ESTIMATE FOR INITIAL MACLAURIN COEFFICIENTS OF SUBCLASS OF BI-UNIVALENT FUNCTIONS INVOLVING THE Q- DERIVATIVE OPERATOR

PRAMILA VIJAYWARGIYA AND LOKESH VIJAYVERGY

Abstract

In this paper, estimates for second and third MacLaurin coefficients of a new subclass of analytic and bi-univalent functions in the open unit disk are determined, and certain special cases are also indicated.

1. Introduction and definitions

Let \mathcal{A} be the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. The Koebe one-quarter theorem [3] ensures that the image of \mathbb{D} under every univalent function $f \in \mathcal{A}$ contains the disk with the center in the origin and the radius $1 / 4$. Thus, every univalent function $f \in \mathcal{A}$ has an inverse $f^{-1}: f(\mathbb{D}) \rightarrow \mathbb{D}$, satisfying $f^{-1}(f(z))=z$, $z \in \mathbb{D}$, and

$$
f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

Moreover, it is easy to see that the inverse function has the series expansion of the form

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots,(w \in f(\mathbb{D}) . \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{D}, if both f and f^{-1} are univalent in \mathbb{D}, in the sense that f^{-1} has a univalent analytic continuation to \mathbb{D}, and we denote by σ this class of bi-univalent functions. For a brief history and interesting examples of functions in the class σ, see [11] (see also [2]). In fact, the aforecited work of

[^0]Srivastava et al. [11] essentially revived the investigation of various subclasses of the bi-univalent function class σ in recent years; it was followed by such works as those by Frasin and Aouf [4], Goyal and Goswami [5], Xu et al.[12, 13] (see also the references cited in each of them).

In [9], the authors defined the classes of functions $\mathcal{P}_{m}(\beta)$ as follows:
Let $\mathcal{P}_{m}(\beta)$, with $m \geq 2$ and $0 \leq \beta<1$, denote the class of univalent analytic functions p, normalized with $p(0)=1$, and satisfying

$$
\int_{0}^{2 \pi}\left|\frac{\operatorname{Re} p(z)-\beta}{1-\beta}\right| \mathrm{d} \theta \leq m \pi
$$

where $z=r e^{i \theta} \in \mathbb{D}$.
For $\beta=0$, we denote $\mathcal{P}_{m}:=\mathcal{P}_{m}(0)$. Paatero [8] showed that every function $p \in \mathcal{P}_{m}$ can be given by the Stieltjes integral representation

$$
\begin{equation*}
p(z)=\int_{0}^{2 \pi} \frac{1+z e^{i t}}{1-z e^{i t}} \mathrm{~d} \mu(t) \tag{1.3}
\end{equation*}
$$

where $\mu(t)$ is a real-valued function with bounded variation on $[0,2 \pi]$, which satisfies

$$
\begin{equation*}
\int_{0}^{2 \pi} d \mu(t)=2 \pi \quad \text { and } \quad \int_{0}^{2 \pi}|d \mu(t)| \leq m \pi, m \geq 2 \tag{1.4}
\end{equation*}
$$

Clearly, $\mathcal{P}:=\mathcal{P}_{2}$ is the well-known class of Carathéodory functions, i.e. the normalized functions with positive real part in the open unit disk \mathbb{D}.

Quantum calculus is ordinary classical calculus without the notion of limits. It defines q-calculus and h-calculus. Here h ostensibly stands for Planck's constant, while q stands for quantum. Recently, the area of q-calculus has attracted the series attention of researchers. This great interest is due to its application in various branches of mathematics and physics. The application of q-calculus was initiated by Jackson $[6,7]$. He was the first to develop q-integral and q-derivative in a systematic way. Later, geometrical interpretation of q-analysis has been recognized through studies on quantum groups. It also suggests a relation between integrable systems and q-analysis. A comprehensive study on applications of q-calculus in operator theory may be found in [1]. For a function $f \in \mathcal{A}$ given by (1.1) and $0<q<1$, the q - derivative of function f is defined by (see $[6,7]$)

$$
\begin{equation*}
D_{q} f(z)=\frac{f(z)-f(q z)}{z(1-q)}, z \neq 0 \tag{1.5}
\end{equation*}
$$

$D_{q} f(0)=f^{\prime}(0)$ and $D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right)$. From (1.5), we deduce that

$$
\begin{equation*}
D_{q} f(z)=1+\sum_{k=2}^{\infty}[k]_{q} a_{k} z^{k-1} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
[k]_{q}=\frac{1-q^{k}}{1-q} \tag{1.7}
\end{equation*}
$$

As $q \rightarrow 1^{-},[k]_{q} \rightarrow k$. For a function $g(z)=z^{k}$, we get

$$
\begin{gathered}
D_{q} f(z)=[k]_{q} z^{k-1} \\
\lim _{q \rightarrow 1^{-}}\left(D_{q}\left(z^{k}\right)\right)=k z^{k-1}=g^{\prime}(z)
\end{gathered}
$$

where g^{\prime} is the ordinary derivative.
By making use of the q-derivative of a function $f \in \mathcal{A}$, we introduce a new subclass of the function class σ and find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in this new subclass of the function class σ.

Definition 1.1. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{B R}_{\sigma}^{q}(m ; \beta ; \lambda)$, with $m \geq 2, \lambda \geq 1$,
$q \in(0,1)$ and $0 \leq \beta<1$, if the following conditions are satisfied

$$
\begin{aligned}
& (1-\lambda) \frac{f(z)}{z}+\lambda D_{q} f(z) \in \mathcal{P}_{m}(\beta) \\
& (1-\lambda) \frac{g(w)}{w}+\lambda D_{q} g(w) \in \mathcal{P}_{m}(\beta)
\end{aligned}
$$

where $g=f^{-1}$ is given by (1.2) and $z, w \in \mathbb{D}$.

2. Main Results

In order to prove our main result for the functions $f \in \mathcal{B}^{q}(m ; \beta ; \lambda)$, we need the following lemma:

Lemma 2.1. Let the function $\Phi(z)=1+\sum_{n=1}^{\infty} h_{n} z^{n}, z \in \mathbb{D}$, such that $\Phi \in \mathcal{P}_{m}(\beta)$.
Then,

$$
\left|h_{n}\right| \leq m(1-\beta), n \geq 1
$$

Proof. Proof of this lemma is straight forward, if we write
$\Phi(z)=(1-\beta) p(z)+\beta, p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} \in \mathcal{P}_{m}$
Then $\Phi(z)=1+(1-\beta) \sum_{n=1}^{\infty} p_{n} z^{n}$
This gives

$$
h_{n}=(1-\beta) p_{n} .
$$

Using known result [10] for class P_{m}, we have our result.
Theorem 2.1. Let the function f given by (1.1) be in the class $\mathcal{B R}_{\sigma}^{q}(m ; \beta ; \lambda)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{m(1-\beta)}{1-\lambda+\lambda[3]_{q}}} ; \frac{m(1-\beta)}{1-\lambda+\lambda[2]_{q}}\right\}
$$

$$
\left|a_{3}\right| \leq \frac{m(1-\beta)}{1-\lambda+\lambda[3]_{q}}
$$

and

$$
\left|2 a_{2}^{2}-a_{3}\right| \leq \frac{m(1-\beta)}{1-\lambda+\lambda[3]_{q}}
$$

Proof. Since $\mathcal{B R}_{\sigma}^{q}(m ; \beta ; \lambda)$, from the Definition 1.1 we have

$$
\begin{equation*}
(1-\lambda) \frac{f(z)}{z}+\lambda D_{q} f(z)=\varphi(z) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda) \frac{g(w)}{w}+\lambda D_{q} g(w)=\psi(w) \tag{2.2}
\end{equation*}
$$

where $\varphi, \psi \in \mathcal{P}_{m}(\beta)$ and $g=f^{-1}$ is given by (1.2). Using the fact that the functions φ and ψ have the following Taylor expansions

$$
\begin{align*}
& \varphi(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots, z \in \mathbb{D} \tag{2.3}\\
& \psi(w)=1+d_{1} w+d_{2} w^{2}+d_{3} w^{3}+\ldots, w \in \mathbb{D} \tag{2.4}
\end{align*}
$$

and equating the coefficients in (2.1) and (2.2), from (1.2) we get

$$
\begin{gather*}
\left(1-\lambda+\lambda[2]_{q}\right) a_{2}=c_{1} \tag{2.5}\\
\left(1-\lambda+\lambda[3]_{q}\right) a_{3}=c_{2} \tag{2.6}\\
-\left(1-\lambda+\lambda[2]_{q}\right) a_{2}=d_{1} \tag{2.7}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(1-\lambda+\lambda[3]_{q}\right)\left(2 a_{2}^{2}-a_{3}\right)=d_{2} . \tag{2.8}
\end{equation*}
$$

Since $\varphi, \psi \in \mathcal{P}_{m}(\beta)$, according to Lemma 2.1, we have:

$$
\begin{align*}
& \left|c_{n}\right| \leq m(1-\beta) \tag{2.9}\\
& \left|d_{n}\right| \leq m(1-\beta) \tag{2.10}
\end{align*}
$$

for $n \geq 1$ and thus, from (2.6) and (2.8), by using the inequalities (2.9) and (2.10), we obtain

$$
\left|a_{2}\right|^{2} \leq \frac{\left|c_{2}\right|+\left|d_{2}\right|}{2\left(1-\lambda+\lambda[3]_{q}\right)} \leq \frac{m(1-\beta)}{\left(1-\lambda+\lambda[3]_{q}\right)}
$$

which gives

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{m(1-\beta)}{\left.1-\lambda+\lambda[3]_{q}\right)}} \tag{2.11}
\end{equation*}
$$

From (2.5), by using (2.9) we obtain immediately that

$$
\left|a_{2}\right|=\left|\frac{c_{1}}{1-\lambda+\lambda[2]_{q}}\right| \leq \frac{m(1-\beta)}{1-\lambda+\lambda[2]_{q}}
$$

and combining this with the inequality (2.11), the first inequality of the conclusion is proved. According to (2.6), from (2.9) we easily obtain

$$
\left|a_{3}\right|=\left|\frac{c_{2}}{1-\lambda+\lambda[3]_{q}}\right| \leq \frac{m(1-\beta)}{\left.1-\lambda+\lambda[3]_{q}\right]}
$$

and from (2.8), by using (2.9) and (2.10) we finally deduce

$$
\left|2 a_{2}^{2}-a_{3}\right|=\left|\frac{d_{2}}{1-\lambda+\lambda[3]_{q}}\right| \leq \frac{m(1-\beta)}{1-\lambda+\lambda[3]_{q}}
$$

which completes our proof.
Setting $\lambda=1$ in Theorem 2.1 we obtain the following result:
Corollary 2.1. Let the function f given by (1.1) be in the class $\mathcal{B R}_{\sigma}^{q}(m ; \beta ; 1)$. Then

$$
\begin{gathered}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{m(1-\beta)}{[3]_{q}}} ; \frac{m(1-\beta)}{[2]_{q}}\right\}, \\
\left|a_{3}\right| \leq \frac{m(1-\beta)}{[3]_{q}}
\end{gathered}
$$

and

$$
\left|2 a_{2}^{2}-a_{3}\right| \leq \frac{m(1-\beta)}{[3]_{q}}
$$

Taking $q \rightarrow 1^{-}$in Theorem 2.1, we obtain the following result:
Corollary 2.2. Let the function f given by (1.1) be in the class $\mathcal{B R}_{\sigma}^{\prime}(m ; \beta ; \lambda)$. Then

$$
\begin{gathered}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{m(1-\beta)}{1+2 \lambda}} ; \frac{m(1-\beta)}{1+\lambda}\right\} \\
\left|a_{3}\right| \leq \frac{m(1-\beta)}{1+2 \lambda}
\end{gathered}
$$

and

$$
\left|2 a_{2}^{2}-a_{3}\right| \leq \frac{m(1-\beta)}{1+2 \lambda}
$$

Setting $\beta=0$ in Theorem 2.1 we obtain the following result:
Corollary 2.3. Let the function f given by (1.1) be in the class $\mathcal{B R}_{\sigma}^{q}(m ; 0 ; \lambda)$. Then

$$
\begin{gathered}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{m}{1-\lambda+\lambda[3]_{q}}} ; \frac{m}{1-\lambda+\lambda[2]_{q}}\right\} \\
\left|a_{3}\right| \leq \frac{m}{1-\lambda+\lambda[3]_{q}}
\end{gathered}
$$

and

$$
\left|2 a_{2}^{2}-a_{3}\right| \leq \frac{m}{1-\lambda+\lambda[3]_{q}}
$$

Setting $\beta=0, \lambda=1$ in Theorem 2.1 we obtain the following result:
Corollary 2.4. Let the function f given by (1.1) be in the class $\mathcal{B R}_{\sigma}^{q}(m ; 0 ; 1)$. Then

$$
\begin{gathered}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{m}{[3]_{q}}} ; \frac{m}{[2]_{q}}\right\}, \\
\left|a_{3}\right| \leq \frac{m}{[3]_{q}}
\end{gathered}
$$

and

$$
\left|2 a_{2}^{2}-a_{3}\right| \leq \frac{m}{[3]_{q}}
$$

Setting $\beta=0, \lambda=1, q \rightarrow 1^{-}$in Theorem 2.1 we obtain the following result:
Corollary 2.5. Let the function f given by (1.1) be in the class $\mathcal{B R}_{\sigma}^{\prime}(m ; 0 ; 1)$. Then

$$
\begin{gathered}
\left|a_{2}\right| \leq \sqrt{\frac{m}{3}} \\
\left|a_{3}\right| \leq \frac{m}{3}
\end{gathered}
$$

and

$$
\left|2 a_{2}^{2}-a_{3}\right| \leq \frac{m}{3}
$$

Competing interest. The authors declare that they have no competing interests.
Author's contribution. We further declare that all authors contribute equally.

References

[1] A. Aral, V. Gupta and R.P.Agrawal, Applications of q-calculus in Operator Theory, Springer, New York, USA, 2013.
[2] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Stud. Univ. BabeşBolyai Math., 31(1986), no. 2, 70-77.
[3] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften Series, 259, Springer Verlag, New York, 1983.
[4] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), no. 9, 1569-1573.
[5] S. P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20(3)(2012), 179182.
[6] F. H. Jackson, On q-definite integrals, Quarterly J. Pure Appl. Math. 41 (1910), 193-203.
[7] F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh 46 (1908), 253-281.
[8] V. Paatero, Uber die konforme Abbildung von Gebieten deren Rander von beschrÃ®nkter Drehung sind, Ann. Acad. Sci. Fenn. Ser. A33 No. 9 (1931).
[9] K. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31(1975), 311-323.
[10] B. Pinchuk, Functions with bounded boundary rotation, Israel J. Math., 10(1971), 7-16.
[11] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett., 23(2010), no. 10, 1188-1192.
[12] Q.-H. Xu, Y.-C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012) 990-994.
[13] Q.-H. Xu, H.-G. Xiao and H.M. Srivastava, A certain general subclass of analytic and biunivalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012) 11461165.

Current address: Pramila Vijaywargiya: JECRC Foundation, Jaipur, India
E-mail address: Pramilavijay1979@gmail.com
Current address: Lokesh Vijayvergy: Jaipuria Institute of Management, Jaipur, India
E-mail address: lokeshvijay79@gmail.com

[^0]: Received by the editors: May 24, 2016, Accepted: October 03, 2016.
 2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C50.
 Key words and phrases. Univalent functions, bi-univalent functions, bi-starlike function, biconvex function, functions with bounded boundary rotation, coefficient estimates, q-derivative operator.

