Commun.Fac.Sci.Univ.Ank.Series A1 Volume 66, Number 2, Pages 80-90 (2017) DOI: 10.1501/Commua1_0000000803 ISSN 1303-5991

http://communications.science.ankara.edu.tr/index.php?series=A1

SOME CESÀRO-TYPE SUMMABILITY SPACES DEFINED BY A MODULUS FUNCTION OF ORDER (α, β)

HACER ŞENGÜL

ABSTRACT. In this article, we introduce strong $w [\theta, f, p]$ –summability of order (α, β) for sequences of complex (or real) numbers and give some inclusion relations between the sets of lacunary statistical convergence of order (α, β) , strong $w_{\alpha}^{\beta} [\theta, f, p]$ –summability and strong $w_{\alpha}^{\beta} (p)$ –summability.

1. Introduction

In 1951, Steinhaus [15] and Fast [9] introduced the concept of statistical convergence and later in 1959, Schoenberg [13] reintroduced independently. Caserta et al. [2], Çakallı [3], Connor [8], Çolak [7], Et [4], Fridy [10], Gadjiev and Orhan [5], Kolk [6], Salat [14] and many others investigated some arguments related to this notion.

Colak [7] studied statistical convergence order α by giving the definition as follows:

We say that the sequence $x = (x_k)$ is statistically convergent of order α to ℓ if there is a complex number ℓ such that

$$\lim_{n\to\infty}\frac{1}{n^\alpha}\left|\left\{k\le n:|x_k-\ell|\ge\varepsilon\right\}\right|=0.$$

Let $0 < \alpha \le \beta \le 1$. We define the (α, β) -density of the subset E of N by

$$\delta_{\alpha}^{\beta}(E) = \lim_{n} \frac{1}{n^{\alpha}} \left| \left\{ k \le n : k \in E \right\} \right|^{\beta}$$

provided the limit exists (finite or infinite), where $|\{k \leq n : k \in E\}|^{\beta}$ denotes the β th power of number of elements of E not exceeding n.

If a sequence $x = (x_k)$ satisfies property P(k) for all k except a set of (α, β) —density zero, then we say that x_k satisfies P(k) for "almost all k according to β " and we abbreviate this by "a.a.k (α, β) ".

Received by the editors: August 04, 2016; Accepted: November 01, 2016. 2010 Mathematics Subject Classification. Primary 40A05, 40C05; Secondary 46A45. Key words and phrases. Lacunary sequence, modulus function, statistical convergence.

©2017 Ankara University

Communications de la Faculté des Sciences de l'Université d'Ankara. Séries A1. Mathematics and Statistics.

Throughout this paper w indicate the space of sequences of real number.

Let $0 < \beta \le 1, 0 < \alpha \le 1, \alpha \le \beta$ and $x = (x_k) \in w$. The sequence $x = (x_k)$ is said to be statistically convergent of order (α, β) if there is a complex number L such that

$$\lim_{n \to \infty} \frac{1}{n^{\alpha}} \left| \left\{ k \le n : |x_k - L| \ge \varepsilon \right\} \right|^{\beta} = 0$$

i.e. for $a.a.k(\alpha, \beta) |x_k - L| < \varepsilon$ for every $\varepsilon > 0$, in that case a sequence x is said to be statistically convergent of order (α, β) , to L. This convergence is indicated by $S_{\alpha}^{\beta} - \lim x_k = L$ ([16]).

By a lacunary sequence we mean an increasing integer sequence $\theta = (k_r)$ such that $h_r = (k_r - k_{r-1}) \to \infty$ as $r \to \infty$ and $\alpha \in (0,1]$. Throughout this paper the intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and the ratio $\frac{k_r}{k_{r-1}}$ will be abbreviated by q_r . Lacunary sequence spaces were studied in ([11], [12], [17], [18]).

First of all, the notion of a modulus was given by Nakano [20]. Maddox [25] and Ruckle [28] used a modulus function to construct some sequence spaces. Afterwards different sequence spaces defined by modulus have been studied by Altın [1], Et ([26], [27]), Gaur and Mursaleen [21], Işık [23], Nuray and Savaş [22], Pehlivan and Fisher [29] and everybody else.

We recall that a modulus f is a function from $[0,\infty)$ to $[0,\infty)$ such that

- i) f(x) = 0 if and only if x = 0,
- ii) $f(x+y) \le f(x) + f(y)$ for $x, y \ge 0$,
- iii) f is increasing,
- iv) f is continuous from the right at 0.

It follows that f must be continuous everywhere on $[0, \infty)$.

The following inequality will be used frequently throughout the paper:

$$|a_k + b_k|^{p_k} \le D(|a_k|^{p_k} + |b_k|^{p_k})$$
 (1)

where $a_k, b_k \in \mathbb{C}$, $0 < p_k \le \sup p_k = H$, $D = \max(1, 2^{H-1})$ ([24]).

2. Main Results

In this part we will describe the sets of strongly $w_{\alpha}^{\beta}\left(p\right)$ —summable sequences and strongly $w_{\alpha}^{\beta}\left[\theta,f,p\right]$ —summable sequences with respect to the modulus function f. We will examine these spaces and we give some inclusion relations between the $S_{\alpha}^{\beta}\left(\theta\right)$ —statistical convergent, strong $w_{\alpha}^{\beta}\left[\theta,f,p\right]$ —summability and strong $w_{\alpha}^{\beta}\left(p\right)$ —summability.

Definition 1. Let $\theta = (k_r)$ be a lacunary sequence and $0 < \alpha \le \beta \le 1$ be given. We say that the sequence $x = (x_k)$ is $S_{\alpha}^{\beta}(\theta)$ -statistically convergent (or lacunary statistically convergent sequences of order (α, β)) if there is a real number L such

that

$$\lim_{r \to \infty} \frac{1}{h_r^{\alpha}} \left| \left\{ k \in I_r : |x_k - L| \ge \varepsilon \right\} \right|^{\beta} = 0,$$

where $I_r = (k_{r-1}, k_r]$ and h_r^{α} denotes the α th power $(h_r)^{\alpha}$ of h_r , that is $h^{\alpha} = (h_r^{\alpha}) = (h_1^{\alpha}, h_2^{\alpha}, ..., h_r^{\alpha}, ...)$ and $|\{k \leq n : k \in E\}|^{\beta}$ denotes the β th power of number of elements of E not exceeding n. In the present case this convergence is indicated by $S_{\alpha}^{\beta}(\theta) - \lim x_k = L$. $S_{\alpha}^{\beta}(\theta)$ will indicate the set of all $S_{\alpha}^{\beta}(\theta) - \text{statistically convergent}$ sequences. If $\theta = (2^r)$, then we will write S_{α}^{β} in the place of $S_{\alpha}^{\beta}(\theta)$. If $\alpha = \beta = 1$ and $\theta = (2^r)$, then we will write S in the place of $S_{\alpha}^{\beta}(\theta)$.

Definition 2. Let $\theta = (k_r)$ be a lacunary sequence, $0 < \alpha \le \beta \le 1$ and p be a positive real number. We say that the sequence $x = (x_k)$ is strongly $N_{\alpha}^{\beta}(\theta, p)$ – summable (or strongly $N(\theta, p)$ – summable of order (α, β)) if there is a real number L such that

$$\lim_{r \to \infty} \frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} |x_k - L|^p \right)^{\beta} = 0.$$

In the present case we denote $N_{\alpha}^{\beta}(\theta,p) - \lim x_k = L$. $N_{\alpha}^{\beta}(\theta,p)$ will denote the set of all strongly $N(\theta,p)$ -summable of order (α,β) . If $\alpha=\beta=1$, then we will write $N(\theta,p)$ in the place of $N_{\alpha}^{\beta}(\theta,p)$. If $\theta=(2^r)$, then we will write $w_{\alpha}^{\beta}(p)$ in the place of $N_{\alpha}^{\beta}(\theta,p)$. If L=0, then we will write $w_{\alpha,0}^{\beta}(p)$ in the place of $w_{\alpha}^{\beta}(p)$. $N_{\alpha,0}^{\beta}(\theta,p)$ will denote the set of all strongly $N_{\theta}(p)$ -summable of order (α,β) to 0.

Definition 3. Let f be a modulus function, $p = (p_k)$ be a sequence of strictly positive real numbers and $0 < \alpha \le \beta \le 1$ be real numbers. We say that the sequence $x = (x_k)$ is strongly $w_\alpha^\beta [\theta, f, p]$ –summable to L (a real number) such that

$$w_{\alpha}^{\beta}\left[\theta,f,p\right] = \left\{x = \left(x_{k}\right) : \lim_{r \to \infty} \frac{1}{h_{r}^{\alpha}} \left(\sum_{k \in I_{r}} \left[f\left(\left|x_{k} - L\right|\right)\right]^{p_{k}}\right)^{\beta} = 0, \text{ for some } L\right\}.$$

In the present case, we denote $w_{\alpha}^{\beta}[\theta, f, p] - \lim x_k = L$. In the special case $p_k = 1$, for all $k \in \mathbb{N}$ and f(x) = x we will denote $N_{\alpha}^{\beta}(\theta, p)$ in the place of $w_{\alpha}^{\beta}[\theta, f, p]$. $w_{\alpha,0}^{\beta}[\theta, f, p]$ will denote the set of all strongly $w[\theta, f, p]$ –summable of order (α, β) to 0.

In the following theorems we shall assume that the sequence $p = (p_k)$ is bounded and $0 < h = \inf_k p_k \le p_k \le \sup_k p_k = H < \infty$.

Theorem 1. The class of sequences $w_{\alpha,0}^{\beta}[\theta,f,p]$ is linear space.

Proof. Omitted.
$$\Box$$

Theorem 2. The space $w_{\alpha,0}^{\beta}[\theta, f, p]$ is paranormed by

$$g(x) = \sup_{r} \left\{ \frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} \left[f(|x_k|) \right]^{p_k} \right)^{\beta} \right\}^{\frac{1}{M}}$$

where $0 < \alpha \le \beta \le 1$ and $M = \max(1, H)$.

Proof. Clearly g(0) = 0 and g(x) = g(-x). Take any $x, y \in w_{\alpha,0}^{\beta}[\theta, f, p]$. Since $\frac{p_k}{\frac{M}{\beta}} \leq 1$ and $\frac{M}{\beta} \geq 1$, using the Minkowski's inequality and definition of f, we can write

$$\left\{ \frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} [f(|x_k + y_k|)]^{p_k} \right)^{\beta} \right\}^{\frac{1}{M}} \leq \left\{ \frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} [f(|x_k|) + f(|y_k|)]^{p_k} \right)^{\beta} \right\}^{\frac{1}{M}} \\
= \frac{1}{h_r^{\frac{\alpha}{M}}} \left(\sum_{k \in I_r} [f(|x_k|) + f(|y_k|)]^{p_k} \right)^{\frac{1}{M}} \\
\leq \frac{1}{h_r^{\frac{\alpha}{M}}} \left\{ \left(\sum_{k \in I_r} [f(|x_k|)]^{p_k} \right)^{\beta} \right\}^{\frac{1}{M}} \\
+ \frac{1}{h_r^{\frac{\alpha}{M}}} \left\{ \left(\sum_{k \in I_r} [f(|y_k|)]^{p_k} \right)^{\beta} \right\}^{\frac{1}{M}} .$$

Therefore $g(x+y) \leq g(x) + g(y)$ for $x, y \in w_{\alpha,0}^{\beta}[\theta, f, p]$. Let λ be complex number. By definition of f we have

$$g(\lambda x) = \sup_{r} \left\{ \frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} \left[f(|\lambda x_k|) \right]^{p_k} \right)^{\beta} \right\}^{\frac{1}{M}} \le K^{\frac{H}{\frac{M}{\beta}}} g(x)$$

where $[\lambda]$ denotes the integer part of λ , and $K = 1 + [|\lambda|]$. Now, let $\lambda \to 0$ for any fixed x with $g(x) \neq 0$. By definition of f, for $|\lambda| < 1$ and $0 < \alpha \leq \beta \leq 1$, we have

$$\frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} \left[f\left(|\lambda x_k| \right) \right]^{p_k} \right)^{\beta} < \varepsilon \text{ for } n > N\left(\varepsilon\right). \tag{2}$$

Also, for $1 \le n \le N$, taking λ small enough, since f is continuous we have

$$\frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} \left[f\left(|\lambda x_k| \right) \right]^{p_k} \right)^{\beta} < \varepsilon \tag{3}$$

(2) and (3) together imply that $g(\lambda x) \to 0$ as $\lambda \to 0$.

Proposition 1. ([19]) Let f be a modulus and $0 < \delta < 1$. Then for each $||u|| \ge \delta$, we have $f(||u||) \le 2f(1)\delta^{-1}||u||$.

Theorem 3. If $0 < \alpha = \beta \le 1$, p > 1 and $\lim \inf_{u \to \infty} \frac{f(u)}{u} > 0$, then $w_{\alpha}^{\beta}[\theta, f, p] = 0$ $w_{\alpha}^{\beta}(p)$.

Proof. Let $p_k = p$ be a positive real number. If $\liminf_{u \to \infty} \frac{f(u)}{u} > 0$ then there exists a number c > 0 such that f(u) > cu for u > 0. We have $x \in w_{\alpha}^{\beta}[\theta, f, p]$. Clearly

$$\frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} \left[f\left(|x_k - L| \right) \right]^p \right)^{\beta} \ge \frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} \left[c \left| x_k - L \right| \right]^p \right)^{\beta} = \frac{c^{p\beta}}{h_r^{\alpha}} \left(\sum_{k \in I_r} \left| x_k - L \right|^p \right)^{\beta},$$

therefore $w_{\alpha}^{\beta}\left[\theta,f,p\right]\subseteq w_{\alpha}^{\beta}\left(p\right)$. Let $x\in w_{\alpha}^{\beta}\left(p\right)$. Then we have

$$\frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} |x_k - L|^p \right)^{\beta} \to 0 \text{ as } r \to \infty.$$

Let $\varepsilon > 0$, $\alpha = \beta$ and choose δ with $0 < \delta < 1$ such that $cu < f(u) < \varepsilon$ for every uwith $0 \le u \le \delta$. We can write

$$\frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} \left[f\left(|x_k - L| \right) \right]^p \right)^{\beta} = \frac{1}{h_r^{\alpha}} \left(\sum_{\substack{k \in I_r \\ |x_k - L| \le \delta}} \left[f\left(|x_k - L| \right) \right]^p \right)^{\beta} + \frac{1}{h_r^{\alpha}} \left(\sum_{\substack{k \in I_r \\ |x_k - L| > \delta}} \left[f\left(|x_k - L| \right) \right]^p \right)^{\beta} \right) \leq \frac{1}{h_r^{\alpha}} \varepsilon^{p\beta} h_r^{\beta} + \frac{1}{h_r^{\alpha}} \left(\sum_{\substack{k \in I_r \\ |x_k - L| > \delta}} \left[2f\left(1 \right) \delta^{-1} |x_k - L| \right]^p \right)^{\beta} \\
\leq \frac{1}{h_r^{\alpha}} \varepsilon^{p\beta} h_r^{\beta} + \frac{2^{p\beta} f\left(1 \right)^{p\beta}}{h_r^{\alpha} \delta^{p\beta}} \left(\sum_{k \in I_r} |x_k - L|^p \right)^{\beta}$$

by Proposition 1. Therefore $x \in W^{\beta}_{\alpha}[\theta, f, p]$.

Example 1. We now give an example to show that $w_{\alpha}^{\beta}[\theta, f, p] \neq w_{\alpha}^{\beta}(p)$ in this case when $\liminf_{u\to\infty}\frac{f(u)}{u}=0$. Consider the sequence $f(x)=\sqrt{x}$ of modulus function.

Define $x = (x_k)$ by

$$x_k = \begin{cases} h_r, & if \quad k = k_r \\ 0, & if \quad otherwise. \end{cases}$$

We have, for $L=0,\,p=\frac{3}{2}$ and $\alpha=\beta$

$$\frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} \left[f\left(|x_k| \right) \right]^p \right)^{\beta} = \frac{1}{h_r^{\alpha}} \left(\sqrt{h_r} \right)^{\frac{3}{2}\beta} \to 0 \text{ as } r \to \infty$$

and so $x \in w_{\alpha}^{\beta}[\theta, f, p]$. But

$$\frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} |x_k|^p \right)^{\beta} = \frac{(h_r)^{\frac{3}{2}\beta}}{h_r^{\alpha}} \to \infty \ as \ r \to \infty$$

and so $x \notin w_{\alpha}^{\beta}(p)$.

Hence $x \in S_{\alpha_2}^{\beta_1}(\theta)$.

Theorem 4. Let $0 < \alpha \le \beta \le 1$ and $\liminf p_k > 0$. Then $x_k \to L$ implies $w_{\alpha}^{\beta}[\theta, f, p] - \lim x_k = L$.

Proof. Let $x_k \to L$. By definition of f we have $f(|x_k - L|) \to 0$. Since $\liminf p_k > 0$, we have $[f(|x_k - L|)]^{p_k} \to 0$. Therefore $w_\alpha^\beta[\theta, f, p] - \lim x_k = L$.

Theorem 5. Let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in (0,1]$ be real numbers such that $0 < \alpha_1 \le \alpha_2 \le \beta_1 \le \beta_2 \le 1$, f be a modulus function and let $\theta = (k_r)$ be a lacunary sequence, then $w_{\alpha_1}^{\beta_2} [\theta, f, p] \subset S_{\alpha_2}^{\beta_1} (\theta)$.

Proof. Let $x \in w_{\alpha_1}^{\beta_2}[\theta, f, p]$ and let $\varepsilon > 0$ be given and \sum_1 and \sum_2 denote the sums over $k \in I_r$, $|x_k - L| \ge \varepsilon$ and $k \in I_r$, $|x_k - L| < \varepsilon$ respectively. Since $h_r^{\alpha_1} \le h_r^{\alpha_2}$ for each r we may write

$$\frac{1}{h_r^{\alpha_1}} \left(\sum_{k \in I_r} \left[f\left(|x_k - L| \right) \right]^{p_k} \right)^{\beta_2}$$

$$= \frac{1}{h_r^{\alpha_1}} \left[\sum_{1} \left[f\left(|x_k - L| \right) \right]^{p_k} + \sum_{2} \left[f\left(|x_k - L| \right) \right]^{p_k} \right]^{\beta_2}$$

$$\geq \frac{1}{h_r^{\alpha_2}} \left[\sum_{1} \left[f\left(|x_k - L| \right) \right]^{p_k} + \sum_{2} \left[f\left(|x_k - L| \right) \right]^{p_k} \right]^{\beta_2}$$

$$\geq \frac{1}{h_r^{\alpha_2}} \left[\sum_{1} \left[f\left(\varepsilon \right) \right]^{p_k} \right]^{\beta_2}$$

$$\geq \frac{1}{h_r^{\alpha_2}} \left[\sum_{1} \min(\left[f\left(\varepsilon \right) \right]^h, \left[f\left(\varepsilon \right) \right]^H \right]^{\beta_2}$$

$$\geq \frac{1}{h_r^{\alpha_2}} \left[\left\{ k \in I_r : |x_k - L| \geq \varepsilon \right\} \right]^{\beta_1} \left[\min(\left[f\left(\varepsilon \right) \right]^h, \left[f\left(\varepsilon \right) \right]^H \right) \right]^{\beta_1}.$$

Theorem 6. If the modulus f is bounded and $\lim_{r\to\infty} \frac{h_r^{\beta_2}}{h_r^{\alpha_1}} = 1$ then $S_{\alpha_1}^{\beta_2}(\theta) \subset w_{\alpha_2}^{\beta_1}[\theta, f, p]$.

Proof. Let $x \in S_{\alpha_1}^{\beta_2}(\theta)$. Assume that f is bounded. Therefore $f(x) \leq K$, for a positive integer K and all $x \geq 0$. Then for each $r \in \mathbb{N}$ and $\varepsilon > 0$ we can write

$$\frac{1}{h_r^{\alpha_2}} \left(\sum_{k \in I_r} \left[f\left(|x_k - L| \right) \right]^{p_k} \right)^{\beta_1} \leq \frac{1}{h_r^{\alpha_1}} \left(\sum_{k \in I_r} \left[f\left(|x_k - L| \right) \right]^{p_k} \right)^{\beta_1} \\
= \frac{1}{h_r^{\alpha_1}} \left(\sum_{1} \left[f\left(|x_k - L| \right) \right]^{p_k} + \sum_{2} \left[f\left(|x_k - L| \right) \right]^{p_k} \right)^{\beta_1} \\
\leq \frac{1}{h_r^{\alpha_1}} \left(\sum_{1} \max\left(K^h, K^H \right) + \sum_{2} \left[f\left(\varepsilon \right) \right]^{p_k} \right)^{\beta_1} \\
\leq \left(\max\left(K^h, K^H \right) \right)^{\beta_2} \frac{1}{h_r^{\alpha_1}} \left| \left\{ k \in I_r : f\left(|x_k - L| \right) \geq \varepsilon \right\} \right|^{\beta_2} \\
+ \frac{h_r^{\beta_2}}{h_r^{\alpha_1}} \left(\max\left(f\left(\varepsilon \right)^h, \ f\left(\varepsilon \right)^H \right) \right)^{\beta_2}.$$

Hence $x \in w_{\alpha_2}^{\beta_1} [\theta, f, p]$.

Theorem 7. Let f be a modulus function. If $\lim p_k > 0$, then $w_{\alpha}^{\beta}[\theta, f, p] - \lim x_k = L$ uniquely.

Proof. Let $\lim p_k = s > 0$. Assume that $w_{\alpha}^{\beta}[\theta, f, p] - \lim x_k = L_1$ and $w_{\alpha}^{\beta}[\theta, f, p] - \lim x_k = L_2$. Then

$$\lim_{r} \frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} \left[f\left(|x_k - L_1| \right) \right]^{p_k} \right)^{\beta} = 0,$$

and

$$\lim_{r} \frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} \left[f\left(\left| x_k - L_2 \right| \right) \right]^{p_k} \right)^{\beta} = 0.$$

By definition of f and using (1), we have

$$\frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} [f(|L_1 - L_2|)]^{p_k} \right)^{\beta}$$

$$\leq \frac{D}{h_r^{\alpha}} \left(\sum_{k \in I_r} [f(|x_k - L_1|)]^{p_k} + \sum_{k \in I_r} [f(|x_k - L_2|)]^{p_k} \right)^{\beta}$$

$$\leq \frac{D}{h_r^{\alpha}} \left(\sum_{k \in I_r} [f(|x_k - L_1|)]^{p_k} \right)^{\beta} + \frac{D}{h_r^{\alpha}} \left(\sum_{k \in I_r} [f(|x_k - L_2|)]^{p_k} \right)^{\beta}$$

where $\sup_k p_k = H$, $0 < \alpha \le \beta \le 1$ and $D = \max(1, 2^{H-1})$. Hence

$$\lim_{r} \frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} \left[f\left(|L_1 - L_2| \right) \right]^{p_k} \right)^{\beta} = 0.$$

Since $\lim_{k\to\infty} p_k = s$ we have $L_1 - L_2 = 0$. Thus the limit is unique.

Theorem 8. Let $\theta = (k_r)$ and $\theta' = (s_r)$ be two lacunary sequences such that $I_r \subset J_r$ for all $r \in \mathbb{N}$ and let $\alpha_1, \alpha_2, \beta_1$ and β_2 be such that $0 < \alpha_1 \le \alpha_2 \le \beta_1 \le \beta_2 \le 1$,

$$\lim \inf_{r \to \infty} \frac{h_r^{\alpha_1}}{\ell_r^{\alpha_2}} > 0 \tag{4}$$

then $w_{\alpha_2}^{\beta_2} \left[\theta', f, p \right] \subset w_{\alpha_1}^{\beta_1} \left[\theta, f, p \right],$ (ii) If the modulus f is bounded and

$$\lim_{r \to \infty} \frac{\ell_r}{h_{\alpha_2}^{\alpha_2}} = 1 \tag{5}$$

then $w_{\alpha_1}^{\beta_2}[\theta, f, p] \subset w_{\alpha_2}^{\beta_1}[\theta', f, p]$.

Proof. (i) Let $x \in w_{\alpha_2}^{\beta_2} \left[\theta', f, p \right]$. We can write

$$\frac{1}{\ell_r^{\alpha_2}} \left(\sum_{k \in J_r} [f(|x_k - L|)]^{p_k} \right)^{\beta_2} = \frac{1}{\ell_r^{\alpha_2}} \left(\sum_{k \in J_r - I_r} [f(|x_k - L|)]^{p_k} \right)^{\beta_2} \\
+ \frac{1}{\ell_r^{\alpha_2}} \left(\sum_{k \in I_r} [f(|x_k - L|)]^{p_k} \right)^{\beta_2} \\
\ge \frac{1}{\ell_r^{\alpha_2}} \left(\sum_{k \in I_r} [f(|x_k - L|)]^{p_k} \right)^{\beta_2} \\
\ge \frac{h_r^{\alpha_1}}{\ell_r^{\alpha_2}} \frac{1}{h_r^{\alpha_1}} \left(\sum_{k \in I_r} [f(|x_k - L|)]^{p_k} \right)^{\beta_1}.$$

Thus if $x \in w_{\alpha_2}^{\beta_2} \left[\theta', f, p \right]$, then $x \in w_{\alpha_1}^{\beta_1} \left[\theta, f, p \right]$.

(ii) Let $x = (x_k) \in w_{\alpha_1}^{\beta_2}[\theta, f, p]$ and (2) holds. Assume that f is bounded. Therefore $f(x) \leq K$, for a positive integer K and all $x \geq 0$. Now, since $I_r \subseteq J_r$

and $h_r \leq \ell_r$ for all $r \in \mathbb{N}$, we can write

$$\begin{split} \frac{1}{\ell_r^{\alpha_2}} \left(\sum_{k \in J_r} \left[f \left(|x_k - L| \right) \right]^{p_k} \right)^{\beta_1} \\ &= \frac{1}{\ell_r^{\alpha_2}} \left(\sum_{k \in J_r - I_r} \left[f \left(|x_k - L| \right) \right]^{p_k} \right)^{\beta_1} + \frac{1}{\ell_r^{\alpha_2}} \left(\sum_{k \in I_r} \left[f \left(|x_k - L| \right) \right]^{p_k} \right)^{\beta_1} \\ &\leq \left(\frac{\ell_r - h_r}{\ell_r^{\alpha_2}} \right)^{\beta_1} K^{p_k \beta_1} + \frac{1}{\ell_r^{\alpha_2}} \left(\sum_{k \in I_r} \left[f \left(|x_k - L| \right) \right]^{p_k} \right)^{\beta_1} \\ &\leq \left(\frac{\ell_r - h_r^{\alpha_2}}{h_r^{\alpha_2}} \right) K^{H\beta_1} + \frac{1}{h_r^{\alpha_2}} \left(\sum_{k \in I_r} \left[f \left(|x_k - L| \right) \right]^{p_k} \right)^{\beta_2} \\ &\leq \left(\frac{\ell_r}{h_r^{\alpha_2}} - 1 \right) K^{H\beta_1} + \frac{1}{h_r^{\alpha_1}} \left(\sum_{k \in I_r} \left[f \left(|x_k - L| \right) \right]^{p_k} \right)^{\beta_2} \end{split}$$

for every $r \in \mathbb{N}$. Therefore $w_{\alpha_1}^{\beta_2}[\theta, f, p] \subset w_{\alpha_2}^{\beta_1}[\theta', f, p]$.

Now as a result of Theorem 8 we have the following Corollary 1.

Corollary 1. Let $\theta = (k_r)$ and $\theta' = (s_r)$ be two lacunary sequences such that $I_r \subset J_r$ for all $r \in \mathbb{N}$.

If (4) holds then, for
$$0 < \alpha_1 \le \alpha_2 \le \beta_1 \le \beta_2 \le 1$$

$$(i) \ \ \textit{If} \ 0<\alpha_{1}\leq\alpha_{2}\leq\beta_{1}\leq1 \ \ \textit{and} \ \ \beta_{2}=1, \ \ \textit{then} \ \ w_{\alpha_{2}}\left[\theta^{'},f,p\right]\subset w_{\alpha_{1}}^{\beta_{1}}\left[\theta,f,p\right],$$

(ii) If
$$0 < \alpha_1 \le \alpha_2 \le 1$$
 and $\beta_1 = \beta_2 = 1$, then $w_{\alpha_2} \left[\theta', f, p \right] \subset w_{\alpha_1} \left[\theta, f, p \right]$,

(iii) If
$$0 < \alpha_1 \le 1$$
 and $\alpha_2 = \beta_1 = \beta_2 = 1$, then $w\left[\theta', f, p\right] \subset w_{\alpha_1}\left[\theta, f, p\right]$,

(iv) If
$$0 < \alpha_1 \le \alpha_2 \le 1$$
 and $\beta_1 = \beta_2 = \beta$, then $w_{\alpha_2}^{\beta} \left[\theta', f, p \right] \subset w_{\alpha_1}^{\beta} \left[\theta, f, p \right]$,

$$(v) \ \textit{If} \ \alpha_{1}=\alpha_{2}=\alpha \ \textit{and} \ 0<\beta_{1}\leq\beta_{2}\leq1, \ \textit{then} \ w_{\alpha}^{\beta_{2}}\left[\overrightarrow{\theta'},f,p\right]\subset w_{\alpha}^{\beta_{1}}\left[\theta,f,p\right],$$

(vi) If
$$\alpha_1 = \alpha_2 = 1$$
 and $\beta_1 = \beta_2 = 1$, then $w\left[\theta', f, p\right] \subset w\left[\theta, f, p\right]$.

If (5) holds then, for
$$0 < \alpha_1 \le \alpha_2 \le \beta_1 \le \beta_2 \le 1$$

(i) If
$$0 < \alpha_1 \le \alpha_2 \le \beta_1 \le 1$$
 and $\beta_2 = 1$, then $w_{\alpha_1} [\theta, f, p] \subset w_{\alpha_2}^{\beta_1} [\theta', f, p]$,

$$(ii) \ \textit{If} \ 0<\alpha_{1}\leq\alpha_{2}\leq1 \ \textit{and} \ \beta_{1}=\beta_{2}=1, \ \textit{then} \ w_{\alpha_{1}}\left[\theta,f,p\right]\subset w_{\alpha_{2}}\left[\theta^{'},f,p\right],$$

(iii) If
$$0 < \alpha_1 \le 1$$
 and $\alpha_2 = \beta_1 = \beta_2 = 1$, then $w_{\alpha_1} [\theta, f, p] \subset w [\theta', f, p]$,

(iv) If
$$0 < \alpha_1 \le \alpha_2 \le 1$$
 and $\beta_1 = \beta_2 = \beta$, then $w_{\alpha_1}^{\beta}[\theta, f, p] \subset w_{\alpha_2}^{\beta}[\theta', f, p]$,

(v) If
$$\alpha_1 = \alpha_2 = \alpha$$
 and $0 < \beta_1 \le \beta_2 \le 1$, then $w_{\alpha}^{\beta_2}[\theta, f, p] \subset w_{\alpha}^{\beta_1}[\theta', f, p]$,

$$(vi) \ \textit{If} \ \alpha_{1}=\alpha_{2}=1 \ \textit{and} \ \beta_{1}=\beta_{2}=1, \ \textit{then} \ w \ [\theta,f,p] \subset w \left[\theta^{'},f,p\right].$$

References

- Altın, Y., Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. Ser. B Engl. Ed. 29(2) (2009), 427–434.
- [2] Caserta, A., Giuseppe, Di M. and Kočinac, L. D. R., Statistical convergence in function spaces, Abstr. Appl. Anal. 2011, Art. ID 420419, 11 pp.
- [3] Çakallı, H., A study on statistical convergence, Funct. Anal. Approx. Comput. 1(2) (2009), 19-24.
- [4] Et, M., Generalized Cesàro difference sequence spaces of non-absolute type involving lacunary sequences, Appl. Math. Comput. 219(17) (2013), 9372–9376.
- [5] Gadjiev, A. D., and Orhan, C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32(1) (2002), 129-138.
- [6] Kolk, E., The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu, 928 (1991), 41-52.
- [7] Çolak, R., Statistical convergence of order α, Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, 2010: 121–129.
- [8] Connor, J. S., The Statistical and Strong p-Cesaro Convergence of Sequences, Analysis, pp. (1988), 47-63.
- [9] Fast, H., Sur La Convergence Statistique, Colloq. Math., 2, pp. (1951), 241-244.
- [10] Fridy, J., On Statistical Convergence, Analysis, 5, pp. (1985), 301-313.
- [11] Fridy, J., and Orhan, C., Lacunary Statistical Convergence, Pacific J. Math., 160, pp. (1993), 43–51
- [12] Fridy, J., and Orhan, C., Lacunary Statistical Summability, J. Math. Anal. Appl., 173, pp. (1993), no. 2, 497–504.
- [13] Schoenberg, I. J., The Integrability of Certain Functions and Related Summability Methods, Amer. Math. Monthly, 66, pp. (1959), 361–375.
- [14] Salat, T., On Statistically Convergent Sequences of Real Numbers, Math. Slovaca., 30, pp. (1980), 139-150.
- [15] Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73-74.
- [16] Şengül, H., On Statistical Convergence of Order (α, β) . (In rewiev)
- [17] Et, M., and Şengül, H., Some Cesaro-type summability spaces of order α and lacunary statistical convergence of order α , Filomat 28 (2014), no. 8, 1593–1602.
- [18] Şengül, H., and Et, M., On lacunary statistical convergence of order α, Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), no. 2, 473–482.
- [19] Pehlivan, S., and Fisher, B., Some sequence spaces defined by a modulus, *Mathematica Slovaca* vol. 45, no. 3, pp. 275–280,1995.
- [20] Nakano, H., Modulared sequence spaces, Proc. Japan Acad. 27 (1951), 508-512.
- [21] Gaur, A. K., and Mursaleen, M., Difference sequence spaces defined by a sequence of moduli, Demonstratio Math. 31(2) (1998), 275–278.
- [22] Nuray, F., and Savaş, E., Some new sequence spaces defined by a modulus function, Indian J. Pure Appl. Math. 24(11) (1993), 657–663.
- [23] Işık, M., Strongly almost (w, λ, q) -summable sequences, Math. Slovaca 61(5) (2011), 779–788.
- [24] Maddox, I. J., Elements of Functional Analysis, Cambridge University Press, 1970.
- [25] Maddox, I. J., Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc, 1986, 100:161-166.
- [26] Et, M., Strongly almost summable difference sequences of order m defined by a modulus, Studia Sci. Math. Hungar. 40(4) (2003), 463–476.

- [27] Et, M., Spaces of Cesàro difference sequences of order r defined by a modulus function in a locally convex space, Taiwanese J. Math. 10(4) (2006), 865-879.
- [28] Ruckle, W. H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973–978.
- [29] Pehlivan, S. and Fisher, B., Lacunary strong convergence with respect to a sequence of modulus functions, Comment. Math. Univ. Carolin. 36 (1995), no. 1, 69-76.

Current address: Hacer Şengül: Department of Mathematics; Siirt University 56100; Siirt; TURKEY

 $E ext{-}mail\ address: hacer.sengul@hotmail.com}$