jordan centralizer $T:R\to R$ is an additive mapping such that $T(x^2)=T(x)x$ (resp. $T(x^2)=xT(x)$) holds for all $x\in R$. Zalar proved that any left (right) Jordan centralizer on a 2-torsion free semiprime ring is a left (right) centralizer. Recently, in [1], E. Albaş introduced the definition of α -centralizer of R, i. e. an

Received by the editors: Received: May 10, 2016, Accepted: July 17, 2016. 2010 Mathematics Subject Classification. Primary 16W10; Secondary 16N60. Key words and phrases. Semiprime ring, prime ring, centralizer, α-*centralizer.

©2017 Ankara University

additive mapping $T: R \to R$ is called a left (resp. right) α -centralizer of R if $T(xy) = T(x) \alpha(y)$ (resp. $T(xy) = \alpha(x) T(y)$) holds for all $x, y \in R$, where α is an endomorphism of R. If T is left and right α -centralizer then it is natural to call α -centralizer. Clearly every centralizer is a special case of a α -centralizer with $\alpha = id_R$. Also, an additive mapping $T: R \to R$ associated with a homomorphism $\alpha: R \to R$, if $L_a(x) = a\alpha(x)$ and $R_a(x) = \alpha(x)a$ for a fixed element $a \in R$ and for all $x \in R$, then L_a is a left α -centralizer and R_a is a right α -centralizer. Albaş showed Zalar's result holds for α -centralizer.

On the other hand, in [3], J. Vukman and M. Fosner proved that an additive mapping $T: R \to R$, where R is a prime ring with characteristic different from two into, satisfying $T(x^3) = xT(x)x$ for all $x \in R$, is a two sided centralizer. In [5], the authors investigated this result for a α -centralizer of R.

Inspired by the definition of centralizer, the notion of *-centralizer was extended as follow:

Let R be a ring with involution *. An additive mapping $T: R \to R$ is called a left (resp. right) *-centralizer of R if $T(xy) = T(x)y^*$ (resp. $T(xy) = x^*T(y)$) holds for all $x, y \in R$. An additive mapping $T: R \to R$ is said to be a left (resp. right) Jordan *-centralizer if $T(x^2) = T(x)x^*$ (resp. $T(x^2) = x^*T(x)$) holds for all $x \in R$. For some fixed $a \in R$, the map $x \to ax^*$ is a Jordan left *-centralizer. Every left *-centralizer on a ring R is a Jordan left *-centralizer. It is natural to question whether the converse of above statement is true and it was be shown that the answer to this question is affirmative if underlying *-ring is semiprime in [8]. In [2], the authors introduced the definition of α -*centralizer of R, i. e. an additive mapping $T: R \to R$ is called a left (resp. right) α -*centralizer of R if $T(xy) = T(x)\alpha(y^*)$ (resp. $T(xy) = \alpha(x^*)T(y)$) holds for all $x, y \in R$, where α is an endomorphism of R. They investigated that T is a Jordan α -*centralizer under some conditions. Considerable work has been done on this topic during the last couple of decades (see [1-8], where further references can be found).

The main aim of the present article is a generalization of above results to the case α -*centralizer of R with involution.

2. Results

Lemma 1. [9, Lemma 1] Let R be a prime ring, the elements a_i, b_i in the central closure of R satisfy $\sum a_i x b_i = 0$ for all $x \in R$. If $b_i \neq 0$ for some i, then a_i 's are C-independent.

Lemma 2. [5, Theorem 2.1] Let R be a 2-torsion free semiprime ring with an identity element, α is a nonzero surjective homomorphism of R and $T: R \to R$ be an additive mapping such that $T(x^3) = \alpha(x)T(x)\alpha(x)$ holds for all $x \in R$. Then T is a α -centralizer of R.

Lemma 3. [3, Theorem 2.1] Let R be a 2-torsion free ring, U a square closed Lie ideal of R which has a commutator right (resp. left) nonzero divisor, α is

an automorphism of R and $T: R \to R$ a left (resp. right) Jordan α -centralizer mapping of U into R. Then T is a left (resp. right) α -centralizer mapping of U into R.

Example 1. [4, Example] A semiprime ring may not contain a commutator nonzero divisor (after all,take commutative semiprime rings, or more generally, semiprime rings R containing a nonzero central idempotent element $e \in R$ such that eR is commutative). Conversely, a ring may contain a commutator nonzero divisor, but is not semiprime. For example, let $R = T_2(A_1)$ be the ring of the 2×2 upper triangular matrices whose entries are elements from the Weyl algebra A_1 (polynomials in x, y such that xy - yx = 1). Then R is not semiprime, but the commutator of scalar matrices generated by x and y is the identity matrix.

Theorem 1. Let R be a 2-torsion free semiprime ring, U a square closed Lie ideal of R, α is an automorphism of R and $T: R \to R$ a left (resp. right) Jordan α -centralizer mapping of U into R. Then T is a left (resp. right) α -centralizer mapping of U into R.

Proof. The proof is obvious from Lemma 3 and the well known fact that a semiprime ring may not contain a commutator nonzero divisor by above example. \Box

Theorem 2. Let R be a non-commutative prime * -ring, α is an automorphism of R and $T: R \to R$ be a Jordan left α - * centralizer. If $T(x) \in Z$ for all $x \in R$, then T = 0.

Proof. By the hyphotesis, we have

$$[T(x), y] = 0 \text{ for all } x, y \in R.$$

$$(2.1)$$

Replacing x by x^2 in (2.1) and using this, we obtain that

$$T(x)[\alpha(x^*), y] = 0$$
 for all $x, y \in R$.

In the view of $T(x) \in Z$ and centre of prime ring is free from zero divisors, we get

$$T(x) = 0$$
 or $[\alpha(x^*), y] = 0$ for all $x, y \in R$.

We obtain R is union of its two additive subgroups such that

$$K = \{x \in R \mid T(x) = 0\}$$

and

$$L = \{ x \in R \mid \alpha(x^*) \in Z \}.$$

Clearly each of K and L is additive subgroup of R. Morever, R is the set-theoretic union of K and L. But a group can not be the set-theoretic union of two proper subgroups, hence K = R or L = R. In the former case, we have T = 0 and the second case, R is commutative, a contradiction. This finishes the proof.

Theorem 3. Let R be a 2-torsion free semiprime *-ring, α is an automorphism of R such that $*\alpha = \alpha*$ and $T: R \to R$ be a Jordan left $\alpha-$ * centralizer. Then T is a reverse left $\alpha-$ * centralizer, that is $T(xy) = T(y)\alpha(x^*)$ for all $x, y \in R$.

Proof. By the hyphotesis, we have

$$T(x^2) = T(x)\alpha(x^*)$$
 for all $x \in R$. (2.2)

Applying involution both sides to (2.2), we conclude that

$$(T(x^2))^* = \alpha(x^*)^*T(x)^*$$
 for all $x \in R$.

Using $*\alpha = \alpha *$, we get

$$(T(x^2))^* = \alpha(x)T(x)^*$$
 for all $x \in R$.

Define $S: R \to R, S(x) = T(x)^*$ for all $x \in R$. Hence we have

$$S(x^2) = T(x^2)^*$$

= $(T(x)\alpha(x^*))^*$
= $\alpha(x)T(x)^* = \alpha(x)S(x)$

for all $x \in R$. This means S is a Jordan right α -centralizer on R. By Theorem 1, S is a right α -centralizer that is, $S(xy) = \alpha(x)S(y)$ for all $x, y \in R$. This implies that

$$T(xy)^* = S(xy)$$

= $\alpha(x)S(y) = \alpha(x)T(y)^*$, (2.3)

and so

$$T(xy)^* = \alpha(x)T(y)^*$$
 for all $x, y \in R$.

Applying involution both sides the last equation, we get

$$T(xy) = T(y) \alpha(x^*)$$
 for all $x, y \in R$.

Hence T is a reverse left α -*centralizer.

Theorem 4. Let R be a 2-torsion free semiprime *-ring with an identity element, α is an automorphism of R such that $*\alpha = \alpha*$ and $T: R \to R$ be an additive mapping such that $T(x^3) = \alpha(x^*)T(x)\alpha(x^*)$ holds for all $x \in R$. Then T is a reverse $\alpha-^*$ centralizer, that is $T(xy) = T(y)\alpha(x^*) = \alpha(y^*)T(x)$ for all $x, y \in R$.

Proof. By the hyphotesis, we have

$$T(x^3) = \alpha(x^*)T(x)\alpha(x^*) \text{ for all } x \in R.$$
 (2.4)

Applying involution both sides to (2.4) and using $*\alpha = \alpha *$, we obtain that

$$T(x^3)^* = (\alpha(x^*)T(x)\alpha(x^*))^* = \alpha(x)T(x)^*\alpha(x) \text{ for all } x \in R.$$

Define $S: R \to R, S(x) = T(x)^*$ for all $x \in R$. Hence we have

$$S(x^3) = T(x^3)^*$$

= $\alpha(x)T(x)^* \alpha(x) = \alpha(x)S(x)\alpha(x)$

for all $x \in R$. Hence we obtain that

$$S(x^3) = \alpha(x)S(x)\alpha(x)$$
 for all $x \in R$.

Using Lemma 2, we conclude that S is a two sided α -centralizer that is, $S(xy) = \alpha(x)S(y) = S(x)\alpha(y)$ for all $x, y \in R$. This implies for all $x, y \in R$

$$T(xy)^* = S(xy)$$

= $\alpha(x)S(y) = \alpha(x)T(y)^*$ (2.5)

and

$$T(xy)^* = S(xy)$$

= $S(x) \alpha(y) = T(x)^* \alpha(y)$.

Applying involution both sides the two last equations and using $*\alpha = \alpha *$, we get

$$T(xy) = T(y)\alpha(x^*) = \alpha(y^*)T(x)$$
 for all $x, y \in R$.

Theorem 5. Let R be a 2-torsion free non-commutative prime *-ring, α is an automorphism of R such that $*\alpha = \alpha*$ and $T, S : R \to R$ be two Jordan left $\alpha-*$ centralizer. If [S(x), T(x)] = 0 holds for all $x \in R$ and $T \neq 0$, then there exists $\lambda \in C$ such that $S = \lambda T$.

Proof. We know that S and T are reverse left $\alpha-^*$ centralizers by Theorem 3. Now we assume that

$$[S(x), T(x)] = 0 \text{ for all } x \in R.$$

$$(2.6)$$

Lineerizing (2.6) and using this, we have

$$[S(x), T(y)] + [S(y), T(x)] = 0 \text{ for all } x, y \in R.$$
 (2.7)

Replacing x by zx in (2.7) and using this, we arrive at

$$S(x)[\alpha(z^*), T(y)] + T(x)[S(y), \alpha(z^*)] = 0 \text{ for all } x, y, z \in R.$$
 (2.8)

Writing z^* instead of z in (2.8) and using α is an automorphism of R, we get

$$S(x)[z, T(y)] + T(x)[S(y), z] = 0 \text{ for all } x, y, z \in R.$$
 (2.9)

Taking wx instead of x in (2.9), we find that

$$S(x)\alpha(w^*)[z, T(y)] + T(x)\alpha(w^*)[S(y), z] = 0$$
 for all $x, y, z, w \in R$.

Again replacing w^* instead of w and using α is an automorphism of R, we obtain that

$$S(x)w[z, T(y)] + T(x)w[S(y), z] = 0$$
 for all $x, y, z, w \in R$. (2.10)

Using Lemma 1, we have [z, T(y)] = 0 for all $y, z \in R$ or $S(x) = \lambda(x)T(x)$ where $\lambda(x) \in C$. But $[z, T(y)] \neq 0$ for some $z, y \in R$ because of $T \neq 0$ (see Theorem 2). Hence we get $S(x) = \lambda(x)T(x)$ where $\lambda(x) \in C$.

Returning (2.10), we can write

$$\begin{split} 0 &= S(x)w[z, T(y)] + T(x)w[S(y), z] \\ &= \lambda(x)T(x)w[z, T(y)] + T(x)w[\lambda(y)T(y), z] \\ &= (\lambda(x) - \lambda(y))T(x)w[z, T(y)] \end{split}$$

for all $z, y \in R$. By the primeness of R, the last equation yields that either $(\lambda(x) - \lambda(y))T(x) = 0$ or [z, T(y)] = 0. Again using $[z, T(y)] \neq 0$ some $z, y \in R$, we have $(\lambda(x) - \lambda(y))T(x) = 0$ for all $x, y \in R$. This implies $\lambda(x)T(x) = \lambda(y)T(x)$, and so, $S(x) = \lambda(y)T(x)$ for all $x, y \in R$. This completes the proof.

Theorem 6. Let R be a semiprime *-ring, α is an automorphism of R such that $*\alpha = \alpha*$ and $T: R \to R$ be a mapping (not necessary additive mapping) such that $T(x)\alpha(y^*) = \alpha(x^*)T(y)$ holds for all $x, y \in R$. Then T is a reverse left $\alpha-$ *centralizer of R.

Proof. By the hypothesis, we get

$$T(x)\alpha(y^*) = \alpha(x^*)T(y) \text{ for all } x, y \in R.$$
 (2.11)

We calculate the following equation using (2.11) and α is an automorphism of R:

$$\begin{split} (T(x+y) - T(x) - T(y))\alpha(z^*) &= T(x+y)\alpha(z^*) - T(x)\alpha(z^*) - T(y)\alpha(z^*) \\ &= \alpha((x+y)^*)T(z) - \alpha(x^*)T(z) - \alpha(y^*)T(z) \\ &= (\alpha((x+y)^*) - \alpha(x^*) - \alpha(y^*))T(z) \\ &= \alpha((x+y)^* - x^* - y^*)T(z) \\ &= \alpha(x^* + y^* - x^* - y^*)T(z) = 0 \end{split}$$

Hence we have

$$(T(x+y) - T(x) - T(y))\alpha(z^*) = 0.$$

Writing z^* instead of z^* and using α is an automorphism of R in this equation, we arrive at

$$(T(x+y)-T(x)-T(y))z=0$$
 for all $x,y,z\in R$.

Since R is semiprime ring, we obtain that

$$T(x+y) = T(x) + T(y)$$
 for all $x, y \in R$.

Similarly, we calculate the relation $(T(yx)-T(x)\alpha(y^*))\alpha(z^*)$ using (2.11), we find that $T(yx)=T(x)\alpha(y^*)$ for all $x,y\in R$. Hence T is a reverse left $\alpha-$ *centralizer of R.

References

- Albaş, E., On τ-centralizers of semiprime rings, Siberian Math. J. (2007), 48 (2), 191-196.
- [2] Ashraf, M. and Mozumder, M. R., On Jordan α-*centralizers in semiprime rings with involution, Int. J. Contemp. Math. Sciences (2012), 7(23), 1103-1112.
- [3] Cortes, W. and Haetinger, C., On Lie ideals σ-centralizers of 2-torsion free rings, Math. J. Okayama Univ. (2009), 51, 111-119.
- [4] Cortes, W. and Haetinger, C., On Jordan generalized higher derivations in rings, Turkish J. of Math. (2005), 29(1), 1-10.
- [5] Daif, M. N., Tammam El-Sayiad and Haetinger, H., On θ -centralizers of semiprime rings, Aligarh Bull. Math. (2011), 30(1-2), 51-59.
- [6] Huang, S. and Haetinger, C., On θ-centralizers of semiprime rings, Demonstratio Mathematica (2012), XLV(1), 29-34.
- [7] Shakir, A. and Haetinger, C., Jordan α-centralizers in rings and some applications, Bol. Soc. Paran. Mat. (2008), 26(1-2),71-80.
- [8] Shakir, A., Nadeem, A. Dar and Vukman, J., Jordan left *-centralizers of prime and semiprime with involutions, *Beitr Algebra Geom.* (2013), 54, 609-624.
- [9] Vukman, J., Centralizers on semiprime rings, Comment. Math. Univ. Carolin. (2001), 42 (2), 237-245.
- [10] Zalar, B., On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 1991, 32(4), 609-614.

 $\label{lem:current} \textit{Current address} : \text{ Cumhuriyet University, Faculty of Science, Department of Mathematics, Sivas - TURKEY}$

 $E ext{-}mail\ address: eminekoc@cumhuriyet.edu.tr,}$

 $\label{lem:current} \textit{Current address} : \text{ Cumhuriyet University, Faculty of Science, Department of Mathematics, Sivas - TURKEY}$

 $E ext{-}mail\ address: ogolbasi@cumhuriyet.edu.tr}$