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ON VECTOR-VALUED CLASSICAL AND VARIABLE
EXPONENT AMALGAM SPACES

ISMAIL AYDIN

ABSTRACT. Let 1 < p,q,s < oo and 1 < r(.) < oo, where r(.) is a variable
exponent. In this paper, we introduce firstly vector-valued variable expo-
nent amalgam spaces (LT(‘) (R,E) ,fs). Secondly, we investigate some basic
properties of (L’“(‘) (R, E) ,ZS) spaces. Finally, we recall vector-valued classi-
cal amalgam spaces (LP (G, A),£9), and inquire the space of multipliers from
(L1 (G, A), £91) to (LP§ (G, A*) ,eqé)

1. INTRODUCTION

The amalgam of LP and [? on the real line is the space (L?,1%) (R) (or shortly
(L?,19) ) consisting of functions which are locally in L? and have [? behavior at in-
finity. Several special cases of amalgam spaces, such as (Ll, lz), (LQ, loo), (LOO, ll)
and (L',1°°) were studied by N. Wiener [30]. Comprehensive information about
amalgam spaces can be found in some papers, such as [16], [29], [15], [10] and [11].
Recently, there have been many interesting and important papers appeared in vari-
able exponent amalgam spaces (LT('),ES), such as Aydin and Giirkanh [3], Aydin
[5], Giirkanli and Aydin [14], Kokilashvili, Meskhi and Zaighum [17], Meskhi and
Zaighum[23], Giirkanli [13], Kulak and Giirkanli [20]. Vector-valued classical amal-
gam spaces (LP (R, E), £7) on the real line were defined by Lakshmi and Ray [21] in
2009. They described and discussed some fundamental properties of these spaces,
such as embeddings and separability. In their following paper [22], they investi-
gated convolution product and obtained a similar result to Young’s convolution
theorem on (L? (R, E),¢?). They also showed classical result on Fourier trans-
form of convolution product for (LP (R, E),£%). Vector-valued variable exponent
Bochner-Lebesgue spaces L"(") (R, E) defined by Cheng and Xu [7] in 2013. They
proved dual space, the reflexivity, uniformly convexity and uniformly smoothness of
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ON VECTOR-VALUED CLASSICAL AND VARIABLE EXPONENT 101

L") (R, E). Furthermore, they gave some properties of the Banach valued Bochner-
Sobolev spaces with variable exponent. In this paper, we give some information
about (LT(') (R, E) ,ZS), and obtain the generalization of some results in Sagir [27]

and similar consequences in Avcl and Giirkanli [1] and Oztop and Giirkanli [24]. Fi-
nally, our original aim is to prove that the space of multipliers from (L?* (G, A), (%)

to (Lpl2 (G, A*) 7€q§> is isometrically isomorphic to (A9-22 (G, A))* .

P1,P2

2. DEFINITION AND PRELIMINARY RESULTS

In this section, we give several definitions and theorems for vector-valued variable
exponent Lebesgue spaces L) (R, E) .

Definition 1. For a measurable functionr : R — [1,00) (called a variable exponent

on R), we put

T~ = essinfr(z), rT = esssupr(z).

z€R r€R

The variable exponent Lebesgue spaces L) (R) consist of all measurable functions
f such that Qr(')()\f) < 0o for some X > 0, equipped with the Luxemburg norm

. f
11y =t {3050, <1}
where

wowri/uuwmux
R

If rt < oo, then f € L"O(R) iff 0,()(f) < oo. The space (I/"(')(R)7 ||.HT(_)> is a
Banach space. If r(x) = r is a constant function, then the norm ||.||, ) coincides

with the usual Lebesgue norm |||, [18], [2], [4]. In this paper we assume that
rt < .

Definition 2. We denote by L1 (R) the space of ( equivalence classes of ) func-

loc

tions on R such that f restricted to any compact subset K of R belongs to L") (R).

Let 1 <r(.),s < oo and J; = [k, k + 1), k € Z. The variable exponent amalgam
spaces (LT('), Es) are the normed spaces

(0.0) = {5 € B @) 1l gy < 0}

where

1/s
||fH(Lr<»>,zs) = (k%:ZHfXJk”i(.)> :

It is well known that (LT('),KS) is a Banach space and does not depend on the
particular choice of Jj, that is, Ji can be equal to [k, k + 1), [k,k+ 1] or (k,k+1).
Thus, we have same spaces (LT(‘),ES) [15]. Furthermore, it can be seen in references
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3], [5] and [14] to obtain some basic properties for (L"(),¢%) spaces. It is well
known that L"()(R) is not translation invariant. So, the convolution operator and
multipliers are useless in this space. By using Theorem 3.3 in [13] we also obtain
(LT(‘),ES) is not translation invariant.

Let (E, ||.|| z) be a Banach space and E* its dual space and (2, X, i) be a measure
space.
Definition 3. A function f : Q@ — E is Bochner (or strongly) p -measurable if
there exists a sequence { f,,} of simple functions fy, : Q@ — E such that f,(z) 2N f(x)
as n — oo for almost all x € Q0 [9].

Definition 4. A p-measurable function f : Q) — E is called Bochner integrable if
there exists a sequence of simple functions {f,} such that

Jim 12— fllpdi=0
Q

for almost all x € Q [9].

Theorem 1. A p-measurable function f : Q2 — E is Bochner integrable if and only

if [ 15l dn < [9]
Q

Definition 5. A function F' : ¥ — E is called a vector measure, if for all sequences

(Ay) of pairwise disjoint members of ¥ such that |J A, € ¥ and F ( U An> =

n=1 n=1

o0
> F(A,), where the series converges in the norm topology of E.
n=1

Let F : ¥ — E be a vector measure. The variation of F is the function || F|| :
Y — [0,00] defined by

I71(4) = sup 52 P (Bl

where the supremum is taken over all finite disjoint partitions m of A. If ||F|| (Q) <
00, then F is called a measure of bounded variation [7],[9].

Definition 6. A Banach space E has the Radon-Nikodym property (RNP) with
respect to (2, %, 1) if for each vector measure F : ¥ — E of bounded variation,
which is absolutely continuous with respect to u, there exists a function g € L' (Q, E)
such that

F(4) = I{Qdﬂ

for all Ae X [7],[9].
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Definition 7. The variable exponent Bochner- Lebesque space L) (R, E) stands
for all (equivalence classes of ) E-valued Bochner integrable functions f on R such
that

PO®E) = {7 Wl < o0}

where
| f
110 = {3 00,505 <1

and

or(),(f) =/||f(x)||g(')dx.
R

The following properties proved by Cheng and Xu [7];
(i) € 'O RE) & |f(@)” € L' (R) & |f(@)] € IO (R)
(i) L") (R, E) is a Banach space with respect to -5 -
(i5i) L") (R, E) is a generalization of the L" (R, E) spaces.
(iv) If E=R or C, then L") (R, E) = L") (R).
(v) If E is reflevive and 1 < r~ <rt < oo, then L") (R, E) is reflexive.

Theorem 2. If E* has the Radon-Nikodym Property (RNP), then the mapping

95 P i+ oy =1, L0 (R, E?) — (L0 (R, E))" which is defined by

<sogyf>=/<9,f>dw
R

for any f € L") (R, E) is a linear isomorphism and
Hqu(A),E* < ||(pg||(LT(v)(lR,E))* <2 H~qH<1(<),E* )

Hence, the dual space (L"(‘) (R,E))* is isometrically isomorphic to L10) (R, E*),
where E* has RNP. In addition, for f € L"O(R,E) and g € L) (R, E*) (g
defines a continuous linear functional), the dual pair < f(.),g(.) >€ L' (R) and
Hélder inequality implies

IA

/|< £, g() >|de

R

/ 11 Nl -
R

IN

¢ ||er(.),E ||9||q(.),E*
for some C' >0 [7].



104 ISMAIL AYDIN

3. VECTOR-VALUED VARIABLE EXPONENT AMALGAM
SPACES

In this section, we define vector-valued variable exponent amalgam spaces
(L"'(') (R, E) ,ﬂs) . We also discuss some basic and significant properties of

(L' (R, E), £°).

Definition 8. Let 1 < r(.) < o0, 1 < s < o0 and J, = [k,k+1), k € Z. The
vector-valued variable exponent amalgam spaces (L'( ) (R,E), q) are the normed
space

(Lr(-) (R, E), ¢ ) {f € L) (R E) 1 (1o ) < OO}

where

1/s
||fH(Lr<>(RE)l <Z|‘fXJ;‘H ()E) , 1<s< oo

and

HfH(LT(-)(R,E),ZO") = S‘;p HfXJk Hr(.),E »§ = 00.

It can be proved that (LT(') (R, E) ,ES) 18 a Banach space with respect to the
norm ||-||(L1‘(.)(R’E)’[s) [21]. Moreover, (L") (R, E),£*) has some inclusions and
embeddings similar to [3].

The proof of the following Theorem is proved by using techniques in Theorem
2.6 in [11], [p. 32, 29] and [p.359,19].

Theorem 3. Let E* has RNP and 1 <r~ <rt < oo and 1 < s < co. Then the
dual space of (Lr(') (R, E) ,ES) is isometrically isomorphic to (L‘I(') (R, E*) ,Et) for
%—!—Wl.):l and%—k%:l.

Proof. Let {Ay},c, be a family of Banach spaces. We define
0 (Ag) = {z = (ap) : x € Ay, ||z]| < oo}

1
where ||z|| = (Z ||xk||f4k) . It can be seen that £° (Ay) is a Banach space under
keZ

the norm ||.||. It is also well known that the dual of ¢* (Ay) is ' (A}). Moreover,
(LT(') (R, E) ,ES) is particular case of £* (A). Indeed, if we take Ay = L™() (J;, E)
and Jy = [k, k + 1), then the map f (fr), fx = fx,, is an isometric isomorphism
from (L") (R, E),¢%) to €5 (L") (Jy, E)). Hence, we have (L") (R, E) ,Es)* =
(L‘I(') (R, E*) ,ﬂt) by Theorem 2. |

Corollary 1. Let 1 < r~ < rT < oo and 1 < s < oo. If E is reflexive, then
(LT(') (R, E), (%) is reflezive.



ON VECTOR-VALUED CLASSICAL AND VARIABLE EXPONENT 105

Theorem 4. (Generalized Hélder Inequality) Let E* has RNP and m™ < oo,

1 <s <. Ifﬁ+ﬁ:ﬁ and%+%:%, then there exists a C' > 0 such that

< f():9() >||(Lm(-)(]R)7zn) <cC HfH(LT(-)(R,E),ZS)

lgll (L1 (R, E*), )

and < f(.),g(.) >€ (L™ (R), ") for f € (L™O (R, E), %), g € (L1O) (R, E*), £).

Proof. Let f(z) = || f(z)||gp and g(z) = ||g(z)| g~ be given for any € R. If f €
(L") (R,E),¢%) and g € (L) (R, E*),¢'), then we have f € (L"0),¢%), g €

(Lq(')»gt) and HJ?H(LT(') ) = ||f||(Lr(.)(R7E)7es)= ||§||(Lq(-)7zt) = ”g”(Lq(A)(R,E*),zt)'

Therefore, by using Holder inequality for L™() [18], we can write the following
inequality

AN

1< () 90) >lmey.se < MFONE NgOM el 5,

|7l 19
f )Tk HQHq(.),Jk

¢ ||fXJk||T(.),E HgXJqu(-),E* '

5

IA

By Corollary 2.4 in [3] and Jensen’s inequality for ¢*spaces, we obtain

< f(),9() >||(L'"L(~)(R),Z") <C ||f||(L"'(«)(]R,E),£S) |9||(Lq<.>(R,E*),£t) :

This completes the proof. ([l

Definition 9. We define co (Z) C I°° to be the linear space of (ax),cy Such that
limg ax, = 0, that is, given € > 0 there exists a compact subset K of R such that
lax| < e for all k ¢ K.

The vector-valued type variable exponent amalgam spaces (Lr(') (R, E) ,co) are
the normed spaces

(06800 = {r € (508.8.0%) - {Ircal ., <)
where

||f||(Lv-<.)(R,E),eoc) = Sgp 1/, Hr(.),E
for f € (L"O (R, E),co) [29].

Proposition 1. Let E* has RNP andm™ < 00,1 <s<oo.Iff € (LT(') (R, E) ,co)
and g € (Lq(') (R, E*), co) , then there exists a C' > 0 such that

||< f()ag() >||(Lm<-)(R),eoo) <C ”fH(LT(J(R}E),zoo) ”g”(Lq(-)(R’E*),zoo)

and < f(.),9(.) >€ (Lm(') (R) ,co) for % + ﬁ = %
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Proof. If f € (LT(') (R, E),co) and g € (Lq(') (R, E™) ,co), then by Theorem 4 we
can write < f(.),g(.) >€ (L™ (R),£>) and
< f(),9() >||m(.),J,c <cC ||fXJkHr(.),E HgXJqu(.),E* J

where C' does not depend on for any k € Z. This implies that

h]gn < f(.),9(.) >||m(.),Jk < h]gnc ”JIXJ;c ||,,'(.)7E liin ”gXJk ||q(.),E* =0
and < f(.),g(.) >€ (L™ (R),¢o). If we use the definition of the norm ”'H(Lr(»)(R B 0=)>
then we get

1< 7090 >z emy = sup [ Fxall

IN

C’Sl;p HfXJk HT(J,E HgXJk Hq(~)»E*

IN

Csup [ x50 19Xl

¢ ||f||(Lv-<~>(R,E),eoo) llgll (L9 (R,E%),0)
O

Definition 10. L. (R, E) denotes the functions f in L") (R, E) such that suppf C
R is compact,that is,

L' (R, E) = {f € L'V (R, E) : suppf compact}.
Let K C R be given. The cardinality of the set
S(K)={Jx: JyNK # &}

is denoted by |S(K)|, where {Jx},cp 5 a collection of intervals.

Proposition 2. If g belongs to A8 (R, E), then
() 19l 120, ) < ISUI gl for 1 < s < o0,
(%) 9]l (1> 2, ) 0) < ISED gl ), for s = oo,

(iii) LY (R, E) C (L") (R, E), £*) for 1 < s < o0,
where K is the compact support of g.

[S(K)|
Proof. (i) Since K is compact, then K C |J Ji, and
i=1
1/s
gl sy = gx
[ ”(L O(R,E) ) (k%:ZH JkHr(.),E)

1/s
(5, Il

JkiGS(K

IS 91l

IN
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for 1 < s < 0o, where the number of Jj, is finite.
(ii) Let s = 0o.Then

9l (oo erery = suplloxa e

= sup HgXJk.
i=1,2,..|S(K)| ’

IS gl e -

r(.),E

IN

Theorem 5. (%) AR (R, E) is subspace of (L™ (R, E),co) for 1 < s < oc.
(it) Co (R, E) is subspace of (L") (R, E),co) .

Proof. (i) Firstly, we show that L. (R, E) C (L") (R, E) , cy). Let f € Li) (R, E)
be given. Since f has compact support, then HfXJkHT(_)E is zero for all, but
finitely many Ji. By definition of ¢y, we get {HfXJkHT(')’E}kJGZ € c¢o. Hence,
LY (R, E) € (L") (R, E), co) -

(i) If f € Cy (R, E) and given 0 < € < 1, then there exists a compact set K C R
such that ||f(z)||p < ¢ for all ¢ K. Since K is compact, then K C U, Jg,
(n is finite) and ||f(.)XJk||r(_)7E < g forall k # k;, i = 1,2,..n. Indeed, by using
0r(),6(f) = 0 [[fOll, () — 0 (r" <oo), and |Jx| = 1 (measure of Ji) it is
written that

0, 6(f) = / £ @) da
Jk

< € |k — 0.

Therefore, we obtain f € (LT(') (R, E) ,Co) due to definition of norm of
(L"O (R, E) , co). 0

4. VECTOR-VALUED CLASSICAL AMALGAM SPACES

In this section, we consider that G is a locally compact Abelian group, and A is
a commutative Banach algebra with Haar measure p. By the Structure Theorem,
G = R® x G1, where a is a nonnegative integer and G is a locally compact abelian

group which contains an open compact subgroup H. Let I = [0,1)" x H and
J = Z* x T, where T is a transversal of H in Gy, ie. Gy = |J (t+ H) is a
teT

coset decomposition of G;. For a € J we define I, = a + I, and therefore G is
equal to the disjoint union of relatively compact sets I,. We normalize p so that
w(I) = u(Iy) =1 for all « [11], [29].
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Definition 11. Let 1 < p,q < oo. The vector-valued classical amalgam spaces
(L? (G, A),L7) are the normed space

(L7 (Gy A), 09) = { £ € Lo (G, A) < 1 | (1ogayeny < )

where
. 1/q
Hf”(Lp(G,A),eq) = (ZJ HfXIa ||p7A> 1 <p,g <oo.
ac

Now we give Young’s inequality for vector-valued amalgam spaces.

Theorem 6. ([22])Let 1 < p1,q1,p2,q2 < oo. If f € (LP* (G, A),01) and g €
(LP2 (G, A) , £%2), then f*g € (L™ (G, A),0™), where p% + p% >1, q% + q% > 1,

% =Ll L _Jandt=2L4+2L_1 Moreover, there exists a C > 0 such that
1 pP1 p2 T2 q1 q2

1S * 9||(Lr1 (G, A) ) = ¢ ”fH(LPl (G,A),eq1) ||9||(Lp2((;,,4),4q2) :
Definition 12. Let A be a Banach algebra. A Banach space B is said to be a
Banach A—module if there exists a bilinear operation - : A x B — B such that
(0)(f-g)-h=f-(g-h) forall f,g€ A, h € B.
(it) For some constant C > 1, ||f - hl|g < C||fll4 |kllg for all f € A, h € B.
By Theorem 6, we have the following inequality

IIf *g”(LrJ(G,A),ZQ) <cC ||fH(LP(G7A),Z'1) ||g||(L1(G,A),el) =C Hf“(LP(G,A),éq) ||9||L1(G,A)

for all f € (L? (G, A),49) and g € L* (G, A), where C > 1, i.e. the amalgam space
(LP (G, A),£%) is a Banach L' (G, A) —module with respect to convolution. More-
over, it is easy to see that the amalgam space (Lp (G, A) ,81) is a Banach algebra
under convolution p > 1, if we define the norm ||| f|l| 1o(c,a),00) = C I fll(zo(G,a).0)
for (LP (G, A),"). Recall that (L? (G, A) ') C L' (G, A).

Definition 13. Let V and W be two Banach modules over a Banach algebra A.
Then a multiplier from V into W is a bounded linear operator T from V into W,
which commutes with module multiplication, i.e. T(av) = aT(v) for a € A and
v e V. We denote by Hom a (V,W) the space of all multipliers from V into W.

Let V. and W be left and right Banach A—modules, respectively, and V @, W
be the projective tensor product of V. and W [6], [28]. If K is the closed linear
subspace of V @~y W, which is spanned by all elements of the form av @ w — v ® aw,
a€ A, veV,weW, then the A—module tensor product V ® 4 W is defined to be
the quotient Banach space (V ®, W) /K. Every element t of (V @y W) /K can be
written -
t= Zvi®wi, v; € V,w; € W,

i=1

?

o0
where Y ||| |w;|| < co. Moreover, (V ®, W) /K is a normed space according to

i=1

o0
HH=M{QMAWA<m}
1=
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where the infimum is taken over all possible representations for t [26]. It is known
that

Homu (V,W*) = (Vs W)*,

where W* is dual of W (Corollary 2.13, [25]). The linear functional T on
Hom 4 (V,W*), which corresponds tot € V@4 W gets the value

oo
<t,T>=> <w;,Tv; >.
=1

Moreover, it is well known that the ultraweak*-operator topology on Homa (V, W*)
corresponds to the weak*-topology on (V @4 W)* [26].

5. THE MULTIPLIERS OF THE SPACE A{'% (G, A)

By Theorem 6, a linear operator b : (LP! (G,A), (%) x (LP2 (G, A),(72) —
(L™ (G, A), L) can be defined by

b(f.9)=F*g, f € (L7 (G.A) L"), g € (L7 (G, A) L"),
where f(z) = f(—x) and ‘ fH(Lm (G ) = [Ifll(zr1 (G, a),001) - It i €asy to see that
|Ib]] < C. Furthermore, there exists a bounded linear operator B from (LP* (G, A) , ¢7)
®~ (LP2 (G, A),£9) into (L™ (G, A),€™) such that B(f®g) = b(f,g), where
fe(Lr(G,A),01), ge (L2 (G,A),¢%2) and ||B|| < C by Theorem 6 in [6].

Definition 14. Afv92 (G, A) denotes the range of B with the quotient norm.
Hence, we write

AR (G A) = {h = ;fz *Gi Z:l 1fill (or (@, a,000) 1196l (Lr2 (@, ) 002y < OO}

for fi € (LP (G, A) ,£),g; € (LP? (G, A),0%2) and

or

ﬁ*m}-
1
It is clear that Ajv% (G, A) C (L™ (G, A),€") and ||kl 1 (G )2y < C IR

P1,P2
Moreover, by using the technique given in Theorem 2.4 by [12], Af1-92 (G, A) can
be showed a Banach space with respect to |||.|||.

Let K be the closed linear subspace of (LP* (G, A),07) ®, (LP? (G, A), (%),
which is spanned by all elements of the form (px f)® g — f ® (p * g), where f €
(LP (G, A) 49, g € (LP2 (G, A),£%2) and ¢ € LP (G, A). Then the L' (G, A)-
module tensor product (LP* (G, A) ") @1 a) (LP? (G, A), (%) is defined to be
the quotient Banach space ((LP* (G, A) ,£9) ®, (L*? (G, A) , (%)) /K. We define the
norm

[|Al[| = inf { ; ||fi||(Lp1 (G,A), (1) ||giH(Lv2(G,A),eqz) th=

(2

(Rl = inf{zl Hfz‘”(Lm(G,A),eql) ||gi||(LP2(G,A),Z<12) th= Z fi ®9i} ‘

=1
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for h € (LP* (G, A) (1) ®@p1(q,a) (LP? (G, A),£92) Also, it is well known that this
space is a Banach space [26].
In the following Lemma, we use numbers p and q given in Lemma 3.2 in [1].
1 1 1 1 1 _ 1 1
TR T T
1 _ 1 1 _ — PPy — N4> 1 1
and m T ow T w Lp= plp’g-l-pf—p’z and ¢ = q1q§+q?—q§’ where ps T Py 1

and q% + é = 1. If we deﬁne wa = f*(p fO?"f € (Lpl (G,A)7£q1) and Y €

Cc (G, A), then we have T, € Homp (g, a) ((L”1 (G, A), 1), (Lpl2 (G, A*) ,€q§>)
and the inequality

Lemma 1. Let 1 < p1,q1,p2,q2 < 00

1T < Cllellrr(,ay,00)
for some C > 0.

Proof. Let f € (L' (G, A),{") and p € Cc (G, A) C (LP (G, A),£9) be given. Due

’

— _ _ _ na 11,1 1141
top = P1Py+p1—ph and ¢ q195+4q1—q5° p1 + P L+ Ph > 1 and 1 P1 + P 1,
1 4,1 1 1 _ 1,1 _ — —
ate= 1 e 1 and = o T 1, we have r = p5 and ry = g5. Therefore,

by Theorem 6 we obtain f x ¢ € (L™ (G, A),{™2) = (LT’,2 (G, A) ,E‘Ié) and
||Tgof||(Lp’2(G1A)’Eq’2) <C Hf”(LPl(G,A),[‘Il) H‘P”(LP(G,A),zq) )
i.e. T, f is continuous. Also, we can write the inequality
1Tl < Cllellr(c,a,e0
for some C > 0.
Definition 15. A locally compact Abelian group G is said to satisfy the property
P((ﬁf,’,fj; if every element of Homp (g, a) ((Lp1 (G,A),01), (L?”,2 (G, A%) ,€q5)> can

be approximated in the ultraweak*-operator topology by operators Ty, ¢ € Co (G, A) .
O

Theorem 7. Let G be a locally compact Abelian group. If p% + p% >1, qil + q% >1,

% = p% + p% -1 and % = q% + q% — 1, then the following statements are equivalent:
(i) G satisfies the property P((gf,’gj))-

(ii) The kernel of B is K such that
(Lpl (Ga A) 7EQI) ®L1(G,A) (Lpz (Ga A) 75!12) = AT (Gv A) :

P1,P2

Proof. Since B((¢* f)@g—f®(P*g)) = (p*f)" xg—f=*(pxg) = 0, then

K C KerB. Assume that G satisfies the property P((gll ’;’2)). To display KerB C K

it is enough to prove that K+ C (KerB)" due to the fact that K is the closed
linear subspace of (LP* (G, A),¢9) ®, (LP? (G, A),£9). It is well known that

K+ 2= (L7 (G, A) 47) @y (L7 (G, A), (7)) /K)"
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[8]. Also, we write

K+ = (L (G, A) 07) @11 4) (LP? (G, A), £92)) "
Moreover, by using Corollary 2.13 in [25], we obtain

Kt = Hompc.a) ((Lpl (G, A), 1), (Lp’z (G, A%) ,zqé)) .

Thus, there is a multiplier ' € Homp1 (g, a) ((L”1 (G, A), 1), (L”l2 (G, A%) ,Eqi’))
which corresponds to F' € K+ such that

oo
<t,F>=> <g,Tfi >,
i=1

where t € KerB, t = Zlfl ® gi, 231 1fill (zes (G, a),00) 19ill (1p2 (G, 4) 002y < 00 and
1= 1=
fi € (LP* (G, A),t1),g; € (LP?2 (G, A),¢%2). Also, due to t € KerB we get

B(2fi®gi)=;ﬁ*gi=0- (5.1)
Now, we show that
<t,F>=> <g,Tfi>=0. (5.2)
i=1

Furthermore, since G satisfies the property P(([?ll ng , then there exists a net

{(cpj) 1j € I} C Cc¢ (G, A) such that the operators T, defined in Lemma 1 con-
verges to T in the ultraweak®-operator topology, that is,

o0 o0
lim >, <g;, T, fi >= yg}Z <G, fixp;>= 3 <gi,Tfi>.
1 i=1 i=1

JEI ;=

So, to obtain (5.2), it is enough to show that

o0

> < gi,fixp;>=0

i=1

for all j € I. Tt can be seen easily
o0 o0 ~
Y.< Gifixp;>=> < fixgi,p;>. (5.3)
i=1 i=1

If we use the equalities (5.1), (5.3) and Holder inequality for amalgam spaces, then
we have

o0
z<gz-,f¢wj>]s
1

1=

00 A; i | | | _ 07
’; fone (L™1(G,A),072) il (L"I(G,A),e"'z)

where Z fixgi € (L™ (G, A),£72) and ¢; € Cc (G, A) C (LT‘1 (G, A) 7€T5> . There-

1=1

fore, < t,F >=0 for all t € KerB. That means F € (KerB)" . Hence KerB = K.
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By definition of Af1-%2 (G, A) and the First Isomorphism Theorem, we get
(LPY (G, A) 1) @, (L2 (G, A) 02) /K = AlVT (G, A)
and

(LP* (G, A) 1)@ 11 (q,a) (L2 (G, A)  £12) = (L7 (G, A) 7))@, (LP? (G, A) ,(7) /K.
This proves

(LP (G, A)  07) @pi(a,a) (L2 (G, A)  02) = ATVD (G, A).
Suppose conversely that KerB = K. If we show that the operators of the form T,
for ¢ € Cc (G, A) are dense in Homy: (g a) ((Lm (G, A), 1), (Lp’z (G, A%) ,fqi‘))
in the ultraweak*-operator topology, then we finish the proof. Hence, it is sufficient
to prove that the corresponding functionals are dense in

(L (G, A) 07) @p1(g,a) (L (G, A)  £7))

in the weak* topology by Theorem 1.4 in [26]. Let M be set of the linear functionals
corresponding to the operators T,. Let ¢t € KerB and F' € M. Since

(L7 (G, A) 17) @11 () (L (G, A) ,02))" = K+,

then F € M C K+ and < t,F >= 0. Hence we find KerB C M~*. Conversely, let
t € M*+. Since M+ C (LP* (G, A) ,09') ®p1(G,a) (LP2 (G, A) ,£92), then there exist
fi € (LPr (G, A) (1), g; € (LP? (G, A) ,£%2) such that

t= 2 £ 5 il m 19 gm0, <0
and < t,F >=0 for all F € M. Also, there is an operator

T, € Homp (. ((Lpl (G, A), 09, (Lp’z (G, A%) ,ﬂqé))
corresponding to F' such that

o0 &) ~
<t F>=<t,T,>= % <gi,T,fi >= > < fi*gi,; >
i=1 =1

i=1
by using (5.2). Therefore, we obtain

fixgi=0

or

B(t) =

i=1

and M+ C KerB. Consequently, KerB = M. This completes the theorem.
Corollary 2. Let G be a locally compact Abelian group. If p%qu% >1, q%+q% >1,
| 1 1 _ 1 1 ; (q1,92)
=t 1 and - = ot 1 and G satisfies the property P(phpz)’ then

Homyi(g.a) ((Lm (G, A), (1), (Lpé (G, A% ﬂé)) >~ (A% (G, A))".

P1,P2
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