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PREDICTIVE PERFORMANCES OF

IMPLICITLY AND EXPLICITLY ROBUST CLASSIFIERS ON

HIGH DIMENSIONAL DATA

NECLA GÜNDÜZ AND ERNEST FOKOUÉ

Abstract. The goal of this paper is to demonstrate via extensive simula-
tion that implicit robustness can substantially outperform explicit robust in

the pattern recognition of contaminated high dimension low sample size data.
Our work specifically demonstrates via extensive computational simulations
and applications to real life data, that random subspace ensemble learning ma-

chines, although not explicitly structurally designed as a robustness-inducing
supervised learning paradigms, outperforms the structurally robustness-seeking
classifiers on high dimension low sample size datasets. Random forest (RF),
which is arguably the most commonly used random subspace ensemble learning

method, is compared to various robust extensions/adaptations of the discrimi-
nant analysis classifier, and our work reveals that RF, although not inherently
designed to be robust to outliers, substantially outperforms the existing tech-
niques specifically designed to achieve robustness. Specifically, by exploring

different scenarios of the sample size n and the input space dimensionality p
along with the corresponding capacity κ = n/p with κ < 1, we demonstrate
through extensive simulations that regardless of the contamination rate ϵ, RF
predictively outperforms the explicitly robustness-inducing classification tech-

niques when the intrinsic dimensionality of the data is large.

1. Introduction

We are given a data set D = {(x1,y1), · · · , (xn,yn)} where xi ∈ X ⊂ Rp×1 and
yi ∈ Y, and we focus on the challenging multicategorical classification scenario
involving the so-called high dimensional low sample size (HDLSS) datasets, that
is, n ≪ p or more precisely p much larger than n, and yi ∈ Y = {1, 2, · · · , G},
where G represents the number of groups/classes to which a p-tuple x from the
input space X may belong. We specifically concentrate on data with observations
that are contaminated, namely where it is assumed that a rate ϵ ∈ (0, τ) of the
observations are outliers. We consider the task of building the best predictively

optimal estimator f̂(·) of the underlying true classifier f(·) of the data. Throughout
this paper, we shall use the average test error AVTE(·), as our measure of predictive
performance, namely

AVTE(f̂) =
1

R

R∑
r=1
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m∑
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, (1.1)
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where f̂r(·) is the r-th realization of the estimator f̂(·) built using the training

portion of the split of D into training set and test set, and
(
x
(r)
i ,y

(r)
i

)
is the i-th

observation from the test set at the r-th random replication of the split of D . Here,
we use the ubiquitous zero-one loss function defined by
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0 otherwise.
(1.2)

The pattern recognition literature is filled with techniques created and developed
to solve precisely this problem. Amongst others, logistic regression, discriminant
analysis, k−nearest neighbors, classification trees, support vector machine, random
forests, boosted trees, relevance vector classifiers and gaussian process classifiers,
just to name a few. Most of the literature in classification deals with data scenarios
where the number n of observations/instances is much larger than the dimension-
ality p of the input space X . As stated earlier, this paper considers data sets of a
very special kind, namely the so-called High Dimension Low Sample Size (HDLSS)
datasets, also known as large p small n data, since for this type of data, n ≪ p,
i.e., n is much less than p. Data sets of this type are very common these days
especially from the fields of study involving microarray gene expression used in di-
agnosing and helping cure diseases such as cancer. As a matter fact, we consider six
such data sets in this paper containing information about various forms of cancer,
namely prostate, lymphoma, lung, colon, leukemia, brain. Traditional classification
techniques like logistic regression, discriminant analysis and k−nearest neighbors
fail miserably on this kind of data, mainly due to the fact that the condition n ≪ p
leads to illposedness, and thereby the inability of those methods to even have a so-
lution. In the case of k−nearest neighbors for instance, the n ≪ p condition leads
to a severe case of the curse of dimensionality, since the concept of neighbor then
becomes loose and ill-defined when the dimension of the input space X is far larger
than the number of observations available [22]. Several approaches have been pro-
posed to achieve optimal classification in this HDLSS context. One of the earliest
is regularized discriminant analysis (RDA) proposed and extensively developed by
[12], recently used by authors like [14] in for the classification of microarray gene
expression data. There is a vast literature on regularized discriminant analysis and
regularized logistic regression, with a good number of the contributions dedicated
to handling classification problems when n ≪ p. It is important to note that it is
quite typical to have contamination in the data whenever the dimensionality of the
input space gets ever larger. Where there is a proportion ϵ ∈ (0, 1) of outlying ob-
servations in the data, then under the ϵ-contamination regime, the class conditional
density of X can be expressed in the form of a mixture of densities as

p(x|ϵ) = (1− ϵ)pin(x) + ϵpout(x). (1.3)

Under the assumption of multivariate Gaussian distribution for each of the class
conditional densities, the mixture density of Equation (1.3) can be expressed as
Equation (1.4) given by

p(x|µ,Σ, k, ϵ, η, γ) = (1− ϵ)ϕp(x;µk,Σ) + ϵϕp(x;µk + η, γΣ), (1.4)

where η represents the contamination of the location, while γ captures the level
of contamination of the scatter matrix, and ϕp(x;µ,Σ) denotes the multivariate
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Gaussian density defined by

ϕp(x;µ,Σ) =
1√

(2π)p|Σ|
exp

{
−1

2
(x − µ)⊤Σ−1(x − µ)

}
. (1.5)

Strictly speaking, the outlying observations do not have to originate from the same
distribution as the above Equation (1.4) clearly suggests/implies, but this outliers
homogeneity simplification is enough for us to explore various facets of outliers
influence on predictive performance of classifiers dealing with high dimension low
sample size datasets. In fact, for the sake of our computational demonstrations, we
use yet another simplification, this time on the covariance matrix of the multivariate
Gaussian distributions explored. Specifically, in order to study the effect of the
correlation pattern, we simulate the data using a covariance matrix Σ parameterized
by ρ, where Σ = (σij), with σij = ρ|i−j|, that is,

Σ = Σ(ρ) =



1 ρ · · · ρp−2 ρp−1

ρ 1 ρ · · · ρp−2

...
. . .

. . .
. . .

...

ρp−2 . . . ρ 1 ρ
ρp−1 ρp−2 · · · ρ 1

 .

With this patterned covariance matrix, we can assess the effect of the intrinsic
dimensionality of the data by simply varying ρ from 0 to some large value. Again,
it is clear that this covariance matrix, despite being a special case, suffices for
the purposes of our simulations and demonstrations as we set out to compare the
predictive performance of classifiers on contaminated high dimension low sample
size data.
The presence of outliers in the data is hard enough in low dimensional spaces
(n ≫ p with p relatively small), let alone in extremely high dimensional spaces
where one now has to contend with both ill-posedness and outliers. Indeed, these
situations trigger the need for both regularization (to deal with high dimensional
ill posedness) and robustification to circumvent the ill-effect of outliers [38]. In the
context of n < p, there is a relatively large literature on robust discriminant analysis
with many of the contributions based on various approaches to robust estimation of
both location and scatter [6], [7], [8], [25], [24], [37], [36]. Unfortunately, apart from
[38], [24], there has not been much work on robust discrimination when n is much
less than p. In fact, we will reveal in our computational section that the traditional
robust approach based on Minimum Covariance Determinant (MCD) estimation of
the covariance structure fails miserably in the HDLSS context. The two approaches
presented and explored by [38] and [24] appear to still be in the very early stages
of development. In our experimentations, we noticed that those techniques tend
to work when n/p is close to 10−2, but they all fail or struggle if the ratio n/p
gets smaller. In this paper, we explore both real life data - mainly microarray gene
expression cancer data - and simulated data, and we reveal patterns exhibited by
the average test error as a function n, p and G.
In the context of simulated data, we also consider the impact of the contamination
rate ϵ, the magnitude γ of contamination of the scatter matrix, and the level ρ
of correlation among the predictor variables. Throughout our simulations, we use
the same value for the contamination of the location. The remainder of this paper
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n p n/p log(|cov(X)|) G
Diabetes 145 3 48.33 -10.04 2

prostate 500 79 O(10−1) −∞ 3

lymphoma 180 661 O(10−1) −∞ 3

lung cancer 197 1000 O(10−1) −∞ 4

breast cancer(A) 97 1213 O(10−2) −∞ 3

colon cancer 62 2000 O(10−2) −∞ 2
leukemia 72 3571 O(10−2) −∞ 2

brain cancer 42 5597 O(10−3) −∞ 5

Table 1. The last column is the number of classes in the pattern
recognition task. The logarithm of the determinant of the covari-
ance matrix is also provided to highlight just how ill conditioned
the matrix is.

is organized as follows. In section two, we present ensemble learning for classifi-
cation on contaminated high dimension low sample siz datasets with a special on
random subspace learning via random forest, we provide a conceptual justification
of the aspects responsible for the good predictive performance. In section three,
we present a brief summary of discriminant analysis with an emphasis on where
the need for robustification and regularization arises. We then discuss some of the
most commonly used techniques of robustification, highlighting some of the limi-
tations and merits of each method. In section four, we present the computational
comparison of the techniques on real life data. In section five, we present a large
simulation study, featuring various choices of the sample size n, dimensionality p,
number of classes G, contamination rate ϵ and contamination size γ and correlation
among the predictive variables ρ. We also highlight how various scenarios of these
choices impact the average prediction error over R replications. In the section six,
we present our conclusion and discussion along with a brief introduction to our
future work dedicated to the regularized version of robust discriminant analysis in
the HDLSS context.

2. Ensemble Learning Approach to Robust Classification

It is often common in massive data that selecting a single model does not lead
the optimal prediction. For instance, in the presence of multicollinearity which is
almost inevitable when p is very large, function estimators are typically unstable,
as they tend to exhibit rather large estimation variances. This issue of inflated
variances gets even more amplified in the presence of data contamination. It makes
sense that when data contains outliers, they will cause the variance of estimators to
increase even more. Fortunately, ensemble learning can be used to create aggregate
learning machines that substantially improve predictive performances. Recall that
we have class labels y coming from Y = {1, 2, · · · , G} and predictor variables x =
(x1, x2, · · · , xp)⊤ coming from a p-dimensional space X . Let ĝ(b)(·) be the bth boot-

strap replication of the estimated base classifier ĝ(·), such that (ŷ)(b) = ĝ(b)(x) is the
bth bootstrap estimated class of x. The estimated response by bagging is obtained
using the majority vote rule, which means the most frequent label throughout the B

bootstrap replications. Namely, f̂ (bagged)(x) = Most frequent label in Ĉ(B)(x),

where Ĉ(B)(x) =

{
ĝ(1)(x), ĝ(2)(x), · · · , ĝ(B)(x)

}
. Succinctly, we can write the bagged
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estimated label of x as

f̂ (bagged)(x) = arg max
y∈Y

{
freqĈ(B)(x)(y)

}
= arg max

y∈Y

{
B∑

b=1

(
1{y=ĝ(b)(x)}

)}
.

In fact, when observation bagging (bootstrapping) is combined with attribute-
bagging, we get the so-called random subspace learning of which random forest
is a special case when base learners are trees. If T denotes the tree represented by
the partitioning of X into q regions R1, R2, · · · , Rq such that X = ∪q

ℓ=1Rℓ, then,
all the observations in a given terminal node (region) will be assigned the same
label, namely

cℓ = argmax
j∈{1,··· ,G}

{
1

|Rℓ|
∑

xi∈Rℓ

I(Yi = j)

}
As a result, for a new point x, its predicted class is given by

ŶTree = ĝTree(x) =

q∑
ℓ=1

cℓIℓ(x),

where Iℓ(·) is the indicator function of Rℓ, i.e. Iℓ(x) = 1 if x ∈ Rℓ and Iℓ(x) = 0
if x /∈ Rℓ. While trees are known to be notoriously unstable because of their large
estimation variance, the random subspace learning approach via random forest does
produce substantial predictive improvements, and we conjecture that the predictive
improvements are due to the fact that by combining both bootstrapping on the
observations with the selection of only a few dimensions out of the large number of
dimensions, the influence of outliers is substantially reduced. In a sense, random
subspace learning does induce robustness even if only implicitly.

Conjecture 1. Let D be the dataset under consideration. Assume that a proportion
ε of the observations in D are outliers. If ε < e−1, then the majority of the base
learning trees contributing to the random forest ensemble classifier will have a high
probability of being robust in the sense that they will be constructed with a very low
proportion of outliers.

Proof. The key idea of our conjecture rests on the fact that the combination of
bootstrapping and subspace selection leads to isolation of outliers, and thereby the
robustness of most of the base learners used in the ensemble, and crucially, the use
of voting further gives greater weight to that majority of outlier-free base learners,
leading to the observed improvement in predictive performance. The following
helps gain deeper insights in the outlier isolation capability of random subspace
learning. Let xi ∈ D be a random observation in the original dataset D . Let
D (b) denote the bth bootstrapped sample from D . Let Pr[xi ∈ D (b)] represent the
proportion of observations that are in D but also present in D (b). It is easy to
prove Pr[xi ∈ D (b)] = 1 −

(
1− 1

n

)n
. In other words, if Pr[xi /∈ D (b)] = Pr[On]

denotes the observations from D not present in D (b), we must have Pr[xi /∈ D (b)] =(
1− 1

n

)n
= Pr[On]. Since Pr[On] is known to converge to e−1 as n goes to infinity.

Therefore for each given bootstrapped sample D (b), there is a probability close to
e−1 that any given outlier will not corrupt the estimation of location vector and
scatter matrix parameters. Since the outliers as well as all other observations have
an asymptotic probability of e−1 of not affecting the bootstrapped estimator that
we build. Therefore over a large enough re-sampling process (large B), there will



EXPLICITLY VERSUS IMPLICITLY ROBUST HIGH DIMENSIONAL CLASSIFIERS 19

be many bootstrapped samples D (b) with very few outliers leading to a sequence of
small covariance determinants as desired, if ε < e−1. It is therefore reasonable to
deduce that by averaging this exclusion of outliers over many replications, robust
estimators will naturally be generated by the RSSL algorithm

3. Covariance-based Classification Techniques

As emphasized from the beginning of this paper, we seek to demonstrate via compu-
tational simulations and applications to real life data, that random forest, although
not explicitly designed with robustness as its goal, proves to predictively outperform
robustness-seeking algorithms. In this paper, all the alternatives to random forest
are covariance-based methods, and in this section we present the most commonly
used ones. Discriminant analysis is arguably one of the oldest and most commonly
used approaches to pattern recognition. Under the assumption of an underlying
Gaussian distribution for the class conditional densities, the main ingredient in

linear discriminant analysis is the estimator δ̂k(x) given by

δ̂k(x) = −1

2
(x − µ̂k)

⊤
Σ̂−1 (x − µ̂k) + log π̂k, (3.1)

where π̂k is the estimator of the prior class membership probability and µ̂ is the

empirical (sample) mean in class k, while Σ̂ is the estimator of the covariance
matrix common to all the classes. It turns out that both the estimated location µ̂k

and the estimated scatter matrix Σ̂ are sensitive to outliers, making the estimated
discriminant function non robust under contamination. In the context of prediction,
non-robustness leads to poor predictive performances due the fact the presence of
outliers in the explanatory variables causes the vital components of the discriminant
function to be biased. We therefore need robust methods to estimate both location
and scatter parameters in order to decrease the prediction error. When in addition
we have p much larger than n, we encounter the extra problem of non-invertibility

of Σ̂. Typically, one can solve this problem by selecting few subset of variables.

However, a more general approach deals with the problem by regularizing Σ̂ using

Σ̃ = Σ̂ + λIp with λ ∈ (0,∞), or a convex and more general version of it where

Σ̃ = (1− α)Σ̂ +
α

p
trace(Σ̂)Ip (3.2)

with α ∈ (0, 1). Some of the earliest work on regularized discriminant analysis
include the seminar paper by [12], and later applications by [14], just to name a few.
Many authors have contributed extensively in the area of regularized discriminant
analysis. Clearly, in the presence of both outliers and high dimensionality, one needs
to both robustify and then regularize. In the subsequent section, we mainly focus
on the kind of robustification that deals with contaminated high dimensionality
through a suitable combination robust PCA and projection pursuit [24], [38].

3.1. Robust Estimation Methods for Linear Discriminant Analysis. In section two,
one the challenges of discriminant analysis came from the fact that in the presence
of outliers, the location and scatter estimates are not reliable because they are not
robust. Many authors have contributed a wide variety of approaches all aimed at at
robustifying LDA. One of the earliest approaches used to address this problem is a
technique known as Minimum Covariance Determinant (MCD) introduced and de-
veloped by [30], [32]. The literature on robust discriminant analysis has blossomed
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recently, with many papers studying and exploring various extensions of MCD. In
this paper, we will be comparing the predictive performances of extensions devel-
oped by ([5]), then the one explored by [17] and [21]. We will also look into the
predictive performances of MCD extensions proposed by ([21]), and the ones de-
veloped by [37], [16]. Another paper extending the work on MCD is contributed
by [19]. It is important to note that all the above mentioned variations on the
MCD theme have been implemented in R with packages like rrcov and rrcovHD

readily available for immediate installation and use. Our goal in this paper is to
consider different scenarios of contamination in high dimensional spaces, and then
compare the performances of existing techniques, with the finality of establishing
the conditions under which each one of the techniques performs best. [30]’s original
MCD estimator is quite intuitive and can be briefly described as follows: given n
observations x1,x2, · · · ,xn taken from a p-dimensional space X ⊂ Rp, with true
location vector µ and true scatter matrix Σ, find the subset of h observations out
of n such that the corresponding sample (estimated) covariance matrix yields the
smallest determinant. In other words, we must have

det(Σ̂(γ(MCD))) = min
γ∈{0,1}n

{
det(Σ̂(γ))

}
where γ ∈ {0, 1}n simply represents the indicator vector such that γi = 1 if obser-
vation i is among the h chosen, and γi = 0 if it is not. Obviously, the final indicator
vector γ(MCD) chosen by the MCD method is such that length(γ(MCD)) = |γ(MCD)| = h.

Also, we use the notation θ̂(γ) to denote the estimator of θ based on only the ob-
servations selected by the indicator vector γ. Essentially, the MCD estimator of
the location parameter µ is defined by the mean of that subset γ(MCD) and the MCD
estimator of the scatter matrix parameter Σ is defined by the covariance of that
subset γ(MCD). More specifically,

µ̂MCD = µ̂(γ(MCD)) and Σ̂MCD = Σ̂(γ(MCD)).

In practice, Σ̂MCD is chosen in such a way that it is a multiple of its covariance

matrix. The multiplicative factor is chosen in such a way that Σ̂MCD is consistent
at the multivariate normal model and unbiased for small samples ([26]). The MCD
algorithm can be formulated as an optimization problem

(Ĥ, µ̂H , Σ̂H) = argmin
µ,Σ,H

{E(µ,Σ,H)}

where

E(µ,Σ,H) = log{det(Σ)}+ 1

h

∑
i∈H

(xi − µ)
⊤

Σ−1 (xi − µ).

The MCD approach can be summarized in pseudo-code format as follows:

Algorithm 1 Minimum Covariance Determinant (MCD)

1: Select h observations, and form the dataset DH . H ⊂ {1, · · · , n}.
2: Compute the empirical covariance Σ̂H and mean µ̂H .
3: Compute the Mahalanobis distances d2

µ̂H ,Σ̂H
(xi), i = 1, · · · , n

4: Select the h observations having the smallest Mahalanobis distance.

5: Update DH and repeat steps 2 to 5 until det(Σ̂H) no longer decreases.
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The seminal MCD algorithm proposed by [30] turned out to be rather slow and
did not scale well as a function of the sample size n. That limitation of MCD led
its author to creation of the so-called FAST-MCD [33]. Now, the MCD approach
requires that n

2 ≤ h < n, with h = [(n+ p+1)/2] yielding the maximal breakdown
point. Central to MCD is the fact that h must be determined or set. In fact, it
should be noted that the MCD estimator cannot be computed when p > h, since
such a scenario would mean having a singular covariance matrix for any h−subset.
It turns out that the whole MCD machinery needs n ≥ 2p in order to function at
all. For our high dimension low sample size problems for which p ≫ n, it is obvi-
ous that the basic formulation of MCD does not work. We discuss a little later the
extension of MCD known as regularized MCD whereby the estimates of interest are
obtained in their regularized version. Even within the satisfaction of the n > 2p
requirement, MCD is essentially very computationally intensive for the simple rea-
son that the need to select a subset combinatorially to optimize a criterion requires
a number of computing operations that can explode for even small sample sizes.
Many faster versions of the basic MCD algorithm have been suggested, led by [31].
As we shall see later in our computations, different variants of MCD lead to some-
times drastically different predictive performances. In the context of discriminant
analysis, one of the obvious limitations of MCD lies in the fact that it trims all
the classes/groups equally. Such an equal treatment of all the groups is potentially
inefficient in the presence of uncontaminated groups. Many other drawbacks of the
basic MCD approach to discriminant analysis have been scrutinized and addressed
by authors such as [17], [21], [3], [5]. Each of these variants was proposed in order
to address/solve a perceived limitation/drawback of the basic MCD approach. Un-
fortunately, in turns out all these variants of MCD only work when p is less than n.
In fact most of them require n to be at least greater than 2p. In order to deal with n
less than p situations one had to abandon MCD in its present form. As a matter of
fact, we are currently working on an extension of the MCD approach that combines
robustification and regularization to address HDLSS situation with n/p arbitrarily
very small. In this paper however, we explore two non-MCD based techniques,
namely robust SIMCA (described later) and projection pursuit (PP) discriminant
analysis. As we will see in the computational section, PP will proved to be quite
flexible but unfortunately fail when n/p gets to small (less than to 10−2). We will
see later that PP yields relatively poor predictive performances when the number
of classes is greater than 2 and/or the intrinsic dimensionality of the input space is
inherently high.

3.2. SIMCA approach to High Dimensional Robust Classification. Soft
Independent Modelling of Class Analogies (SIMCA) was introduced by [39]. [2] ex-
plain that SIMCA ability to classify high dimensional data comes from the fact that
it is based on a clever adaptation of principal component analysis (PCA). Thanks to
the supervised nature of discriminant analysis (class membership known), SIMCA
proceeds by performing principal component analysis in each of the G classes sep-
arately. Essentially, SIMCA can be summarized as an approach that combines
robust PCA within each group based on robust covariance estimation to achieve
good predictive performances in classification. More details on SIMCA can be
found in [21], [20] [2] and [38]. SIMCA has been widely applied to areas as diverse
as image analysis, microarray gene expression classification, and many other fields
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where data exists with n much less than p. An implementation of Robust SIMCA
is provided through the R package rrcovHD, and will be used in our comparison of
predictive performances of high dimensional robust classifiers.

3.3. Projection Pursuit Approach for Robust Linear Discriminant Anal-
ysis. From the seminal article [11], many authors like [10], [9] have developed
applications and extensions of PP to wide variety of statistical problems. There
have also been many theoretical justifications and discussions of the strengths and
appeal of PP [18], [15]. PP has also been used in discriminant analysis and outlier
detection[23] and [27]. [24] presents one of the most recent developments on PP
for robust discriminant analysis in high dimensional spaces. Her work builds first
on the original PP idea as presented and developed by [11] and [18], and combines
robustness strategies and the foundational idea of PP presented in the above defini-
tion, to achieve robust linear discriminant analysis in high dimensional spaces. Four
of the seven techniques compared in this paper are based on the PP approach to
robustness linear discriminant analysis in high dimension spaces. As we’ll see later
though, it will turn out that PP techniques will fail - somewhat catastrophically at
times - when the intrinsic dimensionality of the data is high. This is unsurprising,
since the very idea of PP presupposes the existence of a lower dimensional space as
the true/intrinsic basis of the data.

4. Computational Comparison of Predictive Performances

We now consider comparing the predictive performances of the techniques described
earlier on real life data. Among other things, we present the apparent (training)
error and the true (test) error which in this case is more precisely average test error
over R replications as defined in (1.1).

AVTE(f̂) =
1

R

R∑
r=1

{
1

m

m∑
i=1

ℓ(y
(r)
i , f̂r(x

(r)
i ))

}
.

Throughout this paper, each replication randomly assigns 2/3 of the data to the
training set and 1/3 to the test set. We do not consider a validation set because
none of the techniques is based on a tuning parameter. We use R = 200 replications.
We analyze 7 different datasets, six of which are high dimension low sample size
(HDLSS) microarray gene expression datasets. For clarity and completeness, we
present both the tables and the plots depicting the predictive performances of the
methods explored and analyzed.

4.1. Description of the datasets. (i) Diabetes data: Our first data set deals
with diabetes. It contains 145 observations, 3 variables and three classes. This is
obviously not a high dimensional dataset, but we use it here to reveal the stark
differences in performance between methods when one switches from large n small
p to large p small n. This dataset is available in the R package called mclust

contributed by [29]. (ii) Ceramic pottery data: This pottery data set was
analysed by [35]. Other authors have used it to test the robustness of their methods,
namely [4] and later [24]. Please note that these first two datasets are qualitatively
different from all the other datasets explored in this paper. Indeed, all the other
5 remaining datasets we explore here have in common the fact that they are all
microarray gene expression data sets. (iii) Prostate cancer data: This data
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set comes from microarray gene expression profiles/levels on prostate cancer, and
is a subset of a much larger data set from a study by [34]. This dataset has 37
samples classified as recurrent and 42 as non-recurrent primary prostate tumor.
(iv) Lymphoma data: The following data set deals with Lymphoma and contains
180 observations and 661 variables. (v) Lung cancer data: This dataset on lung
cancer s just one of many existing lung cancer datasets. The version we explore in
this paper contains 197 observations and 1000 variables. (vi) Colon cancer data:

From [1], it contains 62 observations on subjects classified into two groups (G1:
subjects with colon cancer, with 40 observations; G2: healthy subjects, with 22
observations) and measured on 2000 variables (gene expression levels). The aim is to
predict, as accurately as possible, the disease status from the gene expression levels.
This is a well known data set in the modern classification literature (e.g., References
from the paper) and the original version is available in the colonCA R package from
Bioconductor. The raw data is not normalized/preprocessed, which may lead to
very bad classification results. Therefore a simple normalization procedure was
applied: the data were log-transformed and after that each row was individually
centered using its median. (vii) Leukemia data: In this Leukemia data set,
there are 3571 variables(features), 72 samples ([13]). (viii) Brain cancer data:

The last data set considered in this paper is a brain cancer dataset ([28]). The total
number of patients in this case is n = 42, each represented by p = 5597 microarray
gene expression features, covering 5 different types of brain cancer. Using the
packages R packages rrcov and rrcovHD, we first computed the apparent error for
each of the methods on all the datasets mentioned above.

4.2. Comparisons of Methods on Real Data Using the Apparent Error.
Although the core of our work in this paper is focused on predictive performance
as stated right from our introduction, we devote this subsection to comparisons
based on the apparent (training) error, following from [37] and [24] who performed
similar comparisons. At the very least, the computation (or attempt thereof) of the
apparent misclassification rates gives a rough idea of how well the method might
perform predictively, when they can be applied at all.

n
p

145
3

= 48.33 79
500

= 0.158 180
661

= 0.272 197
1000

= 0.197 62
2000

= 0.031 72
3571

= 0.020 42
5597

= 0.0075

Diabetes Prostate Lymphoma Lung Colon Leukemia Brain

Classic 13.10 NA NA NA NA NA NA
Linda 10.35 NA NA NA NA NA NA
PP 27.58 29.11 55.00 21.83 11.29 5.55 52.38
SIMCA 11.72 35.44 9.44 5.58 9.68 12.50 NA

Table 2. Apparent misclassification rates for the classical and
robust estimators under different scenarios

As can be seen on Table (2), Linda (which is an R implementation of the MCD
approach) and classic LDA only work when n/p is greater than 1, in this case on
the diabetes data. PP and SIMCA do handle HDLSS (n/p < 1), with the exception
that SIMCA fails when n/p < 10−2. When they can both be applied, there is no
clear winner between PP and SIMCA: on some datasets, PP outperforms SIMCA,
but on other datasets, it is the other way round. This seems to indicate that besides
the impact of n/p, there is also the effect of the internal geometry of the data.
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4.3. Comparisons of Methods on Real Data Using the Average Test Er-
ror. In the interest of comparing the predictive optimality of the techniques ex-
plored, we now present the performances of 4 different variants of PP discrimi-
nation, against robust SIMCA, RF and Diagonal Discrimination Analysis (DDA).
Here, we use R = 200 replications, and some of the results are summarized in Table
(3) and Figure (1). As revealed in Table (3), one of the most immediate remark
that emerges from our computations is the fact that SIMCA comes out as the
worst in predictive performance 3 times, which is far more than any other method.
SIMCA also never comes out as best. We actually provide greater details about
this mediocre aspect of SIMCA in the simulated data section later. Another note-
worthy aspect of these computations is the fact that DDA appears to perform very
well, specifically emerging as the best 3 times (which is more times than any other
technique). Given the fact DDA operates under the strong assumptions of uncor-
relatedness of the predictor variables, we are let to infer that most of the datasets,
especially those on which DDA has the best predictive performances, are inherently
very high dimensional. In fact, this line of thought is somewhat supported by the
fact overall, PP, which relies on the existence of a lower dimensional projection of
the data, is the most unstable of the all the methods involved as shown clearly by
Figure (1) where PP depicts huge spikes corresponding to large prediction errors.
As depicted on the right panel of Figure (1), the lymphona data causes PP to fail
miserably, probably because the intrinsic dimensionality of this data is so high that
the projections fail to find lower dimensional representations. RF on the other hand
provides what we perceive as the most stable of all the performances: it can be seen
in Table (3) and Figure (1) that RF never comes last, and is usually best or second
best, with no instability spikes. As a matter of fact, the right panel of Figure (1)
shows the superior performance of RF and DDA, and relatively good performance
of SIMCA on the lymphoma data, whereas all the PP variants fail catastrophically.

4.4. Comparison of Predictive Performances on Simulated Data. Based on
the computations performed earlier on real life HDLSS microarray gene expression
datasets, some patterns began to emerge, among which the overall stability and
relatively strong predictive performance of RF, a method not structurally aimed at
robustness. We also noticed that PP is a very unstable method, typically producing
the worst performances on most data sets. Despite all these initial findings, we
still do not have a general characterization of which aspects of the data drive the
performances of each method. In this section, we use a thorough simulation study
with various aspects of data characteristics, with the finality of determination what
makes methods work well. For simplicity however, we use the first Σ with τ = 1
throughout this paper. For the remaining parameters, we use ϵ ∈ {0, 0.05, 0.15},
κ ∈ {9, 25, 100}, G ∈ {2, 3} and ρ ∈ {0, 0.25, 0.75} and p ∈ {10, 100, 1000}. As the
vector of ϵ values shows, we consider 3 different levels of contamination, namely no
contamination, mild contamination and strong contamination.

4.4.1. Uncontaminated Data. We first consider the performances of the techniques
under an uncontaminated regime, i.e. ϵ = 0. Our first simulation on under this
regime looks at combination where the number of classes is G = 2 and than in-
vestigate the effect of ρ and p (input space dimension). As the plots all reveal,
PP appears to perform very well (usually outperforming all the other methods)
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PP-class PP-huber PP-mad PP-sest RSIMCA RF DDA

diabetes 28 .79 ‡ 27.21 28.07 28.44 14.96† 3.54∗ 19.32
(5.41) (5.68) (5.57) (5.40) (4.95) (2.53) (4.99)

ceramic 8.44∗ 9.44† 12.50 11.06 23 .00 ‡ 16.00 9.72
(9.07) (8.32) (10.14) (9.35) (13.62) (10.13) (9.96)

lymphoma 58.96 58.14 59.03 59 .72 ‡ 20.22 8.98† 8.64∗

(6.02) (5.95) (6.36) (5.63) (7.29) (3.98) (3.55)
lung 22 .20 ‡ 22.02 22.15 21.90 8.12 5.23† 2.69∗

(4.18) (4.18) (4.28) (4.09) (3.37) (2.53) (1.69)
colon-1 17.90 18.29 18.02† 17.52 23 .76 ‡ 18.76 15.55∗

(7.73) (7.99) (7.68) (8.07) (10.34) (8.96) (6.78)
colon-2 23.38 23.05 21.67† 21.19∗ 25.88 21.71 31 .86 ‡

(8.46) (8.47) (9.05) (9.71) (11.82) (9.19) (15.27)
leukemia 5.58 5.21 5.13 4.85 15 .56 ‡ 3.04∗ 3.21†

(5.04) (4.19) (4.90) (4.65) (12.47) (4.04) (3.66)
Table 3. Average test error along with the corresponding stan-
dard deviation in parentheses. The star (*) is used to indicate the
method with the best predictive performance, while the double
dagger (‡) indicates the worst predictive performance. The dagger
(†) identifies the second best. The absence of prostate and brain is
due to the fact that many methods explored could not even handle
them. SIMCA for instance could not handle the brain cancer data
set.

whenever intrinsic dimensionality of the data is low (captured by ρ very high) and
the number of classes is 2 (Binary classification task).

PP-class PP-huber PP-mad PP-sest RSimca RF DDA
10 58.26 59.22 61.19 61.26 41.11 45.11 43.26
100 54.11 50.89 53.33 55.63 40.44 42.00 43.44

1000 44.44 35.26 35.74 35.96 30.81 28.70 35.89
2000 44.17 34.00 34.28 34.67 30.89 32.44 38.50

Table 4. Average test error on the uncontaminated simulated
data with g = 3 and ρ = 0.75. We herein reveal for each of the 7
methods, the effect of the input space dimension p on the average
test error.

Table (4) clearly reveals that PP does not work well n multi-categorical classifica-
tion. With the number of classes just equal to 3, PP yields the worst predictive
performance, regardless of the value of the overall correlation among the variables.
As we discuss much later, PP typically performs well in binary classification when
ρ is relatively large. But clearly, as depicted in Table (4), PP, at least in the imple-
mentation used here does NOT handle multiclass tasks well, even when the data is
potentially representable in a lower dimensional space (large ρ). It is important to
emphasize that this behavior of PP noticed here on uncontaminated data carries
over to contaminated at various rates of contamination. Figure (2) clearly shows
different scenarios of predictive performances under different data characteristics
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Boxplot of Test Error for the lymphoma data. n=180, p=661, g=3

Figure 1. (left) Average test error as a function of n/p. The
data sets appear on the x axis in decreasing order of n/p. The first
one(diabetes) has n/p = 145/3 and the last one (leukemia) has
n/p = 72/3571; (right) Average test error on the lymphoma data
set for which n/p = 180/661, and the number of classes is g = 3.
These box plots compare the predictive performances of all the 7
methods considered.

when the data has no contamination. The left panel corresponds to the case when
the number of classes is 3 and the correlation among variables is very high. In this
case, RF and SIMCA emerge as the best whereas PP fails. In the center, we see
another excellent performance of RF. wth DDA emerging as the best while PP fails,
this time due to the fact that ρ = 0. The right panel highlight the ideal conditions
for PP, namely binary classification along with large correlation.
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Figure 2. (left) Average test error on the uncontaminated sim-
ulated data with g = 3 and ρ = 0.75. We herein reveal for each
of the 7 methods, the effect of the input space dimension p on the
average test error. (center) Average test error on the uncontami-
nated simulated data with g = 2 and ρ = 0. We herein reveal for
each of the 7 methods, the effect of the input space dimension p on
the average test error. (right) Average test error on the uncontam-
inated simulated data with g = 2 and ρ = 0.75. We herein reveal
for each of the 7 methods, the effect of the input space dimension
p on the average test error.

4.4.2. Effect of Mild Contamination. We now consider the performances of the
techniques under a mildly contaminated regime, i.e. ϵ = 0.05. Our first simulation
on under this regime looks at combination where the number of classes is g = 2
and than investigate the effect of ρ and p (input space dimension) and κ. Figure
(3) reveals what we anticipated earlier, namely that PP performs well, typically
emerging as the best predictive technique, when g=2 (binary classification) and ρ
is large (intrinsically lower dimensionality of the data). In fact, under these two
PP-favorable conditions, PP yields the best performance regardless of the size κ of
contamination.
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Figure 3. Average test error on the mild contaminated simulated
data with g = 2 and ρ = 0.75. We herein reveal for each of the 7
methods, the effect of the input space dimension p on the average
test error.

Also noteworthy here is the fact that DDA fails for all the values of κ when ρ is
large. Finally, we also notice that RF does reasonably well, while SIMCA gets
progressively worse as κ increases.

4.4.3. Effect of Strong Contamination. We now consider the performances of the
techniques under a strongly contaminated regime, i.e. ϵ = 0.15. Our first simulation
under this regime looks at combination where the number of classes is g = 2 and
then investigates the effect of ρ and p (input space dimension) and κ.
We see in Figure (10) that under the strong contamination regime, RF emerges
as the best in multi-categorical classification tasks, regardless of the correlation
level and the size κ of contamination. SIMCA also performs very well under these
conditions, typically taking the second place to RF in predictive performance. It
can said that overall, RF and SIMCA are the most practical and applicable of all
the techniques explored here, since they both do well for the realistic scenario of
multicategorical classification with some rate of contamination.
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Figure 4. Average test error on the mild contaminated simulated
data with g = 2 and ρ = 0.25. We herein reveal for each of the 7
methods, the effect of the input space dimension p on the average
test error.

5. Conclusion and Discussion

We have presented a thorough comparison of the predictive performances of several
robust classification methods on high dimension low sample size data. On both
real life and simulated data, interesting patterns emerged. We noted for instance
that the SIMCA method, by being somewhat very general tends to yield mediocre
predictive performances when p is much larger than n, even though it rarely yield
the worst among compared classification techniques. One of the most striking re-
marks in our study has to do with projection pursuit, the clearest being the fact
that projection pursuit seems to do well only in binary classification. As a matter
of fact, for all the scenarios involving more than two classes, projection pursuit
seems to fail miserably regardless of all the other aspects of the data. Strikingly
also, when there are only two classes, projection pursuit yields the best predictive
performance if the correlation among the input space variables is large. This leads
us to conclude that projection pursuit as a method for robust discriminant analysis
is - at least in its present form - only best suited to binary classification for data
whose intrinsic dimensionality is very low. For us, the most striking observation
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Figure 5. Average test error on the mild contaminated simulated
data with g = 2 and ρ = 0.0. We herein reveal for each of the 7
methods, the effect of the input space dimension p on the average
test error.

lies with the performance of random forest. Indeed, as can be noted in all the
computational results presented earlier, random forest tended to be the best over-
all. More precisely, there was no instance where random forest yielded the worst
performance, and in most cases, it was either the very best or the second best.
As we explained earlier, this can be explained by the very mechanism of random
forest in the sense that at every iteration of the construction of a random forest,
not only is the estimator based on a subset of input variables, but also crucially
the bootstrap mechanism leaves out a proportion e−1 of the sample. This left out
fraction certainly contains some of the outliers. It is our conjecture as indicated
earlier, that the fact of leaving out a fraction of the data allows random forest to
weed out outliers or at least average out their effect. Hence the inherent ability of
random forest to achieve robustness by random subsampling. One could conjecture
that the overall superior performance of random forest can be attributed to the fact
it does both variable selection (by random subspace learning) thereby inherently
addressing the extremely high dimensionality of the data, and also reduction (or
even elimination) of the effect of outliers by subsampling. There is a sense here of
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Figure 6. Average test error on the mild contaminated simulated
data with g = 3. We herein reveal for each of the 7 methods, the
effect of the input space dimension p on the average test error.

a connection - however loose - between the subset selection of minimum covariance
determinant (MCD) - recall that MCD select h < n observations that yield the
minimum covariance determinant - and the out-of-bag observations derived from
the bootstrap in random forest. Therefore, we intend to investigate further the re-
lationship between the fraction/proportion e−1 of random forest and the number h
of observations used the MCD. We are also currently exploration various strategies
of regularized MCD as a way to achieve robust classification in settings where n is
much less than p.
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