A NEW SUBCLASS OF MEROMORPHIC FUNCTIONS WITH POSITIVE AND FIXED SECOND COEFFICIENTS DEFINED BY THE RAFID-OPERATOR

ARZU AKGÜL

Abstract

The aim of the present paper is to introduce a new subclass of meromorphic functions with positive and fixed second coefficients by means of Rafid-operator by fixing second coefficient. We give a necessary and sufficient condition for a function f to be in this class. Also we obtain coefficient inequality, distortion properties, meromorphically radii of close-to-convexity, starlikeness and convexity, extreme points, convex linear combinations, for the functions f in this class.

1. Introduction

Let Σ denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}, \quad n \in \mathbb{N}=\{1,2,3, \ldots\} \tag{1.1}
\end{equation*}
$$

which are analytic in the punctured unit disc

$$
\mathbb{U}^{*}=\{z \in \mathbb{C}: 0<|z|<1\}=\mathbb{U}-\{0\} .
$$

Analytically a function $f \in \Sigma$ given by (1.1) is said to be meromorphically starlike of order α if it satisfies the following

$$
R\left(-\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, \quad(z \in \mathbb{U})
$$

for some $\alpha(0 \leq \alpha<1)$. We say that f is in the class $\sum^{*}(\alpha)$ of such functions. Similarly a function $f \in \Sigma$ given by (1.1) is said to be meromorphically convex of

[^0]Communications de la Faculté des Sciences de l'Université d'Ankara. Séries A1. Mathematics and Statistics.
order α if it satisfies the following:

$$
R\left\{-\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\alpha,(z \in \mathbb{U})
$$

for some $\alpha(0 \leq \alpha<1)$. We say that f is in the class $\sum_{c}(\alpha)$ of such functions. For a function $f \in \Sigma$ given by (1.1) is said to be meromorphically close-to-convex of order β and type α if there exists a function $g \in \sum^{*}(\alpha)$ such that

$$
R\left(-\frac{z f^{\prime}(z)}{g(z)}\right)>\beta, \quad(0 \leq \alpha<1,0 \leq \beta<1, z \in \mathbb{U})
$$

We say that f is in the class $K(\beta, \alpha)$.
The class $\sum^{*}(\alpha)$ and varius other subclasses of Σ have been studied rather extensively by J.Clunie [7], J. E. Miller [12], Ch. Pommerenke [13], W. C. Royster [15]. See also P. L. Duren [8](pages 29-137) and H. M. Srivastava, S. Owa [17] (pages 86-429), Akgül [1], Akgül [2] and Akgül and Bulut [3]. Recent years, many authors investigated the subclass of meromorphic functions with positive coefficient. In 1985, Junea and Reddy [10] introduced the class of \sum_{p} functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \geq 0 \tag{1.2}
\end{equation*}
$$

which are regular and univalent in \mathbb{U}. The functions in this class are said to be meromorphic functions with positive coefficient. In [4], Athsan and Buti introduced Rafid-operator for analytic functions and T. Rosy and S. Sunil Varma [16] modified their operator to meromorphic functions as follows.

Lemma 1 ([16]). For $f \in \sum$ given by(1.1), $0 \leq \mu<1$ and $0 \leq \gamma \leq 1$, if the operator $S_{\mu}^{\gamma}: \sum \longrightarrow \sum$ is defined by

$$
\begin{equation*}
S_{\mu}^{\gamma} f(z)=\frac{1}{(1-\mu)^{\gamma+1} \Gamma(\gamma+1)} \int_{0}^{\infty} t^{\gamma+1} e^{-\left(\frac{t}{1-\mu}\right)} f(z t) d t \tag{1.3}
\end{equation*}
$$

then

$$
\begin{equation*}
S_{\mu}^{\gamma} f(z)=z+\sum_{n=2}^{\infty} L(n, \mu, \gamma) a_{n} z^{n} \tag{1.4}
\end{equation*}
$$

where $L(n, \mu, \gamma)=(1-\mu)^{n+1} \frac{\Gamma(n+\gamma+2)}{\Gamma(\gamma+1)}$ and Γ is the familiar Gamma function. Using the equation (1.4), it is easily seen that

$$
\begin{equation*}
S_{\mu}^{\gamma}\left(z f^{\prime}(z)\right)=z\left(S_{\mu}^{\gamma} f(z)\right)^{\prime} \tag{1.5}
\end{equation*}
$$

We defined the subclass $\sum_{p} S(\alpha, \lambda, \mu, q, \zeta)$ of Σ_{p} for meromorphic functions with positive coefficient associated with the integral operator $S_{\mu}^{\gamma} f(z)$ and investigated the certain properties of this class.

Definition 1. A function $f \in \sum$ is said to be in the $\operatorname{class} \sum S(\alpha, \lambda, \mu, q, \zeta)$ if and only if satisfies the inequality:

$$
\begin{equation*}
\Re\left\{\frac{-z(\Phi(z))^{\prime}}{\Phi(z)}\right\} \geq q\left|\frac{z(\Phi(z))^{\prime}}{\Phi(z)}+1\right|+\zeta \tag{1.6}
\end{equation*}
$$

where $0 \leq \mu<1,0 \leq \zeta<1,0 \leq \alpha \leq \lambda<\frac{1}{2}, q \geq 0$ and

$$
\begin{equation*}
\Phi(z)=\lambda \alpha z^{2}\left(S_{\mu}^{\gamma} f(z)\right)^{\prime \prime}+(\lambda-\alpha) z\left(S_{\mu}^{\gamma} f(z)\right)^{\prime}+(1-\lambda+\alpha) S_{\mu}^{\theta} f(z) \tag{1.7}
\end{equation*}
$$

It is easily shown that there is following equality between these subclasses

$$
\sum_{p} S(\alpha, \lambda, \mu, q, \zeta)=\sum S(\alpha, \lambda, \mu, q, \zeta) \cap \sum_{p}
$$

Theorem 1. A meromorphic function f defined by the equation (1.2) in the class $\sum_{p} S(\alpha, \lambda, \mu, \gamma, \zeta, q)$ if and only if

$$
\begin{gather*}
\sum_{n=1}^{\infty}[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \mu, \gamma) a_{n} \\
\leq(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) \tag{1.8}
\end{gather*}
$$

for some $0 \leq \zeta<1, \beta>0,0 \leq \mu<1,0 \leq \gamma \leq 1,0 \leq \alpha \leq \lambda<\frac{1}{2}$ and $q \geq 0$.
In view of (1.8), we can see that the functions $f(z)$ defined by (1.2) in the class $\sum_{p} S(\alpha, \lambda, \mu, q, \zeta)$ satisfy the coefficient inequality

$$
\begin{equation*}
L(1, \mu, \gamma) a_{1} \leq \frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}{(2 q+\zeta+1)} \tag{1.9}
\end{equation*}
$$

Hence we may take

$$
\begin{equation*}
L(1, \mu, \gamma) a_{1}=\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}{(2 q+\zeta+1)} c, \quad 0<c<1 \tag{1.10}
\end{equation*}
$$

Making use of equation (1.10), we now introduce the following class of functions: Let $\sum_{p} S(\alpha, \lambda, \mu, q, \zeta, c)$ denote the subclass of $\sum_{p} S(\alpha, \lambda, \mu, q, \zeta)$ consisting of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} z+\sum_{n=1}^{\infty} L(n, \mu, \gamma) a_{n} z^{n} \tag{1.11}
\end{equation*}
$$

where

$$
a_{n} \geq 0 \text { and } 0<c<1 .
$$

In this paper, coefficient estimates, extreme points, growth and distortion bounds, radii of meromorphically starlikeness, convexity and close-to-convexity are obtained for the class $\sum_{p} S(\alpha, \lambda, \mu, q, \zeta, c)$ by fixing the second coefficient. Further, it is shown that the class $\sum_{p} S(\alpha, \lambda, \mu, q, \zeta, c)$ is closed under convex linear combination. Techniques used are similar to those of Aouf and Darwish [5], Aouf and Josi [6], Ghanim and Darus [9] and Ureagaldi [18].

2. Coefficient Bounds

Theorem 2. Let the function defined by the equality (1.11). Then the function $f(z)$ is in the class $\sum_{p} S(\alpha, \lambda, \mu, q, \zeta, c)$ if and only if

$$
\begin{align*}
& \sum_{n=2}^{\infty}[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \mu, \gamma) a_{n} \\
\leq & (1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c) \tag{2.1}
\end{align*}
$$

The result is sharp.
Proof. By putting in the inequality(1.8)

$$
L(1, \mu, \gamma) a_{1}=\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)}, \quad 0<c<1
$$

the result is easily obtained. The result is sharp for the function

$$
\begin{align*}
f(z) & =\frac{1}{z}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} z \\
& +\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)+1]} z^{n}, \quad n \geq 2 . \tag{2.2}
\end{align*}
$$

Corollary 1. Let the function f defined by the equation (1.11) be in the class $\sum_{p}(\alpha, \lambda, \mu, q, \zeta, c)$. Then

$$
\begin{equation*}
a_{n} \leq \frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)+1] L(n, \mu, \gamma)}, \quad n \geq 2 \tag{2.3}
\end{equation*}
$$

The result is sharp for the function given by the equation (1.2)
Corollary 2. If $0<c_{1}<c_{2}<1$, then

$$
\sum_{p} S\left(0, \lambda, \mu, q, \zeta, c_{2}\right) \subset \sum_{p} S\left(0, \lambda, \mu, q, \zeta, c_{1}\right)
$$

3. Distortion Bounds

In this section, we obtain growth and distortion bounds for the class $\sum_{p} S(\alpha, \lambda, \mu, q, \zeta, c)$.

Theorem 3. If the function $f \in \sum_{p}$ given by the equation (1.11) is in the class $\sum_{p} S(\alpha, \lambda, \mu, q, \zeta, c)$ for $0<|z|=r<1$, then one has

$$
\begin{align*}
& \frac{1}{r}-\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} r \\
& -\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{(3 q+\zeta+1)(2 \alpha \lambda-\lambda+\alpha+1)} r^{2} \leq|f(z)| \\
& \leq \frac{1}{r}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} r \\
& \quad+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{(3 q+\zeta+1)(2 \alpha \lambda-\lambda+\alpha+1)} r^{2} \tag{3.1}
\end{align*}
$$

and the result is sharp for the function f given by

$$
\begin{align*}
f(z) & =\frac{1}{z}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} z \\
& +\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)+1]} z^{n}, \quad n \geq 2 \tag{3.2}
\end{align*}
$$

Proof. Since $f \in \sum_{p}(\alpha, \lambda, \mu, q, \zeta, c)$ in view of Theorem 2, yields

$$
L(n, \mu, \gamma) a_{n} \leq \frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)+1]}, \quad n \geq 2
$$

and we have

$$
\begin{aligned}
&(3 q+\zeta+1)(2 \alpha \lambda-\lambda+\alpha+1) \sum_{n=2}^{\infty} L(n, \mu, \gamma) a_{n} \\
& \leq \sum_{n=1}^{\infty}[(n+\zeta) \\
& \quadq(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)+1] L(n, \mu, \gamma) a_{n} \\
& \leq(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)
\end{aligned}
$$

which gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} L(n, \mu, \gamma) a_{n} \leq \frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{(3 q+\zeta+1)(2 \alpha \lambda-\lambda+\alpha+1)} \tag{3.3}
\end{equation*}
$$

Thus, for $0<|z|=r<1$,

$$
\begin{align*}
|f(z)| & \leq\left|\frac{1}{z}\right|+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)}|z|+\sum_{n=2}^{\infty} L(n, \mu, \gamma) a_{n}|z|^{n} \\
& \leq \frac{1}{r}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} r+r^{2} \sum_{n=2}^{\infty} L(n, \mu, \gamma) a_{n} \\
& \leq \frac{1}{r}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} r \\
& +\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{(3 q+\zeta+1)(2 \alpha \lambda-\lambda+\alpha+1)} r^{2} . \tag{3.4}
\end{align*}
$$

Similarly, we obtain

$$
\begin{align*}
|f(z)| & \geq \frac{1}{r}-\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} r \\
& -\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{(3 q+\zeta+1)(2 \alpha \lambda-\lambda+\alpha+1)} r^{2} \tag{3.5}
\end{align*}
$$

Combining the inequalities (3.4) and (3.5) we get desired result and the result is sharp for the function given by the equation (3.2).

Theorem 4. If the function $f \in \sum_{p}$ given by the equation(1.11) is in the class $\sum_{p} S(\alpha, \lambda, \mu, q, \zeta, c)$ for $0<|z|=r<1$, then one has

$$
\begin{align*}
& \frac{1}{r^{2}}-\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} \\
& -\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{(3 q+\zeta+1)(2 \alpha \lambda-\lambda+\alpha+1)} r \leq\left|f^{\prime}(z)\right| \\
& \quad \leq \frac{1}{r^{2}}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} \\
& \quad+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{(3 q+\zeta+1)(2 \alpha \lambda-\lambda+\alpha+1)} r \tag{3.6}
\end{align*}
$$

for $0<|z|=r<1$ and the result is sharp for the function f given by
$f(z)=\frac{1}{z}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} z+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{(3 q+\zeta+1)(2 \alpha \lambda-\lambda+\alpha+1)} z^{2}$.
Proof. In view of Theorem 2, it follows that

$$
\begin{equation*}
n L(n, \mu, \gamma) a_{n} \leq \frac{n(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)+1]}, \quad n \geq 2 \tag{3.7}
\end{equation*}
$$

Thus, for $0<|z|=r<1$ and making use of (3.7), we obtain

$$
\begin{align*}
\left|f^{\prime}(z)\right| & \leq\left|-\frac{1}{z^{2}}\right|+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)}+\sum_{n=2}^{\infty} n L(n, \mu, \gamma) a_{n}|z|^{n-1} \\
& \leq \frac{1}{r^{2}}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)}+r \sum_{n=2}^{\infty} n L(n, \mu, \gamma) a_{n} \\
& \leq \frac{1}{r^{2}}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} \\
& +\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{(3 q+\zeta+1)(2 \alpha \lambda-\lambda+\alpha+1)} r \tag{3.8}
\end{align*}
$$

and similarly,

$$
\begin{align*}
\left|f^{\prime}(z)\right| & \geq\left|-\frac{1}{z^{2}}\right|-\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)}-\sum_{n=2}^{\infty} n L(n, \mu, \gamma) a_{n}|z|^{n-1} \\
& \geq \frac{1}{r^{2}}-\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)}-r \sum_{n=2}^{\infty} n L(n, \mu, \gamma) a_{n} \\
& \geq \frac{1}{r^{2}}-\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} \\
& -\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{(3 q+\zeta+1)(2 \alpha \lambda-\lambda+\alpha+1)} r \tag{3.9}
\end{align*}
$$

Combining the inequalities (3.8)and (3.9), we get desired result and the result is sharp.

4. Convex Linear Combination

In this section, we shall prove the class $\sum_{p} S(\alpha, \lambda, \mu, q, \zeta, c)$ is closed under convex linear combination.

Theorem 5. The class $\sum_{p} S(\alpha, \lambda, \mu, q, \zeta, c)$ is closed under convex linear combination.

Proof. Let the functions f is given by (1.11) and the function g be given by

$$
g(z)=\frac{1}{z}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} z+\sum_{n=2}^{\infty} L(n, \mu, \gamma)\left|b_{n}\right| z^{n}
$$

where $b \geq 0, n \geq 2,0<c<1$ are in the class $\sum_{p} S(\alpha, \lambda, \mu, q, \zeta, c)$. Then by Theorem 2, we have

$$
\begin{aligned}
\sum_{n=2}^{\infty}[(n+\zeta) & +q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \mu, \gamma) a_{n} \\
\leq & (1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{n=2}^{\infty}[(n+\zeta) & +q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \mu, \gamma)\left|b_{n}\right| \\
\leq & (1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)
\end{aligned}
$$

Assuming that f and g in the class $\sum_{p} S(\alpha, \lambda, q, \zeta, c)$, it is enough to prove that the function h defined by

$$
\begin{equation*}
h(z)=\tau f(z)+(1-\tau) g(z), \quad 0 \leq \tau \leq 1 \tag{4.1}
\end{equation*}
$$

is also in the class $\sum_{p} S(\alpha, \lambda, q, \zeta, c)$. Since

$$
\begin{align*}
h(z) & =\frac{1}{z}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} z \\
& +\sum_{n=1}^{\infty} L(n, \mu, \gamma)\left|\tau a_{n}+(1-\tau) b_{n} z^{n}\right| \tag{4.2}
\end{align*}
$$

we observe that

$$
\begin{gather*}
\sum_{n=1}^{\infty}[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \mu, \gamma)\left|\tau a_{n}+(1-\tau) b_{n} z^{n}\right| \\
\leq(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c) \tag{4.3}
\end{gather*}
$$

So, $h(z) \in \sum_{p} S(\alpha, \lambda, \mu, q, \zeta, c)$.

5. Extreme Point

Theorem 6. If

$$
\begin{equation*}
f_{1}(z)=\frac{1}{z}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} z \tag{5.1}
\end{equation*}
$$

and

$$
\begin{align*}
f_{n}(z) & =\frac{1}{z}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} z \\
& +\sum_{n=2}^{\infty} \frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)+1] L(n, \mu, \gamma)} z^{n} \tag{5.2}
\end{align*}
$$

then $f \in \sum_{p} S(\alpha, \lambda, \mu, q, \zeta, c)$ if and only if it can be represented in the form

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} \mu_{n} f_{n}(z) \tag{5.3}
\end{equation*}
$$

where $\mu_{n} \geq 0$ and $\sum_{n=1}^{\infty} \mu_{n}=1$

Proof. Assume that $f(z)=\sum_{n=1}^{\infty} \mu_{n} f_{n}(z),\left(\mu_{n} \geq 0, \sum_{n=1}^{\infty} \mu_{n}=1\right)$. Then, from equalities (5.1),(5.2) and (5.3), we have

$$
\begin{aligned}
f(z)= & \sum_{n=1}^{\infty} \mu_{n} f_{n}(z) \\
= & \mu_{1} f_{1}(z)+\sum_{n=2}^{\infty} \mu_{n} f_{n}(z) \\
= & \frac{1}{z}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} z \\
& +\sum_{n=2}^{\infty} \frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \mu, \gamma)} \mu_{n} z^{n}
\end{aligned}
$$

Since

$$
\begin{gathered}
\sum_{n=2}^{\infty} \frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \mu, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)} \\
\times \frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \mu, \gamma)} \mu_{n} \\
\sum_{n=2}^{\infty} \mu_{n}=1-\mu_{1} \leq 1
\end{gathered}
$$

it follows from Theorem 2 that $f \in \sum_{p} S(\alpha, \lambda, \mu, q, \zeta, c)$.
Conversely, suppose that $f \in \sum_{p} S(\alpha, \lambda, \mu, q, \zeta, c)$. Since

$$
a_{n} \leq \frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)+1] L(n, \mu, \gamma)}, \quad n \geq 2
$$

if we set

$$
\mu_{n}=\frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \mu, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)} a_{n}
$$

and

$$
\mu_{1}=1-\sum_{n=2}^{\infty} \mu_{n}
$$

then we obtain

$$
f(z)=\sum_{n=1}^{\infty} \mu_{n} f_{n}(z)
$$

This completes the proof of the theorem.

6. Radil of Starlikeness and Convexity

In this section, we find the radii of meromorphically close-to-convexity, starlikeness and convexity for functions f in the class $\sum_{p} S(\alpha, \lambda, \mu, q, \zeta)$.

Theorem 7. Let the function defined by (1.11) be in the class $\sum_{p} S(\alpha, \lambda, q, \zeta, c)$. Then f is meromorphically starlike of order $\beta(0 \leq \beta<1)$ in the disk $|z|<$ $r_{1}(\alpha, \lambda, q, \zeta, c, \beta)$, where $r_{1}(\alpha, \lambda, q, \zeta, c, \beta)$ is the largest value for which

$$
\begin{aligned}
& \frac{(3-\beta)(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} r^{2} \\
& \quad+\frac{(n+2-\beta)(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)+1]} r^{n+1} \leq(1-\beta), \quad(n \geq 2)
\end{aligned}
$$

The result is sharp for the extremal function f given by the equation(2.2)
Proof. It is sufficient to prove that

$$
\begin{equation*}
\left|z \frac{f^{\prime}(z)}{f(z)}+1\right| \leq 1-\beta, \quad|z|<r_{1} \tag{6.1}
\end{equation*}
$$

Note that

$$
\begin{aligned}
\left|z \frac{f^{\prime}(z)}{f(z)}+1\right| & =\left|\frac{\frac{2(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} z+\sum_{n=2}^{\infty} L(n, \mu, \gamma) a_{n}(n+1) z^{n}}{\frac{1}{z}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} z+\sum_{n=2}^{\infty} L(n, \mu, \gamma) a_{n} z^{n}}\right| \\
& =\left|\frac{\frac{2(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} z^{2}+\sum_{n=2}^{\infty} L(n, \mu, \gamma) a_{n}(n+1) z^{n+1}}{1+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} z^{2}+\sum_{n=2}^{\infty} L(n, \mu, \gamma) a_{n} z^{n+1}}\right| \\
& \leq 1-\beta
\end{aligned}
$$

for $|z|<r_{1}(\alpha, \lambda, q, \zeta, c)$ if and only if

$$
\begin{align*}
& \frac{(3-\beta)(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} r^{2} \\
& \quad+\sum_{n=2}^{\infty} L(n, \mu, \gamma) a_{n}(n+2-\beta) r^{n+1} \leq 1-\beta \tag{6.2}
\end{align*}
$$

from the inequality (2.3) we may take

$$
\begin{equation*}
a_{n}=\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)+1] L(n, \mu, \gamma)} \lambda_{n}, \quad n \geq 2 \tag{6.3}
\end{equation*}
$$

where $\lambda_{n} \geq 0(n \geq 2)$ and

$$
\sum_{n=2}^{\infty} \lambda_{n} \leq 1
$$

For each fixed r, we choose the positive integer $n_{0}=n_{0}(r)$ for which

$$
\frac{(n+2-\beta)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)+1]} L(n, \mu, \gamma) r^{n+1}
$$

is maximal. Then it follows that

$$
\begin{align*}
& \sum_{n=2}^{\infty}(n+2-\beta) L(n, \mu, \gamma) a_{n} r^{n+1} \\
& \leq \frac{\left(n_{0}+2-\beta\right)(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{\left[\left(n_{0}+\zeta\right)+q(n+1)\right]\left[\left(n_{0}-1\right)\left(n_{0} \lambda \alpha+\lambda-\alpha\right)+1\right]} r^{n_{0}+1} \tag{6.4}
\end{align*}
$$

Then f is starlike of order β in $|z|<r_{1}(\alpha, \lambda, q, \zeta, c)$ provided that

$$
\begin{align*}
& \frac{(3-\beta)(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} r^{2} \\
& \quad+\frac{\left(n_{0}+2-\beta\right)(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{\left[\left(n_{0}+\zeta\right)+q\left(n_{0}+1\right)\right]\left[\left(n_{0}-1\right)\left(n_{0} \lambda \alpha+\lambda-\alpha\right)+1\right]} r^{n_{0}+1} \leq(1-\beta) \tag{6.5}
\end{align*}
$$

We find the value $r_{0}=r_{0}(\alpha, \lambda, q, \zeta, c)$ and the corresponding integer $n_{0}\left(r_{0}\right)$ so that

$$
\begin{align*}
& \frac{(3-\beta)(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} r^{2} \\
& \quad+\frac{\left(n_{0}+2-\beta\right)(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{\left[\left(n_{0}+\zeta\right)+q\left(n_{0}+1\right)\right]\left[\left(n_{0}-1\right)\left(n_{0} \lambda \alpha+\lambda-\alpha\right)+1\right]} r^{n_{0}+1}=(1-\beta) \tag{6.6}
\end{align*}
$$

Then this value r_{0} is the radius of meromorphically starlike of order β for functions belonging to the class $\sum_{p} S(\alpha, \lambda, q, \zeta, c)$.

Theorem 8. Let the function defined by the equation (1.11) be in the class $\sum_{p} S(\alpha, \lambda, q, \zeta, c)$. Then f is meromorphically convex of order $\beta(0 \leq \beta<1)$ in the disk $|z|<r_{2}(\alpha, \lambda, q, \zeta, c, \beta)$, where $r_{2}(\alpha, \lambda, q, \zeta, c, \beta)$ is the largest value for which

$$
\begin{aligned}
& \frac{(3-\beta)(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} r^{2} \\
& \quad+\frac{n(n+2-\beta)(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)+1]} r^{n+1} \leq \quad(1-\beta), \quad(n \geq 2)
\end{aligned}
$$

The result is sharp for the extremal function f given by(2.2).
Proof. By using the technique employed in the proof of Theorem 7 we can show that

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+2\right| \leq 1-\beta
$$

for $|z|<r_{2}(\alpha, \lambda, q, \zeta, c)$, and prove that the assertion of the theorem is true and the result is sharp.

Theorem 9. Let the function defined by (1.11) be in the class $\sum_{p} S(\alpha, \lambda, q, \zeta, c)$. Then f is meromorphically close-to-convex of order $\beta(0 \leq \beta<1)$ in the disk $|z|<$ $r_{3}(\alpha, \lambda, q, \zeta, c, \beta)$, where $r_{3}(\alpha, \lambda, q, \zeta, c, \beta)$ is the largest value for which

$$
\begin{aligned}
& \frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) c}{(2 q+\zeta+1)} r^{2} \\
& \quad+\frac{n(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)(1-c)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)+1]} r^{n+1} \leq \quad(1-\beta), \quad(n \geq 2)
\end{aligned}
$$

and the result is sharp.
Proof. Let $f \in \sum_{p}(\alpha, \lambda, q, \zeta)$. By using the technique employed in the proof of Theorem 7, we can show that

$$
\begin{equation*}
\left|z^{2} f^{\prime}(z)+1\right| \leq 1-\beta \tag{6.7}
\end{equation*}
$$

for $|z|<r_{3}(\alpha, \lambda, q, \zeta, c)$, and prove that the assertion of the theorem is true and the result is sharp.

References

[1] Akgül, A., A new subclass of meromorphic functions defined by Hilbert space operator, Honam Math. J. 38(3),(2016), 495-506.
[2] Akgül, A. A subclass of meromorphic functions defined by a certain integral opetor on Hilbert space, Creat. Math. Inform. (Accepted),(2016).
[3] Akgül, A. and Bulut, S., On a certain subclass of meromorphic functions defined by Hilbert space operator, Acta Univ. Apulensis Math. Inform 45,(2016), 1-9.
[4] Athsan, W. G. and Buti, R. H., Fractional Calculus of a class of univalent functions with negative coefficients defined by Hadamard product with Rafid-Operator, Eur. J. Pure Appl. Math. 4(2), (2011), 162-173.
[5] Aouf, M. K. and Darwish, H. E., On certain subclass of meromorphically starlike functions with positive coefficients, Turkish J. Math., 21(3) (1997), 311-316.
[6] Aouf, M. K. and Joshi, S. B., On certain subclass of meromorphically starlike functions with positive coefficients, Soochow jornal of Mathematics (1998), 24(2) (1998), 79-90.
[7] Clunie, J., On meromorphic schilict functions, J. London Math.Soc. 34 (1959), 115-216.
[8] Duren,P.L., Univalent Functions, Springer, New York,NY, USA,(1983).
[9] Ghanim, F. and Darus, M., On class of hypergeometric functions with fixed second positive coefficients, General Mathematics 17(4) (2009), 13-28.
[10] Junea, O. P. and Reddy, T. R., Meromorphic starlike univalent functions with positive coefficients, Ann. Univ. Mariae Curie Sklodowska, Sect. A. 39 (1985), 65-76.
[11] Lashin, A. Y., On certain subclasses of meromorphic functions associated with certain integral operators, Comput.Math.Appl. 59(1),(2010), 524-531.
[12] Miller, J. E., Convex meromorphic mapping and related functions, Proc.Amer.Math.Soc.25,(1970),220-228.
[13] Pommerenke, Ch., On meromorphic starlike functions, Pac.J.Math. 13,(1963),221-235.
[14] Ram Reddy, T.,Sharma, R. B. and Saroja, K., A new subclass of meromorphic functions with positive coefficients, Indian J. Pure Appl. Math. 44(1), (2013), 29-26.
[15] Royster, W. C., Meromorphic starlike univalent functions, Trans. Amer. Math. Soc. 107,(1963), 300-308.
[16] Rosy, T. and Varma, S., Geometry, On a subclass of meromorphic functions defined by Hilbert space operator, Vol.(2013), Article ID 671826, 4 pages,
[17] Srivastava, H. M. and Owa, S., Current topics in analytic function theory, World Scientific Publishing, New Jersey, (1992).
[18] Ureagaldi, B. A., Meromorphically starlike functions with positive and fixed second coefficients, Kyungpook Math. J. 29(1) (1998),64-68.

Current address, Arzu AKGÜL: Kocaeli University, Department of Mathematics, Faculty of Science and Arts, Umuttepe Campus, 41380, İzmit-Kocaeli, TURKEY.

E-mail address: akgul@kocaeli.edu.tr

[^0]: Received by the editors: September 09, 2016; Accepted: October 10, 2016 .
 2010 Mathematics Subject Classification. Primary 30C45.
 Key words and phrases. Meromorphic functions, positive coefficients, coefficient inequality, convex linear combination, meromorphically starlikeness, convexity, close-to-convexity and extreme points.

