

VECTOR-VALUED CESÀRO SUMMABLE GENERALIZED LORENTZ SEQUENCE SPACE

OĞUZ OĞUR AND BIRSEN SAĞIR

ABSTRACT. The main purpose of this paper is to introduce Cesàro summable generalized Lorentz sequence space $C_1[d(v,p)]$. We study some topologic properties of this space and obtain some inclusion relations.

1. Introduction

Throughout this work, \mathbb{N} , \mathbb{R} and \mathbb{C} denote the set of positive integers, real numbers and complex numbers, respectively. For some properties of sequences, we refer to [4,8].

For $1 \leq p < \infty$, the Cesàro sequence space is defined by

$$Ces_p = \left\{ x \in w : \sum_{j=1}^{\infty} \left(\frac{1}{j} \sum_{i=1}^{j} |x(i)| \right)^p < \infty \right\},$$

equipped with norm

$$||x|| = \left(\sum_{j=1}^{\infty} \left(\frac{1}{j}\sum_{i=1}^{j} |x(i)|\right)^{p}\right)^{\frac{1}{p}}.$$

This space was first introduced by Shiue [14]. It is very useful in the theory of matrix operators and others. Later, many authors studied this space [see 1, 5, 11, 13].

Let $(E, \|\cdot\|)$ be a Banach space. The Lorentz sequence space l(p, q, E) (or $l_{p,q}(E)$) for $1 \le p, q \le \infty$ is the collection of all sequences $\{a_i\} \in c_0(E)$ such that

$$\|\{a_i\}\|_{p,q} = \begin{cases} \left(\sum_{i=1}^{\infty} i^{q/p-1} \|a_{\phi(i)}\|^q\right)^{1/q} & \text{for } 1 \le p < \infty, \ 1 \le q < \infty \\ \sup_{i} i^{1/p} \|a_{\phi(i)}\| & \text{for } 1 \le p \le \infty, \ q = \infty \end{cases}$$

Received by the editors: March 18, 2016, Accepted: Aug 14, 2016.

 $2010\ Mathematics\ Subject\ Classification.\quad 40\text{A}05,\ 40\text{H}05,\ 46\text{A}45,\ 46\text{E}30.$

Key words and phrases. Lorentz sequence space, Cesàro summable, vector-valued space.

©2017 Ankara University

Communications de la Faculté des Sciences de l'Université d'Ankara. Séries A1. Mathematics and Statistics.

is finite, where $\{\|a_{\phi(i)}\|\}$ is non-increasing rearrangement of $\{\|a_i\|\}$ (We can interpret that the decreasing rearrangement $\{\|a_{\phi(i)}\|\}$ is obtained by rearranging $\{\|a_i\|\}$ in decreasing order). This space was introduced by Miyazaki in [9] and examined comprehensively by Kato in [3] (see also [6,7]).

A weight sequence $v = \{v(i)\}$ is a positive decreasing sequence such that v(1) = 1, $\lim_{i \to \infty} v(i) = 0$ and $\lim_{i \to \infty} V(i) = \infty$, where $V(i) = \sum_{n=1}^{i} v(n)$ for every $i \in \mathbb{N}$. Popa [12] defined the generalized Lorentz sequence space d(v, p) for 0 as follows

$$d(v,p) = \left\{ x = \{x_i\} \in w : ||x||_{v,p} = \sup_{\pi} \left(\sum_{i=1}^{\infty} |x_{\pi(i)}|^p v(i) \right)^{1/p} < \infty \right\},\,$$

where π ranges over all permutations of the positive integers and $v = \{v(i)\}$ is a weight sequence. It is know that $d(v,p) \subset c_0$ and hence for each $x \in d(v,p)$ there exists a non-increasing rearrangement $\{x^*\} = \{x_i^*\}$ of x and

$$||x||_{v,p} = \left(\sum_{n=1}^{\infty} |x_i^*|^p v(i)\right)^{\frac{1}{p}}$$

(see [10, 12]).

Let $(X, \|\cdot\|)$ be a Banach space and $v = \{v(k)\}$ be a weight sequence. We introduce the vector-valued Cesáro summable generalized Lorentz sequence space $C_1[d(v,p)]$ for $0 . The space <math>C_1[d(v,p)]$ is the collection of all X-valued 0-sequences $\{x_n\}$ $(\{x_n\} \in c_0\{X\})$ such that

$$\left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\phi(n)}\| \right]^{p} v(k) \right)^{\frac{1}{p}}$$

is finite, where $\{\|x_{\phi(n)}\|\}$ is non-increasing rearrangement of $\{\|x_n\|\}$. We shall need the following lemmas.

Lemma 1. (Hardy, Littlewood and Pólya [2]). Let $\{a_i\}_{1 \leq i \leq n}$ and $\{b_i\}_{1 \leq i \leq n}$ be two sequences of positive numbers. Then we have

$$\sum_{i} a_i^* \cdot b_i \le \sum_{i} a_i \cdot b_i \le \sum_{i} a_i^* \cdot b_i^*,$$

where $\{a_i^*\}$ is the non-increasing rearrangements of sequence $\{a_i\}_{1 \leq i \leq n}$ and $\{b_i^*\}$ and $\{b_i^*\}$ are the non-increasing and non-decreasing rearrangements of sequence $\{b_i\}_{1 \leq i \leq n}$, respectively.

Lemma 2. (Kato [3]) Let $\left\{x_i^{(\mu)}\right\}$ be an X-valued double sequence such that $\lim_{i\to\infty} x_i^{(\mu)} = 0$ for each $\mu \in \mathbb{N}$ and let $\{x_i\}$ be an X-valued sequence such that

 $\lim_{\mu\to\infty} x_i^{(\mu)} = x_i$ (uniformly in i). Then $\lim_{i\to\infty} x_i = 0$ and for each $i\in\mathbb{N}$

$$||x_{\phi(i)}|| \le \lim_{\mu \to \infty} ||x_{\phi_{\mu}(i)}^{(\mu)}||,$$

where $\left\{\left\|x_{\phi(i)}\right\|\right\}$ and $\left\{\left\|x_{\phi_{\mu}(i)}^{(\mu)}\right\|\right\}_{i}$ are the non-increasing rearrangements of $\left\{\left\|x_{i}\right\|\right\}$ and $\left\{\left\|x_{i}^{(\mu)}\right\|\right\}_{i}$, respectively.

2. MAIN RESULTS

Theorem 1. The space $C_1[d(v,p)]$ for $0 is a linear space over the field <math>K = \mathbb{R}$ or \mathbb{C} .

Proof. Let $x, y \in C_1[d(v, p)]$. Since v is non-increasing, the non-increasing rearrangements of v is itself. Thus, using the inequality $\sum_i a_i \cdot b_i \leq \sum_i a_i^* \cdot b_i^*$ from Lemma 1, we have

$$\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\psi(n)} + y_{\psi(n)}\| \right]^{p} v(k) \leq \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \left(\|x_{\psi(n)}\| + \|y_{\psi(n)}\| \right) \right]^{p} v(k)$$

$$\leq D \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\psi(n)}\| \right]^{p} v(k)$$

$$+ D \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|y_{\psi(n)}\| \right]^{p} v(k)$$

$$\leq D \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\phi(n)}\| \right]^{p} v(k)$$

$$+ D \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|y_{\eta(n)}\| \right]^{p} v(k)$$

$$< \infty,$$

where $D = \max\{1, 2^{p-1}\}$. Here $\{\|x_{\phi(n)}\|\}$, $\{\|y_{\eta(n)}\|\}$ and $\{\|x_{\psi(n)} + y_{\psi(n)}\|\}$ denote the non-increasing rearrangements of the sequences $\{\|x_n\|\}$, $\{\|y_n\|\}$ and $\{\|x_n + y_n\|\}$, respectively. Let $\alpha \in K$. Hence we get

$$\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|\alpha x_{\phi(n)}\| \right]^{p} v(k) = \sum_{k=1}^{\infty} \left[\frac{|\alpha|}{k} \sum_{n=1}^{k} \|x_{\phi(n)}\| \right]^{p} v(k)$$

$$= |\alpha|^{p} \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\phi(n)}\| \right]^{p} v(k)$$

$$< \infty.$$

This shows that $x + y \in C_1[d(v, p)]$, $\alpha x \in C_1[d(v, p)]$ and so $C_1[d(v, p)]$ is a linear space.

Theorem 2. The space $C_1[d(v,p)]$ for $1 \le p < \infty$ is normed space with the norm

$$||x||_{C,v,p} = \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} ||x_{\phi(n)}||\right]^{p} v(k)\right)^{\frac{1}{p}},$$

where $\{\|x_{\phi(n)}\|\}$ denotes the non-increasing rearrangements of $\{\|x_n\|\}$.

Proof. It is clear that $||0||_{C,v,p} = 0$. Let $||x||_{C,v,p} = 0$. Then we have $\frac{1}{k} \sum_{n=1}^{k} ||x_{\phi(n)}|| = 0$ for all $k \in \mathbb{N}$. Hence we get $||x_{\phi(n)}|| = 0$ for all $n \in \mathbb{N}$ and so x = 0.

Let $x, y \in C_1[d(v, p)]$. Since weight sequence v is decreasing, the non-increasing rearrangements of v is itself. Thus, using the inequality $\sum_i a_i \cdot b_i \leq \sum_i a_i^* \cdot b_i^*$ from Lemma 1, we have

$$||x+y||_{C,v,p} = \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} ||x_{\psi(n)} + y_{\psi(n)}||\right]^{p} v(k)\right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} ||x_{\psi(n)}||\right]^{p} v(k)\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} ||y_{\psi(n)}||\right]^{p} v(k)\right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} ||x_{\phi(n)}||\right]^{p} v(k)\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} ||y_{\eta(n)}||\right]^{p} v(k)\right)^{\frac{1}{p}}$$

$$= ||x||_{C,v,p} + ||y||_{C,v,p},$$

where $\{\|x_{\phi(n)}\|\}$, $\{\|y_{\eta(n)}\|\}$ and $\{\|x_{\psi(n)} + y_{\psi(n)}\|\}$ denote the non-increasing rearrangements of $\{\|x_n\|\}$, $\{\|y_n\|\}$ and $\{\|x_n + y_n\|\}$, respectively.

Let λ be an element in K and let x be a vector in $C_1[d(v,p)]$. Hence we have

$$\|\lambda x\|_{C,v,p} = \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|\lambda x_{\phi(n)}\|\right]^{p} v(k)\right)^{\frac{1}{p}}$$

$$= |\lambda| \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\phi(n)}\|\right]^{p} v(k)\right)^{\frac{1}{p}}$$

$$= |\lambda| \|x\|_{C,v,p}.$$

Theorem 3. The space $C_1[d(v,p)]$ for $1 \le p < \infty$ is complete with respect to its norm.

Proof. Let $\{x^{(s)}\}$ be an arbitrary Cauchy sequence in $C_1[d(v,p)]$ with $x^{(s)} = \{x_n^{(s)}\}_{n=1}^{\infty}$ for all $s \in \mathbb{N}$. Then we have

$$\lim_{s,t\to\infty} \left\| x^{(s)} - x^{(t)} \right\|_{C,v,p} = \lim_{s,t\to\infty} \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \left\| x_{\pi_{s,t}(n)}^{(s)} - x_{\pi_{s,t}(n)}^{(t)} \right\| \right]^p v(k) \right)^{\frac{1}{p}} = 0, \tag{1}$$

where $\left\{\left\|x_{\pi_{s,t}(n)}^{(s)}-x_{\pi_{s,t}(n)}^{(t)}\right\|\right\}$ denotes the non-increasing rearrangement of $\left\{\left\|x_n^{(s)}-x_n^{(t)}\right\|\right\}$. Hence we obtain $\lim_{s,t\to\infty}\left\|x_{\pi_{s,t}(n)}^{(s)}-x_{\pi_{s,t}(n)}^{(t)}\right\|=0$ for each $n\in\mathbb{N}$ and so $\left\{x_n^{(s)}\right\}$, for a fixed $n\in\mathbb{N}$, is a Cauchy sequence in X.

Then, there exists $x_n \in X$ such that $x_n^{(s)} \to x_n$ as $s \to \infty$. Let $x = \{x_n\}$. Since $\lim_{n \to \infty} x_n^{(s)} = 0$ for each $s \in \mathbb{N}$, by Lemma 2 we have $\lim_{n \to \infty} x_n = 0$. Therefore we can choose the non-increasing rearrangement $\left\{\left\|x_{\pi_t(n)} - x_{\pi_t(n)}^{(t)}\right\|\right\}_n$ of $\left\{\left\|x_n - x_n^{(t)}\right\|\right\}_n$. Also, for an arbitrary $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$\left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \left\| x_{\pi_{s,t}(n)}^{(s)} - x_{\pi_{s,t}(n)}^{(t)} \right\| \right]^{p} v(k) \right)^{\frac{1}{p}} < \varepsilon \tag{2}$$

for s, t > N. Let t be an arbitrary positive integer with t > N and fixed. If we put

$$y_n^{(s)} = x_n^{(s)} - x_n^{(t)}$$
 and $y_n = x_n - x_n^{(t)}$,

then we have

$$\lim_{n \to \infty} y_n^{(s)} = 0 \text{ for each } s \in \mathbb{N} \text{ and } \lim_{s \to \infty} y_n^{(s)} = y_n \text{ (uniformly in } n).$$

Thus by Lemma 2 we get

$$||y_{\phi(n)}|| \le \lim_{s \to \infty} ||y_{\phi_s(n)}^{(s)}||$$

for each $n \in \mathbb{N}$, that is,

$$\left\| x_{\pi_t(n)} - x_{\pi_t(n)}^{(t)} \right\| \le \lim_{s \to \infty} \left\| x_{\pi_{s,t}(n)}^{(s)} - x_{\pi_{s,t}(n)}^{(t)} \right\| \tag{3}$$

for each $n \in \mathbb{N}$. Hence, by (2), (3) we get

$$\begin{aligned} \left\| x - x^{(t)} \right\|_{C,v,p} &= \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \left\| x_{\pi_{t}(n)} - x_{\pi_{t}(n)}^{(t)} \right\| \right]^{p} v(k) \right)^{\frac{1}{p}} \\ &\leq \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \lim_{s \to \infty} \left\| x_{\pi_{s,t}(n)}^{(s)} - x_{\pi_{s,t}(n)}^{(t)} \right\| \right]^{p} v(k) \right)^{\frac{1}{p}} \\ &= \lim_{s \to \infty} \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \left\| x_{\pi_{s,t}(n)}^{(s)} - x_{\pi_{s,t}(n)}^{(t)} \right\| \right]^{p} v(k) \right)^{\frac{1}{p}} \\ &< \varepsilon. \end{aligned}$$

Also, since $C_1[d(v,p)]$ is a linear space we have $\{x_n\} = \{x_n - x_n^{(N)}\} + \{x_n^{(N)}\} \in C_1[d(v,p)]$. Hence the space $C_1[d(v,p)]$ is complete with respect to its norm. \square

Theorem 4. Let $1 . Then, the inclusion <math>d(v, p) \subset C_1[d(v, p)]$ holds.

Proof. Let $x \in d(v, p)$. Then there exists T > 0 such that

$$\lim_{m \to \infty} \left(\sum_{n=1}^{m} \|x_{\phi(n)}\|^{p} v(n) \right)^{\frac{1}{p}} = \left(\sum_{n=1}^{\infty} \|x_{\phi(n)}\|^{p} v(n) \right)^{\frac{1}{p}} \le T < \infty,$$

where $\{\|x_{\phi(n)}\|\}$ denotes the non-increasing rearrangements of $\{\|x_n\|\}$. Since $\sum_{k=1}^{\infty} \frac{1}{k^p} < \infty$ for 1 and <math>v is decreasing, we get

$$\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\phi(n)}\| \right]^{p} v(k) = \sum_{k=1}^{\infty} \frac{1}{k^{p}} \left[\sum_{n=1}^{k} \|x_{\phi(n)}\| \right]^{p} v(k)$$

$$\leq \max \left\{ 1, 2^{p-1} \right\} \sum_{k=1}^{\infty} \frac{1}{k^{p}} \left[\sum_{n=1}^{k} \|x_{\phi(n)}\|^{p} v(n) \right]$$

$$\leq T \cdot \max \left\{ 1, 2^{p-1} \right\} \sum_{k=1}^{\infty} \frac{1}{k^{p}}$$

$$\leq \infty.$$

This completes the proof.

Theorem 5. If $1 \le p < q < \infty$, then $C_1[d(v, p)] \subset C_1[d(v, q)]$.

Proof. Let $x \in C_1[d(v,p)]$ and let $\{\|x_{\phi(n)}\|\}$ denotes the non-increasing rearrangement of $\{\|x_n\|\}$. Since v(k) is decreasing we have

$$\left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\phi(n)}\|\right]^{p} v(k)\right)^{\frac{1}{p}} \geq \left(\sum_{k=1}^{m} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\phi(n)}\|\right]^{p} v(k)\right)^{\frac{1}{p}}$$

$$\geq \|x_{\phi(m)}\| \left(\sum_{k=1}^{m} v(k)\right)^{\frac{1}{p}}$$

$$\geq \|x_{\phi(m)}\| (v(m))^{\frac{1}{p}} m^{\frac{1}{p}}$$

for every $m \in \mathbb{N}$. Hence we get

$$||x_{\phi(m)}|| \leq (v(m))^{-\frac{1}{p}} m^{-\frac{1}{p}} \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} ||x_{\phi(n)}|| \right]^{p} v(k) \right)^{\frac{1}{p}}$$

$$\leq (v(m))^{-\frac{1}{p}} ||x||_{C^{p,p}}$$

for every $m \in \mathbb{N}$. Thus

$$\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\phi(n)}\| \right]^{q} v(k) = \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\phi(n)}\| \right]^{q-p} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\phi(n)}\| \right]^{p} v(k)$$

$$\leq \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} (v(n))^{-\frac{1}{p}} \|x\|_{C,v,p} \right]^{q-p} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\phi(n)}\| \right]^{p} v(k)$$

$$\leq \left((v(n))^{-\frac{1}{p}} \|x\|_{C,v,p} \right)^{q-p} \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\phi(n)}\| \right]^{p} v(k)$$

$$\leq \infty$$

This implies that $x \in C_1[d(v,q)]$.

Comment. If we put $\triangle^m x$ instead of x, where $m \in \mathbb{N}$ and $\triangle^0 x_k = \{x_k\}$, $\triangle x_k = x_k - x_{k+1}$, $\triangle^m x_k = \triangle^{m-1} x_k - \triangle^{m-1} x_{k+1} = \sum_{v=1}^m (-1)^v \binom{m}{v} x_{k+v}$ for all $k \in \mathbb{N}$ in the definition of $C_1[d(v,p)]$, we obtain Cesàro summable generalized Lorentz difference sequence space $C_1[d(v,\Delta^m,p)]$ of order m. It can be shown that the sequence space $C_1[d(v,\Delta^m,p)]$ is a Banach space with norm

$$||x||_{C,v,\triangle^m,p} = \sum_{k=1}^m ||x_{\phi(k)}|| + \left(\sum_{k=1}^\infty \left[\frac{1}{k}\sum_{n=1}^k ||\triangle^m x_{\phi(n)}||\right]^p v(k)\right)^{\frac{1}{p}},$$

where $\{\|\Delta^m x_{\phi(n)}\|\}$ denotes the non-increasing rearrangements of $\{\|\Delta^m x_n\|\}$, and properties in this work.

References

- Cui Y. A., Hudzik H., Some Geometric Properties Related to Fixed Point Theory in Cesàro Spaces, Collect. Math., 50 (3) (1999), 277-288.
- [2] Hardy G. H., Littlewood J. E., Pólya G., Inequalities, Cambridge Univ. Press, 1967.
- [3] Kato M., On Lorentz Spaces $l_{p,q}$ {E}, Hiroshima Math. J., 6 (1976), 73-93
- [4] Kizmaz H., On Certain Sequence Spaces, Canad. Math. Bull., Vol. 24 (2), 1981.
- [5] Lee P. Y., Cesàro Sequence Space, Math. Chronicle, 13 (1984),29-45.
- [6] Lorentz G. G., Some New Functional Spaces, Ann. Math., 51 (1950), 37-55.
- [7] Lorentz G. G., On the Theory of Spaces Λ, Pasific J. Math., 1 (1951), 411-429.
- [8] Maddox I. J., Elements of Functional Analysis, Cambridge Univ. Press, 1970.
- [9] Miyazaki K., (p,q)-Nuclear and (p,q)-Integral Operators, Hiroshima Math. J., 4(1974), 99-132.
- [10] Nawrocki M., Ortynski A., The Mackey Topology and Complemented Subspaces of Lorentz Sequence Spaces d(w, p) for 0 , Trans. Amer. Math. Soc., 287 (1985).
- [11] Petrot N., Suantai S., On Uniform Kadec-Klee Properties and Rodundity in Generalized Cesàro Sequence Spaces, Internat. J. Math. Sci., 2 (2004), 91-97.
- [12] Popa N., Basic Sequences and Subspaces in Lorentz Sequence Spaces Without Local Convexity, Trans. Amer. Math. Soc., 263 (1981), 431-456.
- [13] Sanhan W., Suantai S., On k-nearly Uniform Convex Properties in Generalized Cesàro Sequence Spaces, Internat. J. Math. Sci., 57 (2003), 3599-3607.
- [14] Shiue J. S., On the Cesàro Sequence Spaces, Tamkang J. Math., 1 (1970), 19-25.

 $Current\ address$: O. Oğur: Giresun University, Art and Science Faculty, Department of Mathematics, Güre, Giresun, TURKEY

E-mail address: oguz.ogur@giresun.edu.tr

Current address: B. Sağır: Ondokuz Mayıs University, Art and Science Faculty, Department of Mathematics, Kurupelit campus, Samsun, TURKEY

E-mail address: bduyar@omu.edu.tr