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RELIABILITY PROPERTIES OF THE SYSTEM CONSTRUCTED
BY SWITCHING FROM ONE COMPONENT TO

TWO-DEPENDENT UNIT REDUNDANT STANDBY SYSTEM

MEHMET YILMAZ, MUHAMMET BEKÇI, AND BIROL TOPÇU

Abstract. In this work, we consider a system with switching towards to
standby redundant system composed of two dependent components. Marginal
distributions of component lifetimes are exponential and joint distribution be-
longs to Farlie-Gumbel-Morgenstern family. We examine reliability properties
of switching system such as shape of hazard rate function, mean residual life-
time and some stochastic orders under determined circumstances on parameter
spaces.

1. Introduction

Let T1 and T2 be the component lifetimes whose joint distribution is the bivari-
ate Farlie-Gumbel-Morgenstern distribution with exponential marginals. The joint
survival function of the components is given by

S (t1, t2) = S1 (t1)S2 (t2) [1 + αF1 (t1)F2 (t2)], ti > 0,

where α ∈ [−1, 1] denotes association parameter, Si and Fi (i = 1, 2) are the sur-
vival and distribution functions of T1 and T2, respectively (Morgenstern 1956,[5]
Gumbel 1960, [3]). Throughout this study, it will be assumed that marginal distri-
butions of the lifetimes are exponential with means θi. Let D be a binary random
variable which determines the status of the switching device. Assume that D is a
Bernoulli random variable with probability λ. Operation of this switching device is
independent from the functioning of the components. While D = 1, unit1 conducts
a task alone, and while D = 0, a parallel system, associatively composed of unit1
and unit2, carries out the task. So, changeover device switches from one component
to two components in parallel. Let Tsw denote the lifetime of the system established
in this way, then it is clear that

Tsw = DT1 + (1−D)max {T1, T2}
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and hence the survival function of Tsw is found as

S (t) = Pr (T1 > t)Pr (D = 1) + Pr (max {T1, T2} > t)Pr (D = 0) .

Based on the above definitions and assumptions, we clearly can rewrite S(t) as
follows:

S (t) = λS1 (t) + (1− λ) [1− F (t, t)]
The following examples can be given to illustrate the use of this system constructed
in this manner in practice; waiting times of the customers serving in a multichannel
queuing system with two associative servers ( secondary server is considered as a
cold standby). The data of amount of water in the reservoir to be fed from at least
one source. Supply-demand balance data in the production of a factory that has
received a request from at least one customer. Lifetimes or recovery times data
obtained from patients with two groups; such that, while the specific treatment
is applied to first group, other appropriate treatment methods are also applied to
second group in addition to the same treatment. Total duration data of movements
in gold and dollar prices moving above a certain threshold level.

2. Distributional Properties

Let φ stand for the parameter vector (θ1, θ2, α, λ) then the distribution function
of the Tsw is given by

F (t;φ) = λF1 (t; θ1) + (1− λ) {F1 (t; θ1)F2 (t; θ2) [1 + αS1 (t; θ1)S2 (t; θ2)]} (2.1)

where Fi (t; θi) = 1 − e−
t
θi , (i = 1, 2) and Si = 1 − Fi. Hence, by rewriting (2.1),

we obtain

F (t;φ) = λ
(
1− e−

t
θ1

)
+ (1− λ)

{(
1− e−

t
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)(
1− e−

t
θ2

) [
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t
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)(
e−

t
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)]}
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(
1− e−

t
θ1

)
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[{
e
−t
(

1
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+ 1
θ2

)
− e−

t
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+ α
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e
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(2.2)

By differentiating (2.2) and organizing obtained result, we have the probability
density function as follows:

f(t;φ) =
1

θ1
e−

t
θ1 + (1− λ)

{
1

θ2
e−

t
θ2 −

(
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1
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(
1
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(2.3)

We have the different shapes of the probability density function for various values
of the switching probability and association parameter.
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Figure 1. Shapes of the probability density function with respect to
some values of association parameter.
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Figure 2. Shapes of the probability density function with respect to
some values of switching probabilities
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The peaks of the probability density functions are flattened while probability of
switching decreases (i.e. λ↑). These begin to look like the exponential distribution.
In addition, shape of the probability density function is quite different according
to whether the mean life of a spare part is also be larger or smaller than the main
part.

2.1. Moment generating function. The moment generating function of Tsw is
obtained as

MTsw(v) =
1

1− θ1v
+ (1− λ)

{[
1

1− θ2v
− 1
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θ1+θ2

v

]
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1− θ1θ2
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]}
,

where v < min
{
1
θ1
, 1θ2

}
. Let µk = E

[
T ksw

]
denote the kth raw moment then

µk = k!

θk1 + (1− λ)


[
θk2 −

(
θ1θ2
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)k]
+α

[(
θ1θ2
θ1+2θ2
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(
1 + 1

2k

) (
θ1θ2
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)k
+
(

θ1θ2
2θ1+θ2

)k]

 .

2.2. Methods for random number generation. We will examine two cases
according to the sign of the association parameter α.
Case1. −1 ≤ α ≤ 0

Let’s rewrite the distribution function given with (2.1) in the following form;

F (t) = λF1(t) + (1− λ) {F1(t)F2(t) [1 + α− α+ α (1− F1(t)) (1− F2(t))]}
= λF1(t) + (1− λ) (1 + α)F1(t)F2(t)
+ (1− λ) (−α)F1(t)F2(t) [1− (1− F1(t)) (1− F2(t))]

Then F (t) can be represented as a mixture of three distributions. Accordingly, com-
ponent weights respectively are ω1 = λ, ω2 = (1− λ) (1 + α), ω3 = (1− λ) (−α)
with ω1 + ω2 + ω3 = 1 (ωi ≥ 0). Consequently, the component distributions are;

G1(t) = F1(t) = Pr (T1 ≤ t) ,

G2(t) = F1(t)F2(t) = Prα=0 (max {T1, T2} ≤ t) ,

G3(t) = F1(t)F2(t) [1− S1(t)S2(t)]
= Prα=0 (max {T1, T2} ≤ t) Prα=0 (min {T1, T2} ≤ t) ,

where the notation Prα=0 (•) represents the case of independence of T1 and T2.
Case2. 0 < α ≤ 1
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The distribution function given with (2.1), can be rewritten as

F (t) = λF1(t) + (1− λ) {F1(t)F2(t) [1− α+ α+ α (1− F1(t)) (1− F2(t))]}
= λF1(t) + (1− λ) (1− α)F1(t)F2(t)
+ α (1− λ)F1(t)F2(t) [1 + (1− F1(t)) (1− F2(t))] .

Then we can see that F (t) can be represented by a mixture of three distributions
such that the component weights are ω1 = λ, ω2 = (1− λ) (1− α), ω3 = α (1− λ)
with ω1+ω2+ω3 = 1 (ωi ≥ 0). Accordingly, component distribution functions are
given by

G1(t) = F1(t) = Pr (T1 ≤ t) ,
G2(t) = F1(t)F2(t) = Prα=0 (max {T1, T2} ≤ t) ,

G3(t) = F1(t)F2(t) [1 + S1(t)S2(t)] = Prα=1 (max {T1, T2} ≤ t) .
Whereby, the following further steps to generate a random number from lifetime
distribution of the system are given.
step1. Input parameter values θ1, θ2, α, λ
step2. Generate a random number u from uniform distribution on (0, 1)
step3. If α ≤ 0, then go to step4 otherwise go to step5;
step4.
• If u ≤ λ, then F1(t) = u⇒ t = −θ1 log (1− u),

else
• If u ≤ λ + (1− λ) (1 + α), then G2(t) = u ⇒ t = G−12 (u). The following

calculations can be followed to the solution of the equation: Let δ = 1−e
−t
θ1

then an appropriate solution for δ ∈ [0, 1] can be obtained by the equation
δ
(
1− (1− δ)

θ1
θ2

)
= u. Hence t = −θ1 log (1− δ),

else
• Solve the equation G3(t) = u ⇒ t = G−13 (u). This equation can be solved

with simple additional regulations such that by letting δ = 1 − e
−t
θ1 , then

numerically solve the equation δ
(
1− (1− δ)

θ1
θ2

) [
1− (1− δ)(1− δ)

θ1
θ2

]
=

u. Hence t = −θ1 log (1− δ).
step5.
• If u ≤ λ, then F1(t) = u⇒ t = −θ1 log (1− u),

else
• If u ≤ λ+ (1− λ) (1− α), then solve G2(t) = u⇒ t = G−12 (u)

i.e. solve δ
(
1− (1− δ)

θ1
θ2

)
= u then t = −θ1 log (1− δ),

else
• Solve the equation G3(t) = u⇒ t = G−13 (u),

i.e. solve δ
(
1− (1− δ)

θ1
θ2

) [
1 + (1− δ)(1− δ)

θ1
θ2

]
= u

then t = −θ1 log (1− δ).



218 MEHMET YILMAZ, MUHAMMET BEKÇI, AND BIROL TOPÇU

Detailed information about a number generation by inverse method, and a number
generation from mixed distribution, can be found in Gentle (2004), [2]

2.3. Parameter estimations by maximum likelihood. Let t1, t2, ..., tn be the
observed lifetimes of size n from the system. Then the log-likelihood function is
given by

logL (θ1, θ2, α, λ;t) =
n∑
i=1

log

(
λf1 (ti; θ1) + (1− λ) f1 (ti; θ1) f2 (ti; θ2)
×[1 + α (2F1 (ti; θ1)− 1) (2F2 (ti; θ2)− 1)]

)
=

n∑
i=1

log (f1 (ti; θ1))

+
n∑
i=1

log

(
λ+ (1− λ) f2 (ti; θ2)

×[1 + α (2F1 (ti; θ1)− 1) (2F2 (ti; θ2)− 1)]

)
(2.4)

By differentiating (2.4) with respect to (θ1, θ2, α, λ) then we have

∂ logL

∂θ1
=

n∑
i=1

∂

∂θ1
log (f1 (ti; θ1))

+2 (1− λ)α

×
n∑
i=1

∂F1(ti;θ1)
∂θ1

f2 (ti; θ2) (2F2 (ti; θ2)− 1)
(λ+ (1− λ) f2 (ti; θ2) [1 + α (2F1 (ti; θ1)− 1) (2F2 (ti; θ2)− 1)])

∂ logL

∂θ2
= (1− λ)

×
n∑
i=1

∂f2(ti;θ2)
∂θ2

[1 + α (2F1 (ti; θ1)− 1) (2F2 (ti; θ2)− 1)]
(λ+ (1− λ) f2 (ti; θ2) [1 + α (2F1 (ti; θ1)− 1) (2F2 (ti; θ2)− 1)])

+ (1− λ)

×
n∑
i=1

2αf2 (ti; θ2)
∂F2(ti;θ2)

∂θ2
(2F1 (ti; θ1)− 1)

(λ+ (1− λ) f2 (ti; θ2) [1 + α (2F1 (ti; θ1)− 1) (2F2 (ti; θ2)− 1)])

∂ logL

∂α
= (1− λ)

×
n∑
i=1

f2 (ti; θ2) [(2F1 (ti; θ1)− 1) (2F2 (ti; θ2)− 1)]
(λ+ (1− λ) f2 (ti; θ2) [1 + α (2F1 (ti; θ1)− 1) (2F2 (ti; θ2)− 1)])

∂ logL

∂λ
=

n∑
i=1

1− f2 (ti; θ2) [1 + α (2F1 (ti; θ1)− 1) (2F2 (ti; θ2)− 1)]
(λ+ (1− λ) f2 (ti; θ2) [1 + α (2F1 (ti; θ1)− 1) (2F2 (ti; θ2)− 1)])

By equating above system of equations to zero, then we obtain the maximum like-

lihood estimates φ̂ =
(
θ̂1, θ̂2, α̂, λ̂

)
by solving numerically this nonlinear system of

equations.
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2.4. Estimating by EM algorithm. The p.d.f of Tsw can be represented by a
mixture of two p.d.fs as the following form:

fTsw(t; θ1, θ2, α, w1, w2) = w1f1(t; θ1) + w2f12(t; θ1, θ2, α), w1 + w2 = 1

where f1 stands for p.d.f of Exp(θ1)and f12 stands for p.d.f of (T1, T2). We use
Lagrange multipliers to solve a constrained maximization problem.

logL (θ1, θ2, α, w1, w2;t)

=

n∑
i=1

log (w1f1 (ti; θ1) + w2f12 (ti; θ1, θ2, α))− ε (w1 + w2 − 1) (2.5)

Straightforwardly, we get the system of equations, by differentiating (2.5) with
respect to (φ,w1, w2) and equating it to zero, as follows:

∂ logL
∂θ1

=
n∑
i=1

(
w1

∂
∂θ1

f1(ti;θ1)+w2
∂
∂θ1

f12(ti;θ1,θ2,α)
)

(w1f1(ti;θ1)+w2f12(ti;θ1,θ2,α))

=
n∑
i=1

w1f1(ti;θ1)
∂
∂θ1

log(f1(ti;θ1))+w2f12(ti;θ1,θ2,α)
∂
∂θ1

log(f12(ti;θ1,θ2,α))

(w1f1(ti;θ1)+w2f12(ti;θ1,θ2,α))

=
n∑
i=1

Pr (1| ti) ∂
∂θ1

log (f1 (ti; θ1))

+
n∑
i=1

Pr (2| ti) ∂
∂θ1

log (f12 (ti; θ1, θ2, α)) = 0

(2.6)

∂ logL
∂θ2

=
n∑
i=1

(
w2

∂
∂θ2

f12(ti;θ1,θ2,α)
)

(w1f1(ti;θ1)+w2f12(ti;θ1,θ2,α))

=
n∑
i=1

w2f12(ti;θ1,θ2,α)
∂
∂θ2

(log f12(ti;θ1,θ2,α))

(w1f1(ti;θ1)+w2f12(ti;θ1,θ2,α))

=
n∑
i=1

Pr (2| ti) ∂
∂θ2

(log f12 (ti; θ1, θ2, α)) = 0

(2.7)

∂ logL
∂α =

n∑
i=1

(w2 ∂
∂α f12(ti;θ1,θ2,α))

(w1f1(ti;θ1)+w2f12(ti;θ1,θ2,α))

=
n∑
i=1

w2f12(ti;θ1,θ2,α)
∂
∂α log(f12(ti;θ1,θ2,α))

(w1f1(ti;θ1)+w2f12(ti;θ1,θ2,α))

=
n∑
i=1

Pr (2| ti) ∂
∂α log (f12 (ti; θ1, θ2, α)) = 0

(2.8)

∂ logL

∂w1
=

n∑
i=1

f1 (ti; θ1)

(w1f1 (ti; θ1) + w2f12 (ti; θ1, θ2, α))
− ε = 0 (2.9)

∂ logL

∂w2
=

n∑
i=1

f12 (ti; θ1, θ2, α)

(w1f1 (ti; θ1) + w2f12 (ti; θ1, θ2, α))
− ε = 0 (2.10)
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If both sides of the last two equations are multiplied by w1 and w2, respectively
and by taking summation of both terms, then we have

n∑
i=1

w1f1(ti;θ1)
(w1f1(ti;θ1)+w2f12(ti;θ1,θ2,α))

+
n∑
i=1

w2f12(ti;θ1,θ2,α)
(w1f1(ti;θ1)+w2f12(ti;θ1,θ2,α))

− ε (w1 + w2) = 0

=
n∑
i=1

w1f1(ti;θ1)+w2f12(ti;θ1,θ2,α)
(w1f1(ti;θ1)+w2f12(ti;θ1,θ2,α))

− ε = 0

This implies ε = n. Hereby, equation (2.9) or (2.10) yields EM estimates of λ as λ̂ =
1
n

n∑
i=1

Pr (1| ti). If initial values θ01, θ02, α0, λ0 are given, then Pr (1|xi) and Pr (2|xi)

are calculated. Consequently, solving the equations (2.6)-(2.8) numerically gives
updated values of parameters. This step is repeated iteratively until convergence
is detected.
Everitt and Hand (1981), [1] may be seen as a source for further reading about
using EM algorithm for mixed distributions.

3. Reliability Properties

In this subsection we introduce the reliability function, the hazard rate function
and the mean residual life function for this switching system.

3.1. Reliability function. Let Si(t) = 1−Fi(t) stand for the survival function of
i.th component lifetime then the survival function of Tsw is given by

S(t) = λS1(t) + (1− λ) {1− F1(t)F2(t) [1 + αS1(t)S2(t)]}

Since the marginal survival functions are e−
t
θ1 and e−

t
θ2 we have

S(t) = λe−
t
θ1 + (1− λ)

{
1−

(
1− e−

t
θ1

)(
1− e−

t
θ2

) [
1 + α

(
e−

t
θ1

)(
e−

t
θ2

)]}
= e−

t
θ1 + (1− λ) e−

t
θ2

(
1− e−

t
θ1

)
−α (1− λ) e−t

(
1
θ1
+ 1
θ2

) {(
1− e−

t
θ1

)(
1− e−

t
θ2

)}
(3.1)

It can be concluded that when two components are negatively associated, high
switching probability can raise the survival probability of the system.
Even if mean lifetime of the spare part is short, these still work with higher proba-
bility when they are connected together in parallel. According to these conditions,
it will also be attractive for us to examine the behavior of the system’s failure rate
function.
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3.2. Hazard rate function. The failure or hazard rate function is defined by
r(t) = − d

dt log (S(t)) =
f(t)
S(t) . Accordingly, from the expressions (2.3) and (3.1),

hazard rate function of Tsw is given by

r(t) =
1

θ1

[
1 + (1− λ) 1

θ2

×

{
(θ1−θ2)e

t( 1
θ1
)−θ1

}
+α

{
2θ1e

−t( 1
θ2
)−θ1+(θ1+θ2)e

−t( 1
θ1
)−(2θ1+θ2)e

−t( 1
θ1

+ 1
θ2
)
}

e
t( 1
θ2
)
+(1−λ)

[(
e
t
θ1 −1

)
+α

(
e
−t( 1

θ2
)−1+e−t(

1
θ1
)−e−t(

1
θ1

+ 1
θ2
)
)] ]

(3.2)

The hazard rate of the system exhibits flexibility according to the switch transition
probability λ and association parameter α. In this context, our intent to examine
the reliability properties such as failure rate and mean residual life of the system,
and obtain some orderings.
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Figure 3. Shapes of the hazard rate function with respect to some
values of association parameter.
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Figure 4. Shapes of the hazard rate function with respect to some
values of switching probability.
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Figure 5. Shapes of the hazard rate function with respect to some
values of association parameter (mean lifetime of second component is
less than main component).
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Figure 6. Shapes of the hazard rate function with respect to some
values of switching probability (mean lifetime of second component is
less than main component).

3.3. Mean residual life function. The mean residual life of the certain part of
age x is defined as the expected value of remaining life of the part (Lai and Xie
2006, [4]). Hence,

µ(x) = E(Tsw − x|Tsw > x) =

∫∞
x
STsw(t)dt

STsw(x)

=

θ1+(1−λ) θ1θ2θ1+θ2
e
−x
θ2

( θ1+θ2
θ1

e
x
θ1 −1

)
−α

1− θ1+θ2
2θ1+θ2

e
−x
θ2 − θ1+θ2

θ1+2θ2
e
−x
θ1 + e

−x( 1
θ1

+ 1
θ2
)

2




1+(1−λ)e
−x
θ2

[(
e
x
θ1 −1

)
−α
{
1−e

−x
θ2 −e

−x
θ1 +e

−x( 1
θ1

+ 1
θ2
)
}] .

(3.3)
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4. Some Orderings

Throughout this section, we will assume that component lifetimes are identical i.e.
θ1 = θ2. Stochastic and hazard rate orderings are investigated based on association
parameter α and switching probability λ.

4.1. Stochastic ordering. Stochastic relationship will be investigated according
to the monotonicity of α or λ. First, let’s look at the definition of stochastic
ordering;
Definition 1: Let X and Y be two random variables defined on the same sup-
port, then X is said to be stochastically smaller than Y , denoted by X≺stY ) if
Pr (X > x) ≤ Pr (Y > x) holds ∀x ∈ (−∞,∞) (Shaked and Shanthikumar 2007,
[6]).
According to this definition, survival function of Tsw is rewritten below by taking
e−

t
θ = u for the simplicity;

S(u;α, λ) = u [1 + (1− λ) (1− u) {1− αu (1− u)}] (4.1)

Firstly, we consider the case of α < α′. It can be easily seen that, regardless of
the sign of α, Sα′(u) ≤ Sα(u) holds for all u. Hence a stochastic relationship

T
(α′;λ)
sw ≺stT (α;λ)sw exists for α < α′. According to existing relationship, we can say
that the lifetime of the system composed of two identical but negatively associated
components regardless of the switching probability is longer.
Secondly, we consider the case of λ < λ′. If someone thinks about visual representa-
tion of the system, then it will be seen immediately that an increment in switching
probability gets a longer lifetime of the system. It is obvious from the statement

(4.1) that Sλ′(u) ≤ Sλ(u) holds. Hence T
(α;λ′)
sw ≺stT (α;λ)sw holds. If the components

are connected to parallel with regardless of the association parameter, then they
extend the lifetime of the system.
Now, we will investigate a relationship when both the association parameter and
the switching probability have a simultaneous increment. Namely, we consider the
case of α < α′ and λ < λ′. Let’s consider the ratio

Sα′,λ′ (u)−Sα,λ(u)
u(1−u) . Then

Sα′,λ′(u)− Sα,λ(u)
u (1− u) = −

(
λ′ − λ

)
+ u (1− u)

[
α (1− λ)− α′

(
1− λ′

)]
.

By noting that u (1− u) ≤ 1 holds, then we conclude that

−
(
λ′ − λ

)
+ α (1− λ)− α′

(
1− λ′

)
= (1− α′)

(
1− λ′

)
− (1− α) (1− λ)

≤ (1− α′) (1− λ)− (1− α) (1− λ)
= − (1− λ) [α′ − α] ≤ 0

namely, the sign of this ratio is negative. Hence Sα′,λ′(u) ≤ Sα,λ(u) i.e. T
(α′;λ′)
sw

≺st T (α;λ)sw holds.
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4.2. Hazard rate orderings.
.

Definition 2: Let X and Y be two random variables defined on the same support
of x, respectively rX and rY denote the hazard rates. If rY (x) ≤ rX (x) holds for
all x ∈ (−∞,∞), then X is said to be smaller than Y in the hazard rate order, and
this relationship is denoted by X≺hrY . (Shaked and Shanthikumar 2007, [6]).
As seen from these figures (3-6), ordering may exist only for switching probability.
However, in terms of being misleading we will first be investigated a relationship
for α < α′. By letting e−

t
θ = u in statement (3.2), then we have

r (u) =
1

θ
− 1
θ
(1− λ)u

 1 + α (1− u) (1− 3u)
(2− λ)− (1− λ)u

[
1 + α(1− u)2

]
 . (4.2)

We decide the monotonicity of (4.2) by taking first derivative of r(u) with respect
to α. Hence

d

dα
r(u) =

−1
θ

(1− λ)u (1− u)[
(2− λ)− (1− λ)u

[
1 + α(1− u)2

]]2
×
[
2 (1− λ)u2 − 3 (2− λ)u+ (2− λ)

]
.

The last multiplier in the statement above is a convex function of u. Furthermore,
its value is 2 − λ > 0 for u = 0 and −2 for u = 1. Thus, one of the roots of a
quadratic polynomial should be in the range (0, 1). The roots of this polynomial
respectively are

u1,2 =
3 (2− λ)±

√
(2− λ) (10− λ)

4 (1− λ) .

Now, u1will be checked whether it is in [0, 1]. Positivity of u1 is obvious from the
statement below

9(2− λ)2−(2− λ) (10− λ) = (2− λ) [9 (2− λ)− (10− λ)] = 8 (2− λ) (1− λ) ≥ 0.
It will be checked whether it is less than 1. For this, positivity of the following
statement is

3 (2− λ)− 4 (1− λ)−
√
(2− λ) (10− λ)

which implies

(2 + λ)
2 − (2− λ) (10− λ) = −16 (1− λ) ≤ 0.

In this case, the sign of derivative changes its direction at least once. Therefore,
the hazard rate ordering is not valid according to association parameter. Now, we
will investigate the existence of the relationship for λ < λ′. By rearranging r (u) as
below:

r (u) =
1

θ
− 1
θ
u

 1 + α (1− u) (1− 3u)
(2−λ)
(1−λ) − u

[
1 + α(1− u)2

]
 ,
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then statement (2− λ) / (1− λ) = 1 + 1/ (1− λ) in brackets increases in λ. r (u)
also increases in λ as long as nominator in brackets is positive. (1− u) (1− 3u) is
a convex function and it equals 1 when u = 0, it is equals 0 when u = 1. The
minimum value of this convex function is −13 which is attained at 2

3 . According to
this, since α (1− u) (1− 3u) ≥ −α

3 holds for α ≥ 0, 1 − α
3 ≥ 0 is valid. On the

other hand, (1− u) (1− 3u) ≤ 1 implies 1 + α (1− u) (1− 3u) ≥ 1 + α ≥ 0 holds
for α < 0. In this case, we obtain rλ (u) ≤ rλ′ (u) for λ < λ′ which implies that

T
(α;λ′)
sw ≺hrT (α;λ)sw is valid.
Whatever the association parameter is higher switching probability makes the sys-
tem more preferable in terms of the hazard rate.

5. Applications

In this section, we want to illustrate the usefulness of the model by using two real
data sets.
Data Set 1. This data set includes customer waiting times and considered as
grouped data by Shanker et.al (2013) [7]. They have proposed two-parameter Lind-
ley distribution to fit waiting times (in minutes) of 100 bank customers in the queue.
They have calculated Chi-Square Statistics for both Lindley and two-parameter
Lindley distributions, which respectively are 0.09402 and 0.07482. Similarly, we
apply goodness-of-fit to this grouped data by considering our model.
As it is thought to be fiction; the system is running with one booth attendant, but
occasionally, another one also serves the customer to help.
Chi-Square goodness of fit test results and the expected frequencies can be obtained
as follows:

TABLE 1. Frequency table of waiting times of 100 bank customers.

The main booth attendant serves the customers with an average of 7 minutes, and
the other one serves with an-average of 6 minutes. Also, it said that, they were
working together in general along the days but independently. According to Lindley
types, quite small chi-square statistics were obtained with this model.
Data Set 2. The two data sets in Table 2 represent the survival times (in days) of
two groups of patients suffering from head and neck cancer disease. Group 1 was
treated using radiotherapy (RT), whereas the patients belonging to Group 2 were
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treated using a combined radiotherapy and chemotherapy (CT). These data set are
taken from Sharma et. al (2015), [8].

TABLE 2. Survival times of patients (RT,RT+CT)

We merge the survival times of the patients belonging to Group 1 and 2. We apply
the model to fit single data set. Maximum Likelihood Estimates and Kolmogorov-
Smirnov statistic for the suggested model parameters are tabulated as follows:

TABLE 3. Estimates of the parameters and Kolmogorov-Smirnov Statistic (K-S)

Most of patients had only been applied only treatment, the effect of the combined
treatment is particularly effective in the positive direction.
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