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ON SURFACES WITH COMMON PSEUDO NULL GEODESIC IN
MINKOWSKI 3-SPACE

UFUK OZTURK

Abstract. The problem of constructing a family of parametric surfaces from
a given pseudo null curve using the Frenet trihedron frame of the curve in the
Minkowski 3-space is studied. The necessary and suffi cient conditions for the
given pseudo null curve to be a common geodesic of the parametric surface are
derived. As a member of the family, considered a ruled surface with a pseudo
null directrix, and some corollaries on the ruled surface are given. Also, some
examples are given to show the family of surfaces with a common pseudo null
geodesic.

1. INTRODUCTION

At the beginning of the twentieth century, A. Einstein’s theory opened a door
for use of new geometries. One of them is the geometry of special relativity, which
induced on each fixed tangent space of an arbitrary Lorentzian manifold. Some of
classical differential geometry topics have been treated by the researchers.
In the Euclidean plane, a straight line is the shortest path between any two

points. But in Euclidean 3-space, a geodesic is the shortest route between two
points, so geodesics play the role of straight lines. Therefore, geodesic curves or
geodesics play a crucial role in many fields such as computer aided geometric design
and robotics etc. ( see [4, 6, 9]).
In Euclidean 3-space, proposed a principle for constructing a surface pencil with

a common isogeodesic curve and focused on the reverse problem by Wang, Tang,
and Tai in [11]: given a space curve, how to characterize those surfaces that pos-
sess this curve as a common geodesic . They also derived a suffi cient condition
on marching-scale functions for which the curve is an isogeodesic curve on a given
surface with the geodesic and isoparametric constraints. In particular, it is gener-
alized the work of Wang and introduced new types coeffi cients for a given curve on
the parametric surface by Kasap, Akyildiz and Orbay in [3]. In Minkowski 3-space,
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surfaces with a common geodesic are studied and the necessary and suffi cient con-
ditions on marching-scale functions are given by Kasap and Akyildiz in [2]. Lately,
the family of surfaces with a common null geodesic is studied by Safak and Kasap
in [8].
In this paper, the problem on how to construct a surface family from a given

pseudo null curve, which is a spacelike curve with a null principal normal, is studied
in Minkowski 3-space E31. In Section 2, the basic definitions of Minkowski 3-space
E31 are explained that will be used throughout the paper. In Section 3, it is shown
that how to derive the necessary and suffi cient conditions for the given pseudo null
curve to be an isoparametric and a geodesic for the parametric surface. By the
way, some representative curves are given to construct the corresponding surfaces
which possess these curves as geodesic curves. In Section 4, when a ruled surface is
considered as a member of the family, some corollaries and examples are given to
illustrate for the ruled surface.

2. PRELIMINARIES

The Minkowski 3-space E31 is the Euclidean 3-space E3 provided with the stan-
dard flat metric given by

g = −dx21 + dx22 + dx23, (2.1)

where (x1, x2, x3) is a rectangular coordinate system of E31. Since g is an indefi-
nite metric, recall that a vector v ∈ E31 can have one of three Lorentzian causal
characters: it can be spacelike if g(v, v) > 0 or v = 0, timelike if g(v, v) < 0 and
null (lightlike) if g(v, v) = 0 and v 6= 0. In particular, the norm (length) of a
vector v is given by ‖v‖ =

√
|g(v, v)| and two vectors ~v and ~w are said to be or-

thogonal, if g(v, w) = 0. Next, recall that an arbitrary curve α = α(s) in E31, can
locally be spacelike, timelike or null (lightlike), if all of its velocity vectors α′(s) are
respectively spacelike, timelike or null (lightlike) (for more details see [5]).
If α is a pseudo null curve which is a spacelike curve with a null principal normal

N , the Frenet formulas have the form (see [7, 10]) T ′

N ′

B′

 =
 0 κ 0

0 τ 0
−κ 0 −τ

 T
N
B

 , (2.2)

where

T (s) = α′(s),

N(s) = α′′(s),

and
g(T, T ) = 1, g(N, N) = g(B, B) = 0,
g(T, N) = g(T, B) = 0, g(N, B) = 1.

(2.3)

For a pseudo null curve, the first curvature κ can take only two values: κ = 0 when
α is a straight line, or κ = 1 in all other cases.
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The Lorentzian vector product of two vectors u = (u1, u2, u3) and v = (v1, v2, v3)
in E31 is defined by

u× v =

∣∣∣∣∣∣
−e1 e2 e3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣
= (u3v2 − u2v3, u3v1 − u1v3, u1v2 − u2v1).

Lemma 1. Let u, v and w be vectors in E31. Then:
(i) g (u × v, w) = det(u, v, w),
(ii) u × (v × w) = −g (u, w) v + g (u, v)w,

(iii) g (u × v, u × v) = −g (u, u) g (v, v) + g (u, v)
2
.

Assume that −→α (s) is a unit speed pseudo null curve whose Frenet frame field is
{T (s), N(s), B(s)} in E31. Then, we have

T ×N = N, N ×B = T, B × T = B. (2.4)

In this paper, we will assume that pseudo null base curve α has the first curvature
κ(s) = 1, i.e. that the curve α is not a straight line.

3. SURFACES WITH A COMMON PSEUDO NULL GEODESIC CURVE
IN E31

Let S be a parametric surface which is given with a pseudo null curve α = α(s)
in the 3-dimensional Minkowski space. Then,

φ : [0, L]× [0, T ]→ E31
(s, t) −→ φ(s, t) = α(s) + e(s, t),

(3.1)

where a(s, t), b(s, t) and c(s, t) are C1 functions and e is given by

e(s, t) = a(s, t)T (s) + b(s, t)N(s) + c(s, t)B(s). (3.2)

If the parameter t is seen as the time, then the functions a(s, t), b(s, t) and c(s, t)
can be viewed as directed marching distances of a point unit in the time t in the
direction T, N and B, respectively, and the position vector α is seen as the initial
location of this point.
By taking the derivative of the equation (3.2) with respect to s and using the Frenet
equations (2.2), we get

es =
∂e

∂s
= (as − c)T + (bs + bτ + a)N + (cs − cτ)B. (3.3)

The normal η(s, t) of the surface S is given by

η(s, t) = φs × φt,
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and since

φs =
∂φ

∂s
= (as − c+ 1)T + (bs + bτ + a)N + (cs − cτ)B,

and

φt =
∂φ

∂t
= atT + btN + ctB,

using the equations (2.4), the normal vector can be written as

η(s, t) = ((bs + bτ + a) ct − (cs − cτ) bt)T
+((as − c+ 1) bt − (bs + bτ + a) at)N
+((cs − cτ) at − (as − c+ 1) ct)B.

(3.4)

Let the curve α = α(s) on the surface S, given by equation (3.1), be an isopara-
metric. Then, there should exist a parameter t = t0 such that α (s) = φ (s, t0)
where

a(s, t0) = b(s, t0) = c(s, t0) = 0, (3.5)

and from (3.4) we obtain

η(s, t0) = (bsct − csbt)T + ((as + 1) bt − bsat)N + (csat − (as + 1) ct)B.

According to the geodesic theory in [1], the curve α on the surface S is a geodesic
if only if the principal normal N(s) of the curve α and the normal η(s, t0) of the
surface S at any point on the curve α are parallel to each other. Thus, for all
s ∈ [0, L]

N(s) ‖ η(s, t0)
if and only if

bsct − csbt = 0,
(as + 1) bt − bsat 6= 0,
csat − (as + 1) ct = 0.

(3.6)

Therefore, we can give the necessary and suffi cient conditions for the surface S to
have the pseudo null curve α as an isoparametric and a geodesic with the following
theorem.

Theorem 1. Let S be a parametric surface given by (3.1) in Minkowski 3-space.
The curve α is an isoparametric and a geodesic curve on the surface S if and only
if the following conditions are satisfied

a(s, t0) = b(s, t0) = c(s, t0) = 0,
bsct − csbt = 0,

(as + 1) bt − bsat 6= 0,
csat − (as + 1) ct = 0,

where a(s, t), b(s, t) and c(s, t) are C1 functions.
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We call the set of surfaces defined by the equations (3.1), (3.5) and (3.6) a
family of surfaces with a common pseudo null geodesic, where the common pseudo
null geodesic is both an isoparametric and a geodesic curve on these surfaces. Any
surface S is defined by the equation (3.1) and satisfying for the equations (3.5) and
(3.6) is a member of the family.
As mentioned in [11], the marching-scale functions a(s, t), b(s, t) and c(s, t) can

be decomposed into two factors:

Case 1. If we choose
a(s, t) = l(s)A(t),
b(s, t) = m(s)B(t),
c(s, t) = n(s)C(t),

(3.7)

where l(s), m(s), n(s), A(t), B(t) and C(t) are C1 functions, and l(s), m(s) and
n(s) are not identically zero. Then, from Theorem 1 we can simply express the nec-
essary and suffi cient conditions for the pseudo null curve α being an isoparametric
and geodesic curve on the surface S as follows

A(t0) = B(t0) = C(t0) = 0,
dB(t0)
dt = const 6= 0, m(s) 6= 0,

dC(t0)
dt = 0, or n(s) = 0,

(3.8)

When the marching-scale functions a(s, t), b(s, t) and c(s, t) depend only on the
parameter t, if we choose l(s) = m(s) = n(s) = 1, then the corresponding family of
surfaces with a common pseudo null geodesic becomes

φ(s, t) = α(s) +A(t)T (s) +B(t)N(s) + C(t)B(s).

By simplifying, condition (3.8) can be represented as

A(t0) = B(t0) = C(t0) = 0,
dB(t0)
dt = const 6= 0, dC(t0)

dt = 0.

Case 2. If we choose
a(s, t) = f(l(s)A(t)),
b(s, t) = g(m(s)B(t)),
c(s, t) = h(n(s)C(t)),

where l(s), m(s), n(s), A(t), B(t), C(t), f , g, and h are C1 functions. Then, from
Theorem 1 and (3.8) we can simply express the necessary and suffi cient conditions
for the pseudo null curve α being an isoparametric and geodesic curve on the surface
S as follows 

A(t0) = B(t0) = C(t0) = 0,
f(0) = g(0) = h(0) = 0,
dB(t0)
dt = const 6= 0, m(s) 6= 0, g′(0) 6= 0,

dC(t0)
dt = 0, or n(s) = 0, or h′(0) = 0,

(3.9)
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Figure 1. The curve α

The choices above give an advantage: any set of functions l(s), m(s), and n(s)
would satisfy (3.8) or (3.9). Thus we can select different sets of functions l(s),
m(s), and n(s) to adjust the shape of the surface until they are gratified with the
design, and the resulting surface is guaranteed to belong to the surface family with
the pseudo null curve α (s) as the common geodesic.

Example 1. Let S be a parametric surface given by (3.1) in Minkowski 3-space.
Let us consider the pseudo null helix with parameter equation (see Fig. 1)

α(s) = (sinh s+ cosh s, s, sinh s+ cosh s).

Then we get the Frenet vectors as follows:
−→
T (s) = α′(s) = (sinh s+ cosh s, 1, sinh s+ cosh s),
−→
N (s) = α′′(s) = (sinh s+ cosh s, 0, sinh s+ cosh s),
−→
B (s) = (− (sinh s+cosh s)

2+1
2(sinh s+cosh s) ,−1,

1−(sinh s+cosh s)2
2(sinh s+cosh s) ).

Moreover, the curvatures κ and τ of α have the form

κ(s) = 1 and τ(s) = 1.

If we choose
a(s, t) = γ sin t,
b(s, t) = δt,
c(s, t) = 0,

where γ, δ ∈ R and δ 6= 0. Then, the surface family with the common pseudo null
geodesic is given by

φ(s, t) =

(
(cosh s+ sinh s) (γ sin t+ δt+ 1) , γ sin t+ s,

(cosh s+ sinh s) (γ sin t+ δt+ 1)

)
.
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Figure 2. A member of surface family for γ = 1, δ = −1 and the
curve α

For γ = 1 and δ = −1 we obtain a member of the surface (see Fig. 2) as

φ(s, t) =

(
(cosh s+ sinh s) (sin t− t+ 1) , sin t+ s,

(cosh s+ sinh s) (sin t− t+ 1)

)
,

where t ∈ [−5, 5].
For γ = sin t and δ = 1 we obtain a member of the surface (see Fig. 3) as

φ(s, t) =

(
(cosh s+ sinh s)

(
sin2 t+ t+ 1

)
, sin2 t+ s,

(cosh s+ sinh s)
(
sin2 t+ t+ 1

) )
,

where t ∈ [−5, 5].

4. RULED SURFACE WITH A COMMON PSEUDO NULL GEODESIC
CURVE

For a member of the family is defined by (3.1), consider a ruled surface φ(s, t)
with a pseudo null directrix α(s) which is also an isoparametric. In that case,
there exists a parameter t = t0 such that φ(s, t0) = α(s). Then, for s ∈ [0, L] and
t0, t ∈ [0, T ] the surface φ(s, t) can be expressed as

φ(s, t)− φ(s, t0) = (t− t0)D(s),

where D(s) denotes the direction of the rulings.
Also, from the equations (3.1) and (3.2), we get

(t− t0)D(s) = a(s, t)T (s) + b(s, t)N(s) + c(s, t)B(s).
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Figure 3. A member of surface family for γ = sin t, δ = 1 and
the curve α

Using the equations (2.3) and (2.4), a system of three equations with three unknown
functions a(s, t), b(s, t) and c(s, t) can be written as

a(s, t) = (t− t0) det [D(s), N(s), B(s)] ,
b(s, t) = (t− t0) det [D(s), B(s), T (s)] ,
c(s, t) = (t− t0) det [D(s), T (s), N(s)] .

(4.1)

The above equations in (4.1) are just the necessary and suffi cient conditions for a
ruled surface φ(s, t) to have a pseudo null directrix α(s) as an isoparametric.
If the curve α(s) is also a geodesic on the surface φ(s, t) by using the conditions
given in (3.8), then we get

det [D(s), B(s), T (s)] 6= 0,
det [D(s), T (s), N(s)] = 0.

(4.2)

It follows that at any point on the curve α(s), the ruling direction D(s) must be in
the plane spanned by T (s) and N(s). Moreover, the ruling direction D(s) and the
vector T (s) must not be parallel. Thus, for some real functions u(s) and v(s), we
can write

D(s) = u(s)T (s) + v(s)N(s), (4.3)
where v(s) 6= 0 for all s ∈ [0, L]. Substituting it in (4.1)-(4.3), we have

a(s, t) = tu(s),
b(s, t) = tv(s),
c(s, t) = 0,

(4.4)

where b(s, t) 6= 0 for all s ∈ [0, L].
Thus, the ruled surface with the common pseudo null geodesic directrix α(s) is
given by

φ(s, t) = α(s) + t (u(s)T (s) + v(s)N(s)) , (4.5)
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where the real functions u(s) and v(s) control the shape of the ruled surface, and
v(s) 6= 0 for all s ∈ [0, L]. On the other hand, there exist two geodesic curves
passing through every point on the curve α(s): one is α(s) itself and the other is
a straight line in the direction D(s) as given in (4.3). Every member of the ruled
surface with the common pseudo null geodesic directrix can be expressed by the
direction vector function D(s).

Case 3. If the ruled surface, which is given by (4.5), is a cylindrical surface, then
we can write

D (s)×D′ (s) = 0, (4.6)

for all s ∈ [0, L]. So, there exists a function µ (s) such that

D′ (s) = µ (s)D (s) , (4.7)

for all s ∈ [0, L]. From (2.2) and (4.3) we get the system as follows:

u′(s) = µ (s)u(s), (4.8)

and

v′(s) + u(s) + v(s)τ(s) = µ (s) v(s). (4.9)

The general solution of (4.8) is given by

u(s) = C1e
∫
µ(s)ds, (4.10)

where C1 is a constant of integration. From (4.9) and (4.10), we obtain

v(s) =

(
C2 + C1

∫
e
∫
τ(s)dsds

)
e
∫
(τ(s)−µ(s))ds, (4.11)

where C1 and C2 are constants of integration.
If τ(s) = 0 for all s ∈ [0, L], then the last equation becomes

v(s) = (C1s+ C2) e
−
∫
µ(s)ds. (4.12)

Therefore, we can give the following corollary.

Corollary 1. Let the ruled surface, which is given by (4.5), be a cylindrical surface.
If the ruled surface has two of the following properties, it has the third also,
(i) The base curve is a planar curve,
(ii) The base curve is both a geodesic and an isoparametric,
(iii) The real functions u(s) and v(s) are given by

u(s) = C1e
∫
µ(s)ds,

v(s) = (C1s+ C2) e
−
∫
µ(s)ds,

where C1 and C2 are constants of integration and v(s) 6= 0 for all s ∈ [0, L].
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Case 4. If the ruled surface, which is given by (4.5), is a non-cylindrical surface,
then we can write

D (s)×D′ (s) 6= 0, (4.13)

for all s ∈ [0, L]. Also, from (2.2)-(2.4) and (4.3) we have

g(D (s)×D′ (s) , α′(s)) = det [D (s) , D′ (s) , α′(s)] = 0, (4.14)

for all s ∈ [0, L].

Thus, we can give the following corollary.

Corollary 2. If the ruled surface, which is given by (4.5), is a non-cylindrical
surface, then the ruled surface is always a developable surface for all s ∈ [0, L] and
t ∈ [0, T ].

Example 2. Let S be a ruled surface whose geodesic curve is the pseudo null helix
in Example 1, with C1 = 1, C2 = 1 and µ(s) = 1 for all s.

If the controlling functions of the ruled surface for all s are u(s) = es and v(s) =
1 + es, then the corresponding cylindrical surface is drawn as in Figure 4.

Figure 4. The ruled surface φ with pseudo null helix

If the controlling functions of the ruled surface for all s are u(s) = cos s and v(s) =
e−s, then the corresponding non-cylindrical surface is shown in Figure 5.

Example 3. Let S be a ruled surface with a pseudo null directrix α in E31. Let us
consider the pseudo null helix with parameter equation (see Fig. 6)

α(s) =

(
s2

2
,
s2

2
, s

)
. (4.15)
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Figure 5. The ruled surface φ with pseudo null helix

Figure 6. The curve α

Then we get the Frenet vectors as follows

−→
T (s) = α′(s) = (s, s, 1) ,
−→
N (s) = α′′(s) = (1, 1, 0) ,
−→
B (s) = ( 1+s

2

2 , s
2−1
2 , s).

(4.16)

Moreover, the curvatures κ and τ of α have the form

κ(s) = 1 and τ(s) = 0. (4.17)



240 UFUK OZTURK

If the controlling functions of the ruled surface for C1 = 1, C2 = 1 and µ(s) = 0
for all s are

u(s) = 1,
v(s) = 1 + s,

(4.18)

then the corresponding cylindrical surface is drawn as in Figure 7.

Figure 7. The curve α
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