Commun.Fac.Sci.Univ.Ank.Series A1 Volume 66, Number 2, Pages 100-114 (2017) DOI: 10.1501/Commual_0000000805 ISSN 1303-5991

http://communications.science.ankara.edu.tr/index.php?series=A1

ON VECTOR-VALUED CLASSICAL AND VARIABLE EXPONENT AMALGAM SPACES

ISMAIL AYDIN

ABSTRACT. Let $1 \leq p, q, s \leq \infty$ and $1 \leq r(.) \leq \infty$, where r(.) is a variable exponent. In this paper, we introduce firstly vector-valued variable exponent amalgam spaces $(L^{r(\cdot)}(\mathbb{R}, E), \ell^s)$. Secondly, we investigate some basic properties of $(L^{r(.)}(\mathbb{R},E),\ell^s)$ spaces. Finally, we recall vector-valued classical amalgam spaces $(L^{p}(G,A),\ell^{q})$, and inquire the space of multipliers from $(L^{p_1}(G,A),\ell^{q_1})$ to $(L^{p'_2}(G,A^*),\ell^{q'_2})$.

1. Introduction

The amalgam of L^p and l^q on the real line is the space $(L^p, l^q)(\mathbb{R})$ (or shortly (L^p, l^q)) consisting of functions which are locally in L^p and have l^q behavior at infinity. Several special cases of amalgam spaces, such as (L^1, l^2) , (L^2, l^{∞}) , (L^{∞}, l^1) and (L^1, l^{∞}) were studied by N. Wiener [30]. Comprehensive information about amalgam spaces can be found in some papers, such as [16], [29], [15], [10] and [11]. Recently, there have been many interesting and important papers appeared in variable exponent amalgam spaces $(L^{r(.)}, \ell^s)$, such as Aydın and Gürkanlı [3], Aydın [5], Gürkanli and Aydın [14], Kokilashvili, Meskhi and Zaighum [17], Meskhi and Zaighum[23], Gürkanli [13], Kulak and Gürkanli [20]. Vector-valued classical amalgam spaces $(L^p(\mathbb{R}, E), \ell^q)$ on the real line were defined by Lakshmi and Ray [21] in 2009. They described and discussed some fundamental properties of these spaces, such as embeddings and separability. In their following paper [22], they investigated convolution product and obtained a similar result to Young's convolution theorem on $(L^p(\mathbb{R},E),\ell^q)$. They also showed classical result on Fourier transform of convolution product for $(L^p(\mathbb{R},E),\ell^q)$. Vector-valued variable exponent Bochner-Lebesgue spaces $L^{r(.)}(\mathbb{R},E)$ defined by Cheng and Xu [7] in 2013. They proved dual space, the reflexivity, uniformly convexity and uniformly smoothness of

Received by the editors: April 12, 2016; Accepted: December 06, 2016. 2010 Mathematics Subject Classification. 43A15, 46E30, 43A22. Key words and phrases. Variable exponent, amalgam spaces, multipliers. $L^{r(.)}(\mathbb{R},E)$. Furthermore, they gave some properties of the Banach valued Bochner-Sobolev spaces with variable exponent. In this paper, we give some information about $(L^{r(.)}(\mathbb{R},E),\ell^s)$, and obtain the generalization of some results in Sağır [27] and similar consequences in Avcı and Gürkanli [1] and Öztop and Gürkanli [24]. Finally, our original aim is to prove that the space of multipliers from $(L^{p_1}(G,A),\ell^{q_1})$ to $(L^{p_2'}(G,A^*),\ell^{q_2'})$ is isometrically isomorphic to $(\mathbf{A}_{p_1,p_2}^{q_1,q_2}(G,A))^*$.

2. DEFINITION AND PRELIMINARY RESULTS

In this section, we give several definitions and theorems for vector-valued variable exponent Lebesgue spaces $L^{r(.)}(\mathbb{R}, E)$.

Definition 1. For a measurable function $r : \mathbb{R} \to [1, \infty)$ (called a variable exponent on \mathbb{R}), we put

$$r^- = \underset{x \in \mathbb{R}}{essinfr}(x), \qquad r^+ = \underset{x \in \mathbb{R}}{esssupr}(x).$$

The variable exponent Lebesgue spaces $L^{r(.)}(\mathbb{R})$ consist of all measurable functions f such that $\varrho_{r(.)}(\lambda f) < \infty$ for some $\lambda > 0$, equipped with the Luxemburg norm

$$||f||_{r(.)} = \inf \left\{ \lambda > 0 : \varrho_{r(.)}(\frac{f}{\lambda}) \le 1 \right\},$$

where

$$\varrho_{r(.)}(f) = \int\limits_{\mathbb{D}} |f(x)|^{r(x)} dx.$$

If $r^+ < \infty$, then $f \in L^{r(\cdot)}(\mathbb{R})$ iff $\varrho_{r(\cdot)}(f) < \infty$. The space $\left(L^{r(\cdot)}(\mathbb{R}), \|.\|_{r(\cdot)}\right)$ is a Banach space. If r(x) = r is a constant function, then the norm $\|.\|_{r(\cdot)}$ coincides with the usual Lebesgue norm $\|.\|_r$ [18], [2], [4]. In this paper we assume that $r^+ < \infty$.

Definition 2. We denote by $L_{loc}^{r(.)}(\mathbb{R})$ the space of (equivalence classes of) functions on \mathbb{R} such that f restricted to any compact subset K of \mathbb{R} belongs to $L^{r(.)}(\mathbb{R})$.

Let $1 \le r(.), s < \infty$ and $J_k = [k, k+1), k \in \mathbb{Z}$. The variable exponent amalgam spaces $(L^{r(.)}, \ell^s)$ are the normed spaces

$$\left(L^{r(.)},\ell^{s}\right)=\left\{f\in L_{loc}^{r(.)}\left(\mathbb{R}\right):\|f\|_{\left(L^{r(.)},\ell^{s}\right)}<\infty\right\},$$

where

$$||f||_{(L^{r(.)},\ell^s)} = \left(\sum_{k\in\mathbb{Z}} ||f\chi_{J_k}||_{r(.)}^s\right)^{1/s}.$$

It is well known that $(L^{r(\cdot)}, \ell^s)$ is a Banach space and does not depend on the particular choice of J_k , that is, J_k can be equal to [k, k+1), [k, k+1] or (k, k+1). Thus, we have same spaces $(L^{r(\cdot)}, \ell^s)$ [15]. Furthermore, it can be seen in references

[3], [5] and [14] to obtain some basic properties for $(L^{r(.)}, \ell^s)$ spaces. It is well known that $L^{r(.)}(\mathbb{R})$ is not translation invariant. So, the convolution operator and multipliers are useless in this space. By using Theorem 3.3 in [13] we also obtain $(L^{r(.)}, \ell^s)$ is not translation invariant.

Let $(E, \|.\|_E)$ be a Banach space and E^* its dual space and (Ω, Σ, μ) be a measure space.

Definition 3. A function $f: \Omega \to E$ is Bochner (or strongly) μ -measurable if there exists a sequence $\{f_n\}$ of simple functions $f_n: \Omega \to E$ such that $f_n(x) \xrightarrow{E} f(x)$ as $n \to \infty$ for almost all $x \in \Omega$ [9].

Definition 4. A μ -measurable function $f: \Omega \to E$ is called Bochner integrable if there exists a sequence of simple functions $\{f_n\}$ such that

$$\lim_{n \to \infty} \int_{\Omega} \|f_n - f\|_E \, d\mu = 0$$

for almost all $x \in \Omega$ [9].

 $\Sigma \to [0, \infty]$ defined by

Theorem 1. A μ -measurable function $f: \Omega \to E$ is Bochner integrable if and only if $\int_{\Omega} \|f\|_E d\mu < \infty$ [9].

Definition 5. A function $F: \Sigma \to E$ is called a vector measure, if for all sequences (A_n) of pairwise disjoint members of Σ such that $\bigcup_{n=1}^{\infty} A_n \in \Sigma$ and $F\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} F\left(A_n\right)$, where the series converges in the norm topology of E.

Let $F: \Sigma \to E$ be a vector measure. The variation of F is the function ||F||:

$$\|F\|\left(A\right) = \sup_{\pi} \sum_{B \in \pi}^{\infty} \|F\left(B\right)\|_{E},$$

where the supremum is taken over all finite disjoint partitions π of A. If $||F||(\Omega) < \infty$, then F is called a measure of bounded variation [7],[9].

Definition 6. A Banach space E has the Radon-Nikodym property (RNP) with respect to (Ω, Σ, μ) if for each vector measure $F: \Sigma \to E$ of bounded variation, which is absolutely continuous with respect to μ , there exists a function $g \in L^1(\Omega, E)$ such that

$$F(A) = \int_A g d\mu$$

for all $A \in \Sigma$ [7],[9].

Definition 7. The variable exponent Bochner- Lebesque space $L^{r(.)}(\mathbb{R}, E)$ stands for all (equivalence classes of) E-valued Bochner integrable functions f on \mathbb{R} such that

$$L^{r(.)}\left(\mathbb{R},E\right)=\left\{ f:\left\Vert f\right\Vert _{r(.),E}<\infty\right\} ,$$

where

$$\|f\|_{r(.),E} = \inf\left\{\lambda > 0: \varrho_{r(.),E}(\frac{f}{\lambda}) \leq 1\right\}$$

and

$$\varrho_{r(.),E}(f) = \int_{\mathbb{R}} \|f(x)\|_{E}^{r(.)} dx.$$

- The following properties proved by Cheng and Xu [7]; (i) $f \in L^{r(\cdot)}(\mathbb{R}, E) \Leftrightarrow \|f(x)\|_E^{r(\cdot)} \in L^1(\mathbb{R}) \Leftrightarrow \|f(x)\|_E \in L^{r(\cdot)}(\mathbb{R})$ (ii) $L^{r(\cdot)}(\mathbb{R}, E)$ is a Banach space with respect to $\|.\|_{r(\cdot), E}$.

 - (iii) $L^{r(.)}(\mathbb{R}, E)$ is a generalization of the $L^r(\mathbb{R}, E)$ spaces.
 - (iv) If $E = \mathbb{R}$ or \mathbb{C} , then $L^{r(\cdot)}(\mathbb{R}, E) = L^{r(\cdot)}(\mathbb{R})$.
 - (v) If E is reflexive and $1 < r^{-} < r^{+} < \infty$, then $L^{r(.)}(\mathbb{R}, E)$ is reflexive.

Theorem 2. If E^* has the Radon-Nikodym Property (RNP), then the mapping $g \mapsto \varphi_g, \ \frac{1}{r(.)} + \frac{1}{q(.)} = 1, \ L^{q(.)}\left(\mathbb{R}, E^*\right) \to \left(L^{r(.)}\left(\mathbb{R}, E\right)\right)^*$ which is defined by

$$<\varphi_g, f> = \int\limits_{\mathbb{D}} < g, f > dx$$

for any $f \in L^{r(.)}(\mathbb{R}, E)$ is a linear isomorphism and

$$||g||_{q(.),E^*} \le ||\varphi_g||_{(L^{r(.)}(\mathbb{R},E))^*} \le 2 ||g||_{q(.),E^*}.$$

Hence, the dual space $(L^{r(.)}(\mathbb{R},E))^*$ is isometrically isomorphic to $L^{q(.)}(\mathbb{R},E^*)$, where E^* has RNP. In addition, for $f \in L^{r(.)}(\mathbb{R}, E)$ and $g \in L^{q(.)}(\mathbb{R}, E^*)$ (g defines a continuous linear functional), the dual pair $\langle f(.), g(.) \rangle \in L^1(\mathbb{R})$ and Hölder inequality implies

$$\int_{\mathbb{R}} |\langle f(.), g(.) \rangle| dx \leq \int_{\mathbb{R}} ||f||_{E} ||g||_{E^{*}} dx$$

$$\leq C ||f||_{r(.),E} ||g||_{q(.),E^{*}}$$

for some C > 0 [7].

3. VECTOR-VALUED VARIABLE EXPONENT AMALGAM SPACES

In this section, we define vector-valued variable exponent amalgam spaces $(L^{r(.)}(\mathbb{R}, E), \ell^s)$. We also discuss some basic and significant properties of $(L^{r(.)}(\mathbb{R}, E), \ell^s)$.

Definition 8. Let $1 \leq r(.) < \infty$, $1 \leq s \leq \infty$ and $J_k = [k, k+1)$, $k \in \mathbb{Z}$. The vector-valued variable exponent amalgam spaces $(L^{r(.)}(\mathbb{R}, E), \ell^s)$ are the normed space

$$\left(L^{r\left(.\right)}\left(\mathbb{R},E\right),\ell^{s}\right)=\left\{ f\in L_{loc}^{r\left(.\right)}\left(\mathbb{R},E\right):\left\Vert f\right\Vert _{\left(L^{r\left(.\right)}\left(\mathbb{R},E\right),\ell^{s}\right)}<\infty\right\} ,$$

where

$$||f||_{(L^{r(.)}(\mathbb{R},E),\ell^s)} = \left(\sum_{k\in\mathbb{Z}} ||f\chi_{J_k}||_{r(.),E}^s\right)^{1/s}, 1 \le s < \infty$$

and

$$||f||_{(L^{r(.)}(\mathbb{R},E),\ell^{\infty})} = \sup_{k} ||f\chi_{J_{k}}||_{r(.),E}, s = \infty.$$

It can be proved that $(L^{r(\cdot)}(\mathbb{R}, E), \ell^s)$ is a Banach space with respect to the norm $\|.\|_{(L^{r(\cdot)}(\mathbb{R}, E), \ell^s)}$ [21]. Moreover, $(L^{r(\cdot)}(\mathbb{R}, E), \ell^s)$ has some inclusions and embeddings similar to [3].

The proof of the following Theorem is proved by using techniques in Theorem 2.6 in [11], [p. 32, 29] and [p.359,19].

Theorem 3. Let E^* has RNP and $1 < r^- \le r^+ < \infty$ and $1 < s < \infty$. Then the dual space of $(L^{r(\cdot)}(\mathbb{R}, E), \ell^s)$ is isometrically isomorphic to $(L^{q(\cdot)}(\mathbb{R}, E^*), \ell^t)$ for $\frac{1}{r(\cdot)} + \frac{1}{q(\cdot)} = 1$ and $\frac{1}{s} + \frac{1}{t} = 1$.

Proof. Let $\{A_k\}_{k\in\mathbb{Z}}$ be a family of Banach spaces. We define

$$\ell^{s}(A_{k}) = \{x = (x_{k}) : x_{k} \in A_{k}, ||x|| < \infty\}$$

where $||x|| = \left(\sum_{k \in \mathbb{Z}} ||x_k||_{A_k}^s\right)^{\frac{1}{s}}$. It can be seen that $\ell^s(A_k)$ is a Banach space under the norm ||.||. It is also well known that the dual of $\ell^s(A_k)$ is $\ell^t(A_k^*)$. Moreover, $\left(L^{r(\cdot)}(\mathbb{R},E),\ell^s\right)$ is particular case of $\ell^s(A_k)$. Indeed, if we take $A_k = L^{r(\cdot)}(J_k,E)$ and $J_k = [k,k+1)$, then the map $f \mapsto (f_k)$, $f_k = f\chi_{J_k}$ is an isometric isomorphism from $\left(L^{r(\cdot)}(\mathbb{R},E),\ell^s\right)$ to $\ell^s\left(L^{r(\cdot)}(J_k,E)\right)$. Hence, we have $\left(L^{r(\cdot)}(\mathbb{R},E),\ell^s\right)^* \cong \left(L^{q(\cdot)}(\mathbb{R},E^*),\ell^t\right)$ by Theorem 2.

Corollary 1. Let $1 < r^- \le r^+ < \infty$ and $1 < s < \infty$. If E is reflexive, then $\left(L^{r(.)}(\mathbb{R}, E), \ell^s\right)$ is reflexive.

Theorem 4. (Generalized Hölder Inequality) Let E^* has RNP and $m^+ < \infty$, $1 \le s \le \infty$. If $\frac{1}{r(.)} + \frac{1}{q(.)} = \frac{1}{m(.)}$ and $\frac{1}{s} + \frac{1}{t} = \frac{1}{n}$, then there exists a C > 0 such that

$$\| < f(.), g(.) > \|_{\left(L^{m(.)}(\mathbb{R}), \ell^n\right)} \leq C \, \|f\|_{\left(L^{r(.)}(\mathbb{R}, E), \ell^s\right)} \, \|g\|_{\left(L^{q(.)}(\mathbb{R}, E^*), \ell^t\right)}$$

$$and < f(.), g(.) > \in \left(L^{m(.)}\left(\mathbb{R}\right), \ell^{n}\right) for f \in \left(L^{r(.)}\left(\mathbb{R}, E\right), \ell^{s}\right), g \in \left(L^{q(.)}\left(\mathbb{R}, E^{*}\right), \ell^{t}\right).$$

 $\begin{array}{l} \textit{Proof. Let } \widetilde{f}(x) = \|f(x)\|_E \text{ and } \widetilde{g}(x) = \|g(x)\|_{E^*} \text{ be given for any } x \in \mathbb{R}. \text{ If } f \in \left(L^{r(\cdot)}\left(\mathbb{R},E\right),\ell^s\right) \text{ and } g \in \left(L^{q(\cdot)}\left(\mathbb{R},E^*\right),\ell^t\right), \text{ then we have } \widetilde{f} \in \left(L^{r(\cdot)},\ell^s\right), \ \widetilde{g} \in \left(L^{q(\cdot)},\ell^t\right) \text{ and } \left\|\widetilde{f}\right\|_{\left(L^{r(\cdot)},\ell^s\right)} = \|f\|_{\left(L^{r(\cdot)}(\mathbb{R},E),\ell^s\right)}, \ \|\widetilde{g}\|_{\left(L^{q(\cdot)},\ell^t\right)} = \|g\|_{\left(L^{q(\cdot)}(\mathbb{R},E^*),\ell^t\right)}. \end{array}$

Therefore, by using Hölder inequality for $L^{m(.)}$ [18], we can write the following inequality

$$\begin{split} \| < f(.), g(.) > \|_{m(.), J_k} & \leq \| \| f(.) \|_E \| g(.) \|_{E^*} \|_{m(.), J_k} \\ & \leq C \| \widetilde{f} \|_{r(.), J_k} \| \widetilde{g} \|_{q(.), J_k} \\ & = C \| f \chi_{J_k} \|_{r(.), E} \| g \chi_{J_k} \|_{q(.), E^*} \, . \end{split}$$

By Corollary 2.4 in [3] and Jensen's inequality for ℓ^s spaces, we obtain

$$\| \langle f(.), g(.) \rangle \|_{(L^{m(.)}(\mathbb{R}), \ell^n)} \le C \| f \|_{(L^{r(.)}(\mathbb{R}, E), \ell^s)} \| g \|_{(L^{q(.)}(\mathbb{R}, E^*), \ell^t)}.$$

This completes the proof.

Definition 9. We define $c_0(\mathbb{Z}) \subset l^{\infty}$ to be the linear space of $(a_k)_{k \in \mathbb{Z}}$ such that $\lim_k a_k = 0$, that is, given $\varepsilon > 0$ there exists a compact subset K of \mathbb{R} such that $|a_k| < \varepsilon$ for all $k \notin K$.

The vector-valued type variable exponent amalgam spaces $(L^{r(\cdot)}(\mathbb{R}, E), c_0)$ are the normed spaces

$$\left(L^{r(\cdot)}\left(\mathbb{R},E\right),c_{0}\right)=\left\{ f\in\left(L^{r(\cdot)}\left(\mathbb{R},E\right),\ell^{\infty}\right):\left\{ \left\|f\chi_{J_{k}}\right\|_{r(\cdot),E}\right\} _{k\in\mathbb{Z}}\in c_{0}\right\} ,$$

where

$$||f||_{(L^{r(.)}(\mathbb{R},E),\ell^{\infty})} = \sup_{k} ||f\chi_{J_{k}}||_{r(.),E}$$

for
$$f \in (L^{r(\cdot)}(\mathbb{R}, E), c_0)$$
 [29].

Proposition 1. Let E^* has RNP and $m^+ < \infty$, $1 \le s \le \infty$. If $f \in (L^{r(\cdot)}(\mathbb{R}, E), c_0)$ and $g \in (L^{q(\cdot)}(\mathbb{R}, E^*), c_0)$, then there exists a C > 0 such that

$$\| \langle f(.), g(.) \rangle \|_{(L^{m(.)}(\mathbb{R}), \ell^{\infty})} \le C \| f \|_{(L^{r(.)}(\mathbb{R}, E), \ell^{\infty})} \| g \|_{(L^{q(.)}(\mathbb{R}, E^{*}), \ell^{\infty})}$$

and
$$\langle f(.), g(.) \rangle \in \left(L^{m(.)}(\mathbb{R}), c_0\right)$$
 for $\frac{1}{r(.)} + \frac{1}{q(.)} = \frac{1}{m(.)}$.

Proof. If $f \in (L^{r(.)}(\mathbb{R}, E), c_0)$ and $g \in (L^{q(.)}(\mathbb{R}, E^*), c_0)$, then by Theorem 4 we can write $\langle f(.), g(.) \rangle \in (L^{m(.)}(\mathbb{R}), \ell^{\infty})$ and

$$\| \langle f(.), g(.) \rangle \|_{m(.), J_k} \le C \| f \chi_{J_k} \|_{r(.), E} \| g \chi_{J_k} \|_{g(.), E^*},$$

where C does not depend on for any $k \in \mathbb{Z}$. This implies that

$$\lim_{k} \| \langle f(.), g(.) \rangle \|_{m(.), J_{k}} \le \lim_{k} C \| f \chi_{J_{k}} \|_{r(.), E} \lim_{k} \| g \chi_{J_{k}} \|_{q(.), E^{*}} = 0$$

and $\langle f(.), g(.) \rangle \in (L^{m(.)}(\mathbb{R}), c_0)$. If we use the definition of the norm $\|.\|_{(L^{r(.)}(\mathbb{R}, E), \ell^{\infty})}$, then we get

$$\begin{split} \| < f(.), g(.) > &\|_{\left(L^{r(.)}, \ell^{\infty}\right)} &= \sup_{k} \left\| f \chi_{J_{k}} \right\|_{r(.)} \\ &\leq C \sup_{k} \left\| f \chi_{J_{k}} \right\|_{r(.), E} \left\| g \chi_{J_{k}} \right\|_{q(.), E^{*}} \\ &\leq C \sup_{k} \left\| f \chi_{J_{k}} \right\|_{r(.), E} \sup_{k} \left\| g \chi_{J_{k}} \right\|_{r(.), E} \\ &= C \left\| f \right\|_{\left(L^{r(.)}(\mathbb{R}, E), \ell^{\infty}\right)} \| g \|_{\left(L^{q(.)}(\mathbb{R}, E^{*}), \ell^{\infty}\right)} \end{split}$$

Definition 10. $L_c^{r(.)}(\mathbb{R}, E)$ denotes the functions f in $L^{r(.)}(\mathbb{R}, E)$ such that $suppf \subset \mathbb{R}$ is compact, that is,

$$L_{c}^{r(.)}\left(\mathbb{R},E\right)=\left\{ f\in L^{r(.)}\left(\mathbb{R},E\right):suppf\ compact\right\} .$$

Let $K \subset \mathbb{R}$ be given. The cardinality of the set

$$S(K) = \{J_k : J_k \cap K \neq \emptyset\}$$

is denoted by |S(K)|, where $\{J_k\}_{k\in\mathbb{Z}}$ is a collection of intervals.

Proposition 2. If g belongs to $L_c^{r(\cdot)}(\mathbb{R}, E)$, then

- (i) $||g||_{(L^{r(.)}(\mathbb{R},E),\ell^s)} \le |S(K)|^{\frac{1}{s}} ||g||_{r(.),E}$ for $1 \le s < \infty$,
- (ii) $\|g\|_{(L^{r(\cdot)}(\mathbb{R},E),\ell^{\infty})} \leq |S(K)| \|g\|_{r(\cdot),E}$ for $s=\infty$,
- (iii) $L_c^{r(\cdot)}(\mathbb{R}, E) \subset (L^{r(\cdot)}(\mathbb{R}, E), \ell^s)$ for $1 \leq s \leq \infty$, where K is the compact support of g.

Proof. (i) Since K is compact, then $K \subset \bigcup_{i=1}^{|S(K)|} J_{k_i}$ and

$$||g||_{(L^{r(\cdot)}(\mathbb{R},E),\ell^{s})} = \left(\sum_{k\in\mathbb{Z}} ||g\chi_{J_{k}}||_{r(\cdot),E}^{s}\right)^{1/s}$$

$$= \left(\sum_{J_{k_{i}}\in S(K)} ||g\chi_{J_{k}}||_{r(\cdot),E}^{s}\right)^{1/s}$$

$$\leq |S(K)|^{\frac{1}{s}} ||g||_{r(\cdot),E}$$

for $1 \leq s < \infty$, where the number of J_{k_i} is finite.

(ii) Let $s = \infty$. Then

$$\begin{split} \|g\|_{\left(L^{r(.)}(\mathbb{R},E),\ell^{s}\right)} &= \sup_{k \in \mathbb{Z}} \left\|g\chi_{J_{k}}\right\|_{r(.),E} \\ &= \sup_{i=1,2,..|S(K)|} \left\|g\chi_{J_{k_{i}}}\right\|_{r(.),E} \\ &\leq \left\|S(K)\right\| \|g\|_{r(.),E} \,. \end{split}$$

Theorem 5. (i) $L_c^{r(.)}(\mathbb{R}, E)$ is subspace of $(L^{r(.)}(\mathbb{R}, E), c_0)$ for $1 \leq s < \infty$. (ii) $C_0(\mathbb{R}, E)$ is subspace of $(L^{r(.)}(\mathbb{R}, E), c_0)$.

Proof. (i) Firstly, we show that $L_c^{r(\cdot)}(\mathbb{R}, E) \subset (L^{r(\cdot)}(\mathbb{R}, E), c_0)$. Let $f \in L_c^{r(\cdot)}(\mathbb{R}, E)$ be given. Since f has compact support, then $\|f\chi_{J_k}\|_{r(\cdot), E}$ is zero for all, but finitely many J_k . By definition of c_0 , we get $\{\|f\chi_{J_k}\|_{r(\cdot), E}\}_{k \in \mathbb{Z}} \in c_0$. Hence, $L_c^{r(\cdot)}(\mathbb{R}, E) \subset (L^{r(\cdot)}(\mathbb{R}, E), c_0)$.

(ii) If $f \in C_0(\mathbb{R}, E)$ and given $0 < \varepsilon < 1$, then there exists a compact set $K \subset \mathbb{R}$ such that $\|f(x)\|_E < \varepsilon$ for all $x \notin K$. Since K is compact, then $K \subset \bigcup_{i=1}^n J_{k_i}$ (n is finite) and $\|f(.)\chi_{J_k}\|_{r(.),E} < \varepsilon$ for all $k \neq k_i$, i = 1, 2, ...n. Indeed, by using $\varrho_{r(.),E}(f) \to 0 \Leftrightarrow \|f(.)\|_{r(.),E} \to 0$ ($r^+ < \infty$), and $|J_k| = 1$ (measure of J_k) it is written that

$$\varrho_{r(.),E}(f) = \int_{J_k} \|f(x)\|_E^{r(.)} dx$$

$$\leq \varepsilon^{r^-} |J_k| \to 0.$$

Therefore, we obtain $f \in (L^{r(.)}(\mathbb{R}, E), c_0)$ due to definition of norm of $(L^{r(.)}(\mathbb{R}, E), c_0)$.

4. VECTOR-VALUED CLASSICAL AMALGAM SPACES

In this section, we consider that G is a locally compact Abelian group, and A is a commutative Banach algebra with Haar measure μ . By the Structure Theorem, $G = \mathbb{R}^a \times G_1$, where a is a nonnegative integer and G_1 is a locally compact abelian group which contains an open compact subgroup H. Let $I = [0,1)^a \times H$ and $J = \mathbb{Z}^a \times T$, where T is a transversal of H in G_1 , i.e. $G_1 = \bigcup_{t \in T} (t+H)$ is a coset decomposition of G_1 . For $\alpha \in J$ we define $I_{\alpha} = \alpha + I$, and therefore G is equal to the disjoint union of relatively compact sets I_{α} . We normalize μ so that $\mu(I) = \mu(I_{\alpha}) = 1$ for all α [11], [29].

Definition 11. Let $1 \leq p, q < \infty$. The vector-valued classical amalgam spaces $(L^p(G,A), \ell^q)$ are the normed space

$$\left(L^{p}\left(G,A\right),\ell^{q}\right)=\left\{ f\in L_{loc}^{p}\left(G,A\right):\|f\|_{\left(L^{p}\left(G,A\right),\ell^{q}\right)}<\infty\right\} ,$$

where

$$\|f\|_{(L^p(G,A),\ell^q)} = \left(\sum_{\alpha \in J} \left\|f\chi_{I_\alpha}\right\|_{p,A}^q\right)^{1/q}, 1 \leq p,q < \infty.$$

Now we give Young's inequality for vector-valued amalgam spaces.

Theorem 6. ([22]) Let $1 \leq p_1, q_1, p_2, q_2 < \infty$. If $f \in (L^{p_1}(G, A), \ell^{q_1})$ and $g \in (L^{p_2}(G, A), \ell^{q_2})$, then $f * g \in (L^{r_1}(G, A), \ell^{r_2})$, where $\frac{1}{p_1} + \frac{1}{p_2} \geq 1$, $\frac{1}{q_1} + \frac{1}{q_2} \geq 1$, $\frac{1}{r_1} = \frac{1}{p_1} + \frac{1}{p_2} - 1$ and $\frac{1}{r_2} = \frac{1}{q_1} + \frac{1}{q_2} - 1$. Moreover, there exists a C > 0 such that

$$||f * g||_{(L^{r_1}(G,A),\ell^{r_2})} \le C ||f||_{(L^{p_1}(G,A),\ell^{q_1})} ||g||_{(L^{p_2}(G,A),\ell^{q_2})}.$$

Definition 12. Let A be a Banach algebra. A Banach space B is said to be a Banach A-module if there exists a bilinear operation $\cdot : A \times B \to B$ such that

- (i) $(f \cdot g) \cdot h = f \cdot (g \cdot h)$ for all $f, g \in A, h \in B$.
- (ii) For some constant $C \ge 1$, $||f \cdot h||_B \le C ||f||_A ||h||_B$ for all $f \in A$, $h \in B$. By Theorem 6, we have the following inequality

 $\|f * g\|_{(L^p(G,A),\ell^q)} \leq C \|f\|_{(L^p(G,A),\ell^q)} \|g\|_{(L^1(G,A),\ell^1)} = C \|f\|_{(L^p(G,A),\ell^q)} \|g\|_{L^1(G,A)}$ for all $f \in (L^p(G,A),\ell^q)$ and $g \in L^1(G,A)$, where $C \geq 1$, i.e. the amalgam space $(L^p(G,A),\ell^q)$ is a Banach $L^1(G,A)$ -module with respect to convolution. Moreover, it is easy to see that the amalgam space $(L^p(G,A),\ell^1)$ is a Banach algebra under convolution $p \geq 1$, if we define the norm $|\|f\||_{(L^p(G,A),\ell^1)} = C \|f\|_{(L^p(G,A),\ell^1)}$ for $(L^p(G,A),\ell^1)$. Recall that $(L^p(G,A),\ell^1) \subset L^1(G,A)$.

Definition 13. Let V and W be two Banach modules over a Banach algebra A. Then a multiplier from V into W is a bounded linear operator T from V into W, which commutes with module multiplication, i.e. T(av) = aT(v) for $a \in A$ and $v \in V$. We denote by $Hom_A(V, W)$ the space of all multipliers from V into W.

Let V and W be left and right Banach A-modules, respectively, and $V \otimes_{\gamma} W$ be the projective tensor product of V and W [6], [28]. If K is the closed linear subspace of $V \otimes_{\gamma} W$, which is spanned by all elements of the form $av \otimes w - v \otimes aw$, $a \in A$, $v \in V$, $w \in W$, then the A-module tensor product $V \otimes_{A} W$ is defined to be the quotient Banach space $(V \otimes_{\gamma} W)/K$. Every element t of $(V \otimes_{\gamma} W)/K$ can be written

$$t = \sum_{i=1}^{\infty} v_i \otimes w_i, \ v_i \in V, w_i \in W,$$

where $\sum_{i=1}^{\infty} \|v_i\| \|w_i\| < \infty$. Moreover, $(V \otimes_{\gamma} W)/K$ is a normed space according to

$$||t|| = \inf \left\{ \sum_{i=1}^{\infty} ||v_i|| \, ||w_i|| < \infty \right\},$$

where the infimum is taken over all possible representations for t [26]. It is known that

$$Hom_A(V, W^*) \cong (V \otimes_A W)^*$$
,

where W^* is dual of W (Corollary 2.13, [25]). The linear functional T on $Hom_A(V, W^*)$, which corresponds to $t \in V \otimes_A W$ gets the value

$$\langle t, T \rangle = \sum_{i=1}^{\infty} \langle w_i, Tv_i \rangle.$$

Moreover, it is well known that the ultraweak*-operator topology on $Hom_A(V, W^*)$ corresponds to the weak*-topology on $(V \otimes_A W)^*$ [26].

5. THE MULTIPLIERS OF THE SPACE $A_{p_1,p_2}^{q_1,q_2}(G,A)$

By Theorem 6, a linear operator $b: (L^{p_1}(G,A), \ell^{q_1}) \times (L^{p_2}(G,A), \ell^{q_2}) \rightarrow (L^{r_1}(G,A), \ell^{r_2})$ can be defined by

$$b(f,g) = \widetilde{f} * g, \ f \in (L^{p_1}(G,A),\ell^{q_1}), g \in (L^{p_2}(G,A),\ell^{q_2}),$$

where $\widetilde{f}(x) = f(-x)$ and $\left\|\widetilde{f}\right\|_{(L^{p_1}(G,A),\ell^{q_1})} = \|f\|_{(L^{p_1}(G,A),\ell^{q_1})}$. It is easy to see that $\|b\| \leq C$. Furthermore, there exists a bounded linear operator B from $(L^{p_1}(G,A),\ell^{q_1}) \otimes_{\gamma} (L^{p_2}(G,A),\ell^{q_2})$ into $(L^{r_1}(G,A),\ell^{r_2})$ such that $B(f\otimes g) = b(f,g)$, where $f \in (L^{p_1}(G,A),\ell^{q_1}), g \in (L^{p_2}(G,A),\ell^{q_2})$ and $\|B\| \leq C$ by Theorem 6 in [6].

Definition 14. $A_{p_1,p_2}^{q_1,q_2}(G,A)$ denotes the range of B with the quotient norm. Hence, we write

$$A_{p_{1},p_{2}}^{q_{1},q_{2}}\left(G,A\right) = \left\{h = \sum_{i=1}^{\infty} \widetilde{f_{i}} * g_{i} : \sum_{i=1}^{\infty} \|f_{i}\|_{\left(L^{p_{1}}\left(G,A\right),\ell^{q_{1}}\right)} \|g_{i}\|_{\left(L^{p_{2}}\left(G,A\right),\ell^{q_{2}}\right)} < \infty\right\}$$

for $f_i \in (L^{p_1}(G, A), \ell^{q_1}), g_i \in (L^{p_2}(G, A), \ell^{q_2})$ and

$$|||h||| = \inf \left\{ \sum_{i=1}^{\infty} ||f_i||_{(L^{p_1}(G,A),\ell^{q_1})} ||g_i||_{(L^{p_2}(G,A),\ell^{q_2})} : h = \sum_{i=1}^{\infty} \widetilde{f_i} * g_i \right\}.$$

It is clear that $A_{p_1,p_2}^{q_1,q_2}(G,A) \subset (L^{r_1}(G,A),\ell^{r_2})$ and $||h||_{(L^{r_1}(G,A),\ell^{r_2})} \leq C |||h|||$. Moreover, by using the technique given in Theorem 2.4 by [12], $A_{p_1,p_2}^{q_1,q_2}(G,A)$ can be showed a Banach space with respect to |||.|||.

Let K be the closed linear subspace of $(L^{p_1}(G,A),\ell^{q_1}) \otimes_{\gamma} (L^{p_2}(G,A),\ell^{q_2})$, which is spanned by all elements of the form $(\varphi * f) \otimes g - f \otimes (\widetilde{\varphi} * g)$, where $f \in (L^{p_1}(G,A),\ell^{q_1})$, $g \in (L^{p_2}(G,A),\ell^{q_2})$ and $\varphi \in L^{p_1}(G,A)$. Then the $L^1(G,A)$ -module tensor product $(L^{p_1}(G,A),\ell^{q_1}) \otimes_{L^1(G,A)} (L^{p_2}(G,A),\ell^{q_2})$ is defined to be the quotient Banach space $((L^{p_1}(G,A),\ell^{q_1}) \otimes_{\gamma} (L^{p_2}(G,A),\ell^{q_2}))/K$. We define the norm

$$||h|| = \inf \left\{ \sum_{i=1}^{\infty} ||f_i||_{(L^{p_1}(G,A),\ell^{q_1})} ||g_i||_{(L^{p_2}(G,A),\ell^{q_2})} : h = \sum_{i=1}^{\infty} f_i \otimes g_i \right\}.$$

for $h \in (L^{p_1}(G,A),\ell^{q_1}) \otimes_{L^1(G,A)} (L^{p_2}(G,A),\ell^{q_2})$ Also, it is well known that this space is a Banach space [26].

In the following Lemma, we use numbers p and q given in Lemma 3.2 in [1].

Lemma 1. Let $1 \leq p_1, q_1, p_2, q_2 < \infty$, $\frac{1}{p_1} + \frac{1}{p_2} \geq 1$, $\frac{1}{q_1} + \frac{1}{q_2} \geq 1$, $\frac{1}{r_1} = \frac{1}{p_1} + \frac{1}{p_2} - 1$ and $\frac{1}{r_2} = \frac{1}{q_1} + \frac{1}{q_2} - 1$, $p = \frac{p_1 p_2'}{p_1 p_2' + p_1 - p_2'}$ and $q = \frac{q_1 q_2'}{q_1 q_2' + q_1 - q_2'}$, where $\frac{1}{p_2} + \frac{1}{p_2'} = 1$ and $\frac{1}{q_2} + \frac{1}{q_2'} = 1$. If we define $T_{\varphi}f = f * \varphi$ for $f \in (L^{p_1}(G, A), \ell^{q_1})$ and $\varphi \in \mathcal{P}(G, A)$ $C_{C}\left(G,A\right),\ then\ we\ have\ T_{\varphi}\in Hom_{L^{1}\left(G,A\right)}\left(\left(L^{p_{1}}\left(G,A\right),\ell^{q_{1}}\right),\left(L^{p_{2}'}\left(G,A^{*}\right),\ell^{q_{2}'}\right)\right)$ and the inequality

$$||T_{\varphi}|| \le C ||\varphi||_{(L^{p}(G,A),\ell^{q})}$$

for some C > 0.

Proof. Let $f \in (L^{p_1}(G,A), \ell^{q_1})$ and $\varphi \in C_C(G,A) \subset (L^p(G,A), \ell^q)$ be given. Due to $p = \frac{p_1 p_2'}{p_1 p_2' + p_1 - p_2'}$ and $q = \frac{q_1 q_2'}{q_1 q_2' + q_1 - q_2'}$, $\frac{1}{p_1} + \frac{1}{p} = 1 + \frac{1}{p_2'} > 1$ and $\frac{1}{r_1} = \frac{1}{p_1} + \frac{1}{p} - 1$, $\frac{1}{q_1} + \frac{1}{q} = 1 + \frac{1}{q_2'} > 1$ and $\frac{1}{r_2} = \frac{1}{q_1} + \frac{1}{q} - 1$, we have $r_1 = p_2'$ and $r_2 = q_2'$. Therefore, by Theorem 6 we obtain $f * \varphi \in (L^{r_1}(G, A), \ell^{r_2}) = (L^{p'_2}(G, A), \ell^{q'_2})$ and

$$||T_{\varphi}f||_{(L^{p'_{2}}(G,A),\ell^{q'_{2}})} \le C ||f||_{(L^{p_{1}}(G,A),\ell^{q_{1}})} ||\varphi||_{(L^{p}(G,A),\ell^{q})},$$

i.e. $T_{\omega}f$ is continuous. Also, we can write the inequality

$$||T_{\varphi}|| \le C ||\varphi||_{(L^{p}(G,A),\ell^{q})}$$

for some C > 0.

Definition 15. A locally compact Abelian group G is said to satisfy the property $P_{\left(p_{1},p_{2}\right)}^{\left(q_{1},q_{2}\right)}$ if every element of $Hom_{L^{1}\left(G,A\right)}\left(\left(L^{p_{1}}\left(G,A\right),\ell^{q_{1}}\right),\left(L^{p_{2}'}\left(G,A^{*}\right),\ell^{q_{2}'}\right)\right)$ can be approximated in the ultraweak*-operator topology by operators $T_{\varphi}, \varphi \in C_{\mathbb{C}}(G, A)$.

Theorem 7. Let G be a locally compact Abelian group. If $\frac{1}{p_1} + \frac{1}{p_2} \ge 1$, $\frac{1}{q_1} + \frac{1}{q_2} \ge 1$, $\frac{1}{r_1} = \frac{1}{p_1} + \frac{1}{p_2} - 1$ and $\frac{1}{r_2} = \frac{1}{q_1} + \frac{1}{q_2} - 1$, then the following statements are equivalent:

(i) G satisfies the property $P_{(p_1,p_2)}^{(q_1,q_2)}$.

- (ii) The kernel of B is K such that

$$\left(L^{p_{1}}\left(G,A\right),\ell^{q_{1}}\right)\otimes_{L^{1}\left(G,A\right)}\left(L^{p_{2}}\left(G,A\right),\ell^{q_{2}}\right)\cong\mathbf{A}_{p_{1},p_{2}}^{q_{1},q_{2}}\left(G,A\right).$$

Proof. Since $B((\varphi * f) \otimes g - f \otimes (\widetilde{\varphi} * g)) = (\varphi * f)^{\sim} * g - \widetilde{f} * (\widetilde{\varphi} * g) = 0$, then $K \subset KerB$. Assume that G satisfies the property $P_{(p_1,p_2)}^{(q_1,q_2)}$. To display $KerB \subset K$ it is enough to prove that $K^{\perp} \subset (KerB)^{\perp}$ due to the fact that K is the closed linear subspace of $(L^{p_1}(G,A),\ell^{q_1}) \otimes_{\gamma} (L^{p_2}(G,A),\ell^{q_2})$. It is well known that

$$K^{\perp} \cong \left(\left(\left(L^{p_1} \left(G, A \right), \ell^{q_1} \right) \otimes_{\gamma} \left(L^{p_2} \left(G, A \right), \ell^{q_2} \right) \right) / K \right)^*$$

[8]. Also, we write

$$K^{\perp} \cong \left(\left(L^{p_1} \left(G, A \right), \ell^{q_1} \right) \otimes_{L^1(G, A)} \left(L^{p_2} \left(G, A \right), \ell^{q_2} \right) \right)^*.$$

Moreover, by using Corollary 2.13 in [25], we obtain

$$K^{\perp} \cong Hom_{L^{1}\left(G,A\right)}\left(\left(L^{p_{1}}\left(G,A\right),\ell^{q_{1}}\right),\left(L^{p_{2}'}\left(G,A^{*}\right),\ell^{q_{2}'}\right)\right).$$

Thus, there is a multiplier $T \in Hom_{L^{1}(G,A)}\left(\left(L^{p_{1}}\left(G,A\right),\ell^{q_{1}}\right),\left(L^{p_{2}'}\left(G,A^{*}\right),\ell^{q_{2}'}\right)\right)$ which corresponds to $F \in K^{\perp}$ such that

$$< t, F > = \sum_{i=1}^{\infty} < g_i, Tf_i >,$$

where $t \in KerB$, $t = \sum_{i=1}^{\infty} f_i \otimes g_i$, $\sum_{i=1}^{\infty} ||f_i||_{(L^{p_1}(G,A),\ell^{q_1})} ||g_i||_{(L^{p_2}(G,A),\ell^{q_2})} < \infty$ and $f_i \in (L^{p_1}(G,A),\ell^{q_1})$, $g_i \in (L^{p_2}(G,A),\ell^{q_2})$. Also, due to $t \in KerB$ we get

$$B\left(\sum_{i=1}^{\infty} f_i \otimes g_i\right) = \sum_{i=1}^{\infty} \widetilde{f}_i * g_i = 0.$$
 (5.1)

Now, we show that

$$\langle t, F \rangle = \sum_{i=1}^{\infty} \langle g_i, Tf_i \rangle = 0.$$
 (5.2)

Furthermore, since G satisfies the property $P_{(p_1,p_2)}^{(q_1,q_2)}$, then there exists a net $\{(\varphi_j): j\in I\}\subset C_C(G,A)$ such that the operators T_{φ_j} defined in Lemma 1 converges to T in the ultraweak*-operator topology, that is,

$$\lim_{j \in I} \sum_{i=1}^{\infty} \langle g_i, T_{\varphi_j} f_i \rangle = \lim_{j \in I} \sum_{i=1}^{\infty} \langle g_i, f_i * \varphi_j \rangle = \sum_{i=1}^{\infty} \langle g_i, T f_i \rangle.$$

So, to obtain (5.2), it is enough to show that

$$\sum_{i=1}^{\infty} \langle g_i, f_i * \varphi_j \rangle = 0$$

for all $j \in I$. It can be seen easily

$$\sum_{i=1}^{\infty} \langle g_i, f_i * \varphi_j \rangle = \sum_{i=1}^{\infty} \langle \widetilde{f}_i * g_i, \varphi_j \rangle.$$
 (5.3)

If we use the equalities (5.1), (5.3) and Hölder inequality for amalgam spaces, then we have

$$\left| \sum_{i=1}^{\infty} \langle g_i, f_i * \varphi_j \rangle \right| \le \left\| \sum_{i=1}^{\infty} \widetilde{f}_i * g_i \right\|_{(L^{r_1}(G,A),\ell^{r_2})} \left\| \varphi_j \right\|_{(L^{r_1'}(G,A),\ell^{r_2'})} = 0,$$

where $\sum\limits_{i=1}^{\infty}\widetilde{f_{i}}*g_{i}\in\left(L^{r_{1}}\left(G,A\right),\ell^{r_{2}}\right)$ and $\varphi_{j}\in C_{C}\left(G,A\right)\subset\left(L^{r_{1}'}\left(G,A\right),\ell^{r_{2}'}\right)$. Therefore, < t,F>=0 for all $t\in KerB$. That means $F\in\left(KerB\right)^{\perp}$. Hence KerB=K.

By definition of $\mathbf{A}_{p_1,p_2}^{q_1,q_2}(G,A)$ and the First Isomorphism Theorem, we get

$$(L^{p_1}(G,A),\ell^{q_1}) \otimes_{\gamma} (L^{p_2}(G,A),\ell^{q_2})/K \cong \mathbf{A}_{p_1,p_2}^{q_1,q_2}(G,A)$$

and

$$(L^{p_{1}}\left(G,A\right),\ell^{q_{1}}\right)\otimes_{L^{1}\left(G,A\right)}(L^{p_{2}}\left(G,A\right),\ell^{q_{2}})=(L^{p_{1}}\left(G,A\right),\ell^{q_{1}}\right)\otimes_{\gamma}(L^{p_{2}}\left(G,A\right),\ell^{q_{2}})/K.$$
 This proves

$$(L^{p_1}(G,A),\ell^{q_1}) \otimes_{L^1(G,A)} (L^{p_2}(G,A),\ell^{q_2}) \cong \mathbf{A}_{p_1,p_2}^{q_1,q_2}(G,A).$$

Suppose conversely that KerB = K. If we show that the operators of the form T_{φ} for $\varphi \in C_C(G, A)$ are dense in $Hom_{L^1(G, A)}\left(\left(L^{p_1}(G, A), \ell^{q_1}\right), \left(L^{p'_2}(G, A^*), \ell^{q'_2}\right)\right)$ in the ultraweak*-operator topology, then we finish the proof. Hence, it is sufficient to prove that the corresponding functionals are dense in

$$((L^{p_1}(G,A),\ell^{q_1})\otimes_{L^1(G,A)}(L^{p_2}(G,A),\ell^{q_2}))^*$$

in the weak* topology by Theorem 1.4 in [26]. Let M be set of the linear functionals corresponding to the operators T_{φ} . Let $t \in KerB$ and $F \in M$. Since

$$((L^{p_1}(G,A),\ell^{q_1}) \otimes_{L^1(G,A)} (L^{p_2}(G,A),\ell^{q_2}))^* \cong K^{\perp},$$

then $F \in M \subset K^{\perp}$ and $\langle t, F \rangle = 0$. Hence we find $KerB \subset M^{\perp}$. Conversely, let $t \in M^{\perp}$. Since $M^{\perp} \subset (L^{p_1}(G,A), \ell^{q_1}) \otimes_{L^1(G,A)} (L^{p_2}(G,A), \ell^{q_2})$, then there exist $f_i \in (L^{p_1}(G,A), \ell^{q_1})$, $g_i \in (L^{p_2}(G,A), \ell^{q_2})$ such that

$$t = \sum_{i=1}^{\infty} f_i \otimes g_i, \quad \sum_{i=1}^{\infty} \|f_i\|_{(L^{p_1}(G,A),\ell^{q_1})} \|g_i\|_{(L^{p_2}(G,A),\ell^{q_2})} < \infty$$

and $\langle t, F \rangle = 0$ for all $F \in M$. Also, there is an operator

$$T_{\varphi} \in Hom_{L^{1}(G,A)}\left(\left(L^{p_{1}}\left(G,A\right),\ell^{q_{1}}\right),\left(L^{p'_{2}}\left(G,A^{*}\right),\ell^{q'_{2}}\right)\right)$$

corresponding to F such that

$$\langle t, F \rangle = \langle t, T_{\varphi} \rangle = \sum_{i=1}^{\infty} \langle g_i, T_{\varphi} f_i \rangle = \sum_{i=1}^{\infty} \langle \widetilde{f}_i * g_i, \varphi_j \rangle$$

$$= \langle \sum_{i=1}^{\infty} \widetilde{f}_i * g_i, \varphi_j \rangle = 0$$

by using (5.2). Therefore, we obtain

$$B(t) = \sum_{i=1}^{\infty} \widetilde{f}_i * g_i = 0$$

and $M^{\perp} \subset KerB$. Consequently, $KerB = M^{\perp}$. This completes the theorem.

Corollary 2. Let G be a locally compact Abelian group. If $\frac{1}{p_1} + \frac{1}{p_2} \ge 1$, $\frac{1}{q_1} + \frac{1}{q_2} \ge 1$, $\frac{1}{q_1} + \frac{1}{q_2} \ge 1$, $\frac{1}{r_1} = \frac{1}{p_1} + \frac{1}{p_2} - 1$ and $\frac{1}{r_2} = \frac{1}{q_1} + \frac{1}{q_2} - 1$ and G satisfies the property $P_{(p_1, p_2)}^{(q_1, q_2)}$, then

$$Hom_{L^{1}(G,A)}\left(\left(L^{p_{1}}\left(G,A\right),\ell^{q_{1}}\right),\left(L^{p'_{2}}\left(G,A^{*}\right),\ell^{q'_{2}}\right)\right)\cong\left(\mathbf{A}_{p_{1},p_{2}}^{q_{1},q_{2}}\left(G,A\right)\right)^{*}.$$

References

- [1] Avcı, H. and Gürkanli, A. T. Multipliers and tensor products of L(p,q) Lorentz spaces, Acta Math Sci Ser. B Engl. Ed., 27, 2007, 107-116.
- [2] Aydın, I. and Gürkanlı, A. T. On some properties of the spaces $A^{p(x)}_{\omega}(\mathbb{R}^n)$. Proc of the Jang Math Soc, 12, 2009, No.2, pp.141-155.
- [3] Aydın, I. and Gürkanlı, A. T. Weighted variable exponent amalgam spaces $W(L^{p(x)}; L_w^q)$, Glas Mat, Vol. 47(67), 2012,165-174.
- [4] Aydın, I. Weighted variable Sobolev spaces and capacity, J Funct Space Appl, Volume 2012, Article ID 132690, 17 pages, doi:10.1155/2012/132690.
- [5] Aydın, I. On variable exponent amalgam spaces, Analele Stiint Univ, Vol.20(3), 2012, 5-20.
- [6] Bonsall, F. F. and Duncan, J. Complete normed algebras, Springer-Verlag, Belin, Heidelberg, new-York, 1973.
- [7] Cheng, C. and Xu, J. Geometric properties of Banach space valued Bochner-Lebesgue spaces with variable exponent, J Math Inequal, Vol.7(3), 2013, 461-475.
- [8] Conway, J. B. A course in functional analysis, New-york, Springer-Verlag, 1985.
- [9] Diestel, J. and UHL, J.J. Vector measures, Amer Math Soc, 1977.
- [10] Feichtinger, H. G. Banach convolution algebras of Wiener type, In: Functions, Series, Operators, Proc. Conf. Budapest 38, Colloq. Math. Soc. Janos Bolyai, 1980, 509–524.
- [11] Fournier, J. J. and Stewart, J. Amalgams of L^p and ℓ^q , Bull Amer Math Soc, 13, 1985, 1–21.
- [12] Gaudry, G. I. Quasimeasures and operators commuting with convolution, Pac J Math., 1965, 13(3), 461-476.
- [13] Gürkanlı, A. T. The amalgam spaces $W(L^{p(x)}; L^{\{p_n\}})$ and boundedness of Hardy-Littlewood maximal operators, Current Trends in Analysis and Its Applications: Proceedings of the 9th ISAAC Congress, Krakow 2013.
- [14] Gürkanlı, A. T. and Aydın, I. On the weighted variable exponent amalgam space $W(L^{p(x)}; L_m^q)$, Acta Math Sci,34B(4), 2014,1–13.
- [15] Heil, C. An introduction to weighted Wiener amalgams, In: Wavelets and their applications Chennai, January 2002, Allied Publishers, New Delhi, 2003, p. 183–216.
- [16] Holland, F. Harmonic analysis on amalgams of L^p and ℓ^q , J. London Math. Soc. (2), 10, 1975, 295–305.
- [17] Kokilashvili, V., Meskhi, A. and Zaighum, A. Weighted kernel operators in variable exponent amalgam spaces, J Inequal Appl, 2013, DOI:10.1186/1029-242X-2013-173.
- [18] Kovacik, O. and Rakosnik, J. On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czech Math J. 41(116), 1991, 592-618.
- [19] Köthe, G. Topological vector spaces, V.I, Berlin, Springer-Verlag, 1969.
- [20] Kulak, Ö. and Gürkanlı, A. T. Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces, J Inequal Appl, 2014, 2014:476.
- [21] Lakshmi, D. V. and Ray, S. K. Vector-valued amalgam spaces, Int J Comp Cog, Vol. 7(4), 2009, 33-36.
- [22] Lakshmi, D. V. and Ray, S. K. Convolution product on vector-valued amalgam spaces, Int J Comp Cog , Vol. 8(3), 2010, 67-73.
- [23] Meskhi, A. and Zaighum, M. A. On The boundedness of maximal and potential operators in variable exponent amalgam spaces, J Math Inequal, Vol. 8(1), 2014, 123-152.
- [24] Öztop, S. and Gurkanli, A T. Multipliers and tensor product of weighted L^p-spaces, Acta Math Scientia, 2001, 21B: 41–49.
- [25] Rieffel, M. A. Induced Banach algebras and locally compact groups, J Funct Anal, 1967, 443-491.

- [26] Rieffel, M. A. Multipliers and tensor products of L^p spaces of locally compact geroups, Stud Math, 1969, 33, 71-82.
- [27] Sağır, B. Multipliers and tensor products of vector-valued $L^p(G, A)$ spaces, Taiwan J Math, 7(3), 2003, 493-501.
- [28] Schatten, R. A Theory of Cross-Spaces, Annal Math Stud, 26, 1950.
- [29] Squire, M. L. T. Amalgams of L^p and ℓ^q , Ph.D. Thesis, McMaster University, 1984.
- [30] Wiener, N. On the representation of functions by trigonometric integrals, Math. Z., 24, 1926, 575-616.

 $\label{lem:current} \textit{Current address}, \text{Ismail AYDIN: Sinop University, Faculty of Sciences and Letters Department of Mathematics, Sinop, Turkey.}$

 $E ext{-}mail\ address: iaydin@sinop.edu.tr}$ iaydinmath@gmail.com