Article Electronically published on February 25, 2017

ON VECTOR-VALUED CLASSICAL AND VARIABLE EXPONENT AMALGAM SPACES

ISMAIL AYDIN

Abstract

Let $1 \leq p, q, s \leq \infty$ and $1 \leq r(.) \leq \infty$, where $r($.$) is a variable$ exponent. In this paper, we introduce firstly vector-valued variable exponent amalgam spaces $\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)$. Secondly, we investigate some basic properties of $\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)$ spaces. Finally, we recall vector-valued classical amalgam spaces $\left(L^{p}(G, A), \ell^{q}\right)$, and inquire the space of multipliers from $\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right)$ to $\left(L^{p_{2}^{\prime}}\left(G, A^{*}\right), \ell^{q_{2}^{\prime}}\right)$.

1. Introduction

The amalgam of L^{p} and l^{q} on the real line is the space $\left(L^{p}, l^{q}\right)(\mathbb{R})$ (or shortly $\left.\left(L^{p}, l^{q}\right)\right)$ consisting of functions which are locally in L^{p} and have l^{q} behavior at infinity. Several special cases of amalgam spaces, such as $\left(L^{1}, l^{2}\right),\left(L^{2}, l^{\infty}\right),\left(L^{\infty}, l^{1}\right)$ and $\left(L^{1}, l^{\infty}\right)$ were studied by N . Wiener [30]. Comprehensive information about amalgam spaces can be found in some papers, such as [16], [29], [15], [10] and [11]. Recently, there have been many interesting and important papers appeared in variable exponent amalgam spaces $\left(L^{r(.)}, \ell^{s}\right)$, such as Aydın and Gürkanlı [3], Aydın [5], Gürkanli and Aydın [14], Kokilashvili, Meskhi and Zaighum [17], Meskhi and Zaighum[23], Gürkanli [13], Kulak and Gürkanli [20]. Vector-valued classical amalgam spaces $\left(L^{p}(\mathbb{R}, E), \ell^{q}\right)$ on the real line were defined by Lakshmi and Ray [21] in 2009. They described and discussed some fundamental properties of these spaces, such as embeddings and separability. In their following paper [22], they investigated convolution product and obtained a similar result to Young's convolution theorem on $\left(L^{p}(\mathbb{R}, E), \ell^{q}\right)$. They also showed classical result on Fourier transform of convolution product for $\left(L^{p}(\mathbb{R}, E), \ell^{q}\right)$. Vector-valued variable exponent Bochner-Lebesgue spaces $L^{r(.)}(\mathbb{R}, E)$ defined by Cheng and Xu [7] in 2013. They proved dual space, the reflexivity, uniformly convexity and uniformly smoothness of

[^0]$L^{r(.)}(\mathbb{R}, E)$. Furthermore, they gave some properties of the Banach valued BochnerSobolev spaces with variable exponent. In this paper, we give some information about $\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)$, and obtain the generalization of some results in Sağır [27] and similar consequences in Avcı and Gürkanli [1] and Öztop and Gürkanli [24]. Finally, our original aim is to prove that the space of multipliers from $\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right)$ to $\left(L^{p_{2}^{\prime}}\left(G, A^{*}\right), \ell^{q_{2}^{\prime}}\right)$ is isometrically isomorphic to $\left(\mathbf{A}_{p_{1}, p_{2}}^{q_{1}, q_{2}}(G, A)\right)^{*}$.

2. DEFINITION AND PRELIMINARY RESULTS

In this section, we give several definitions and theorems for vector-valued variable exponent Lebesgue spaces $L^{r(.)}(\mathbb{R}, E)$.

Definition 1. For a measurable function $r: \mathbb{R} \rightarrow[1, \infty)$ (called a variable exponent on \mathbb{R}), we put

$$
r^{-}=\underset{x \in \mathbb{R}}{\operatorname{essinf}}(x), \quad r^{+}=\underset{x \in \mathbb{R}}{\operatorname{esssupr}}(x)
$$

The variable exponent Lebesgue spaces $L^{r(.)}(\mathbb{R})$ consist of all measurable functions f such that $\varrho_{r(.)}(\lambda f)<\infty$ for some $\lambda>0$, equipped with the Luxemburg norm

$$
\|f\|_{r(.)}=\inf \left\{\lambda>0: \varrho_{r(.)}\left(\frac{f}{\lambda}\right) \leq 1\right\}
$$

where

$$
\varrho_{r(.)}(f)=\int_{\mathbb{R}}|f(x)|^{r(x)} d x
$$

If $r^{+}<\infty$, then $f \in L^{r(.)}(\mathbb{R})$ iff $\varrho_{r(.)}(f)<\infty$. The space $\left(L^{r(.)}(\mathbb{R}),\|\cdot\|_{r(.)}\right)$ is a Banach space. If $r(x)=r$ is a constant function, then the norm $\|\cdot\|_{r(.)}$ coincides with the usual Lebesgue norm $\|\cdot\|_{r}$ [18], [2], [4]. In this paper we assume that $r^{+}<\infty$.
Definition 2. We denote by $L_{\text {loc }}^{r(.)}(\mathbb{R})$ the space of (equivalence classes of) functions on \mathbb{R} such that f restricted to any compact subset K of \mathbb{R} belongs to $L^{r(.)}(\mathbb{R})$.

Let $1 \leq r(),. s<\infty$ and $J_{k}=[k, k+1), k \in \mathbb{Z}$. The variable exponent amalgam spaces $\left(L^{r(.)}, \ell^{s}\right)$ are the normed spaces

$$
\left(L^{r(.)}, \ell^{s}\right)=\left\{f \in L_{l o c}^{r(\cdot)}(\mathbb{R}):\|f\|_{\left(L^{r(\cdot), \ell^{s}}\right)}<\infty\right\}
$$

where

$$
\|f\|_{\left(L^{r(.), \ell^{s}}\right)}=\left(\sum_{k \in \mathbb{Z}}\left\|f \chi_{J_{k}}\right\|_{r(.)}^{s}\right)^{1 / s}
$$

It is well known that $\left(L^{r(.)}, \ell^{s}\right)$ is a Banach space and does not depend on the particular choice of J_{k}, that is, J_{k} can be equal to $[k, k+1),[k, k+1]$ or $(k, k+1)$. Thus, we have same spaces $\left(L^{r(.)}, \ell^{s}\right)$ [15]. Furthermore, it can be seen in references
[3], [5] and [14] to obtain some basic properties for $\left(L^{r(.)}, \ell^{s}\right)$ spaces. It is well known that $L^{r(.)}(\mathbb{R})$ is not translation invariant. So, the convolution operator and multipliers are useless in this space. By using Theorem 3.3 in [13] we also obtain $\left(L^{r(.)}, \ell^{s}\right)$ is not translation invariant.

Let $\left(E,\|\cdot\|_{E}\right)$ be a Banach space and E^{*} its dual space and (Ω, Σ, μ) be a measure space.

Definition 3. A function $f: \Omega \rightarrow E$ is Bochner (or strongly) μ-measurable if there exists a sequence $\left\{f_{n}\right\}$ of simple functions $f_{n}: \Omega \rightarrow E$ such that $f_{n}(x) \xrightarrow{E} f(x)$ as $n \rightarrow \infty$ for almost all $x \in \Omega$ [9].

Definition 4. A μ-measurable function $f: \Omega \rightarrow E$ is called Bochner integrable if there exists a sequence of simple functions $\left\{f_{n}\right\}$ such that

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left\|f_{n}-f\right\|_{E} d \mu=0
$$

for almost all $x \in \Omega$ [9].
Theorem 1. A μ-measurable function $f: \Omega \rightarrow E$ is Bochner integrable if and only if $\int_{\Omega}\|f\|_{E} d \mu<\infty[9]$.

Definition 5. A function $F: \Sigma \rightarrow E$ is called a vector measure, if for all sequences $\left(A_{n}\right)$ of pairwise disjoint members of Σ such that $\bigcup_{n=1}^{\infty} A_{n} \in \Sigma$ and $F\left(\bigcup_{n=1}^{\infty} A_{n}\right)=$ $\sum_{n=1}^{\infty} F\left(A_{n}\right)$, where the series converges in the norm topology of E.

Let $F: \Sigma \rightarrow E$ be a vector measure. The variation of F is the function $\|F\|$: $\Sigma \rightarrow[0, \infty]$ defined by

$$
\|F\|(A)=\sup _{\pi} \sum_{B \in \pi}^{\infty}\|F(B)\|_{E}
$$

where the supremum is taken over all finite disjoint partitions π of A. If $\|F\|(\Omega)<$ ∞, then F is called a measure of bounded variation [7],[9].

Definition 6. A Banach space E has the Radon-Nikodym property (RNP) with respect to (Ω, Σ, μ) if for each vector measure $F: \Sigma \rightarrow E$ of bounded variation, which is absolutely continuous with respect to μ, there exists a function $g \in L^{1}(\Omega, E)$ such that

$$
F(A)=\int_{A} g d \mu
$$

for all $A \in \Sigma[7],[9]$.

Definition 7. The variable exponent Bochner- Lebesgue space $L^{r(.)}(\mathbb{R}, E)$ stands for all (equivalence classes of) E-valued Bochner integrable functions f on \mathbb{R} such that

$$
L^{r(.)}(\mathbb{R}, E)=\left\{f:\|f\|_{r(.), E}<\infty\right\}
$$

where

$$
\|f\|_{r(.), E}=\inf \left\{\lambda>0: \varrho_{r(.), E}\left(\frac{f}{\lambda}\right) \leq 1\right\}
$$

and

$$
\varrho_{r(.), E}(f)=\int_{\mathbb{R}}\|f(x)\|_{E}^{r(.)} d x
$$

The following properties proved by Cheng and Xu [7];
(i) $f \in L^{r(.)}(\mathbb{R}, E) \Leftrightarrow\|f(x)\|_{E}^{r(.)} \in L^{1}(\mathbb{R}) \Leftrightarrow\|f(x)\|_{E} \in L^{r(.)}(\mathbb{R})$
(ii) $L^{r(.)}(\mathbb{R}, E)$ is a Banach space with respect to $\|\cdot\|_{r(.), E}$.
(iii) $L^{r(.)}(\mathbb{R}, E)$ is a generalization of the $L^{r}(\mathbb{R}, E)$ spaces.
(iv) If $E=\mathbb{R}$ or \mathbb{C}, then $L^{r(.)}(\mathbb{R}, E)=L^{r(.)}(\mathbb{R})$.
(v) If E is reflexive and $1<r^{-} \leq r^{+}<\infty$, then $L^{r(.)}(\mathbb{R}, E)$ is reflexive.

Theorem 2. If E^{*} has the Radon-Nikodym Property (RNP), then the mapping $g \mapsto \varphi_{g}, \frac{1}{r(.)}+\frac{1}{q(.)}=1, L^{q(.)}\left(\mathbb{R}, E^{*}\right) \rightarrow\left(L^{r(.)}(\mathbb{R}, E)\right)^{*}$ which is defined by

$$
<\varphi_{g}, f>=\int_{\mathbb{R}}<g, f>d x
$$

for any $f \in L^{r(.)}(\mathbb{R}, E)$ is a linear isomorphism and

$$
\|g\|_{q(.), E^{*}} \leq\left\|\varphi_{g}\right\|_{\left(L^{r(.)}(\mathbb{R}, E)\right)^{*}} \leq 2\|g\|_{q(.), E^{*}}
$$

Hence, the dual space $\left(L^{r(.)}(\mathbb{R}, E)\right)^{*}$ is isometrically isomorphic to $L^{q(.)}\left(\mathbb{R}, E^{*}\right)$, where E^{*} has $R N P$. In addition, for $f \in L^{r(.)}(\mathbb{R}, E)$ and $g \in L^{q(.)}\left(\mathbb{R}, E^{*}\right)(g$ defines a continuous linear functional), the dual pair $<f(),. g()>.\in L^{1}(\mathbb{R})$ and Hölder inequality implies

$$
\begin{aligned}
\int_{\mathbb{R}}|<f(.), g(.)>| d x & \leq \int_{\mathbb{R}}\|f\|_{E}\|g\|_{E^{*}} d x \\
& \leq C\|f\|_{r(.), E}\|g\|_{q(.), E^{*}}
\end{aligned}
$$

for some $C>0$ [7].

3. VECTOR-VALUED VARIABLE EXPONENT AMALGAM SPACES

In this section, we define vector-valued variable exponent amalgam spaces $\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)$. We also discuss some basic and significant properties of $\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)$.

Definition 8. Let $1 \leq r()<.\infty, 1 \leq s \leq \infty$ and $J_{k}=[k, k+1), k \in \mathbb{Z}$. The vector-valued variable exponent amalgam spaces $\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)$ are the normed space

$$
\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)=\left\{f \in L_{\text {loc }}^{r(.)}(\mathbb{R}, E):\|f\|_{\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)}<\infty\right\}
$$

where

$$
\|f\|_{\left(L^{\left.r(.)(\mathbb{R}, E), \ell^{s}\right)}\right.}=\left(\sum_{k \in \mathbb{Z}}\left\|f \chi_{J_{k}}\right\|_{r(.), E}^{s}\right)^{1 / s}, 1 \leq s<\infty
$$

and

$$
\|f\|_{\left(L^{r(.)}(\mathbb{R}, E), \ell \infty\right)}=\sup _{k}\left\|f \chi_{J_{k}}\right\|_{r(\cdot), E}, s=\infty
$$

It can be proved that $\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)$ is a Banach space with respect to the norm $\|\cdot\|_{\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)}$ [21]. Moreover, $\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)$ has some inclusions and embeddings similar to [3].

The proof of the following Theorem is proved by using techniques in Theorem 2.6 in [11], [p. 32, 29] and [p.359,19].

Theorem 3. Let E^{*} has RNP and $1<r^{-} \leq r^{+}<\infty$ and $1<s<\infty$. Then the dual space of $\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)$ is isometrically isomorphic to $\left(L^{q(.)}\left(\mathbb{R}, E^{*}\right)\right.$, $\left.\ell^{t}\right)$ for $\frac{1}{r(.)}+\frac{1}{q(.)}=1$ and $\frac{1}{s}+\frac{1}{t}=1$.

Proof. Let $\left\{A_{k}\right\}_{k \in \mathbb{Z}}$ be a family of Banach spaces. We define

$$
\ell^{s}\left(A_{k}\right)=\left\{x=\left(x_{k}\right): x_{k} \in A_{k},\|x\|<\infty\right\}
$$

where $\|x\|=\left(\sum_{k \in \mathbb{Z}}\left\|x_{k}\right\|_{A_{k}}^{s}\right)^{\frac{1}{s}}$. It can be seen that $\ell^{s}\left(A_{k}\right)$ is a Banach space under the norm $\|$.$\| . It is also well known that the dual of \ell^{s}\left(A_{k}\right)$ is $\ell^{t}\left(A_{k}^{*}\right)$. Moreover, $\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)$ is particular case of $\ell^{s}\left(A_{k}\right)$. Indeed, if we take $A_{k}=L^{r(.)}\left(J_{k}, E\right)$ and $J_{k}=[k, k+1)$, then the map $f \mapsto\left(f_{k}\right), f_{k}=f \chi_{J_{k}}$ is an isometric isomorphism from $\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)$ to $\ell^{s}\left(L^{r(.)}\left(J_{k}, E\right)\right)$. Hence, we have $\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)^{*} \cong$ $\left(L^{q(.)}\left(\mathbb{R}, E^{*}\right), \ell^{t}\right)$ by Theorem 2.

Corollary 1. Let $1<r^{-} \leq r^{+}<\infty$ and $1<s<\infty$. If E is reflexive, then $\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)$ is reflexive.

Theorem 4. (Generalized Hölder Inequality) Let E^{*} has RNP and $m^{+}<\infty$, $1 \leq s \leq \infty$. If $\frac{1}{r(.)}+\frac{1}{q(.)}=\frac{1}{m(.)}$ and $\frac{1}{s}+\frac{1}{t}=\frac{1}{n}$, then there exists a $C>0$ such that

$$
\|<f(.), g(.)>\|_{\left(L^{m(.)}(\mathbb{R}), \ell^{n}\right)} \leq C\|f\|_{\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)}\|g\|_{\left(L^{q(.)}\left(\mathbb{R}, E^{*}\right), \ell^{t}\right)}
$$

and $<f(),. g()>.\in\left(L^{m(.)}(\mathbb{R}), \ell^{n}\right)$ for $f \in\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right), g \in\left(L^{q(.)}\left(\mathbb{R}, E^{*}\right), \ell^{t}\right)$.
Proof. Let $\widetilde{f}(x)=\|f(x)\|_{E}$ and $\widetilde{g}(x)=\|g(x)\|_{E^{*}}$ be given for any $x \in \mathbb{R}$. If $f \in$ $\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)$ and $g \in\left(L^{q(.)}\left(\mathbb{R}, E^{*}\right), \ell^{t}\right)$, then we have $\tilde{f} \in\left(L^{r(.)}, \ell^{s}\right), \widetilde{g} \in$ $\left(L^{q(\cdot)}, \ell^{t}\right)$ and $\|\widetilde{f}\|_{\left(L^{\left.r(\cdot), \ell^{s}\right)}\right.}=\|f\|_{\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)},\|\widetilde{g}\|_{\left(L^{\left.q(\cdot), \ell^{t}\right)}\right.}=\|g\|_{\left(L^{q(\cdot)}\left(\mathbb{R}, E^{*}\right), \ell^{t}\right)}$. Therefore, by using Hölder inequality for $L^{m(.)}$ [18], we can write the following inequality

$$
\begin{aligned}
\|<f(.), g(.)>\|_{m(.), J_{k}} & \leq\| \| f(.)\left\|_{E}\right\| g(.)\left\|_{E^{*}}\right\|_{m(.), J_{k}} \\
& \leq C\|f\|_{r(.), J_{k}}\|\widetilde{g}\|_{q(.), J_{k}} \\
& =C\left\|f \chi_{J_{k}}\right\|_{r(.), E}\left\|g \chi_{J_{k}}\right\|_{q(.), E^{*}} .
\end{aligned}
$$

By Corollary 2.4 in [3] and Jensen's inequality for ℓ^{s} spaces, we obtain

$$
\|<f(.), g(.)>\|_{\left(L^{m(.)}(\mathbb{R}), \ell^{n}\right)} \leq C\|f\|_{\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)}\|g\|_{\left(L^{q(.)}\left(\mathbb{R}, E^{*}\right), \ell^{t}\right)}
$$

This completes the proof.
Definition 9. We define $c_{0}(\mathbb{Z}) \subset l^{\infty}$ to be the linear space of $\left(a_{k}\right)_{k \in \mathbb{Z}}$ such that $\lim _{k} a_{k}=0$, that is, given $\varepsilon>0$ there exists a compact subset K of \mathbb{R} such that $\left|a_{k}\right|<\varepsilon$ for all $k \notin K$.

The vector-valued type variable exponent amalgam spaces $\left(L^{r(.)}(\mathbb{R}, E), c_{0}\right)$ are the normed spaces

$$
\left(L^{r(.)}(\mathbb{R}, E), c_{0}\right)=\left\{f \in\left(L^{r(.)}(\mathbb{R}, E), \ell^{\infty}\right):\left\{\left\|f \chi_{J_{k}}\right\|_{r(.), E}\right\}_{k \in \mathbb{Z}} \in c_{0}\right\}
$$

where

$$
\|f\|_{\left(L^{r(.)}(\mathbb{R}, E), \ell^{\infty}\right)}=\sup _{k}\left\|f \chi_{J_{k}}\right\|_{r(.), E}
$$

for $f \in\left(L^{r(.)}(\mathbb{R}, E), c_{0}\right)$ [29].
Proposition 1. Let E^{*} has $R N P$ and $m^{+}<\infty, 1 \leq s \leq \infty$. If $f \in\left(L^{r(.)}(\mathbb{R}, E), c_{0}\right)$ and $g \in\left(L^{q(.)}\left(\mathbb{R}, E^{*}\right), c_{0}\right)$, then there exists a $C>0$ such that

$$
\|<f(.), g(.)>\|_{\left(L^{m(.)}(\mathbb{R}), \ell^{\infty}\right)} \leq C\|f\|_{\left(L^{r(.)}(\mathbb{R}, E), \ell^{\infty}\right)}\|g\|_{\left(L^{q(.)}\left(\mathbb{R}, E^{*}\right), \ell^{\infty}\right)}
$$

and $<f(),. g()>.\in\left(L^{m(.)}(\mathbb{R}), c_{0}\right)$ for $\frac{1}{r(.)}+\frac{1}{q(.)}=\frac{1}{m(.)}$.

Proof. If $f \in\left(L^{r(.)}(\mathbb{R}, E), c_{0}\right)$ and $g \in\left(L^{q(.)}\left(\mathbb{R}, E^{*}\right), c_{0}\right)$, then by Theorem 4 we can write $<f(),. g()>.\in\left(L^{m(.)}(\mathbb{R}), \ell^{\infty}\right)$ and

$$
\|<f(.), g(.)>\|_{m(.), J_{k}} \leq C\left\|f \chi_{J_{k}}\right\|_{r(.), E}\left\|g \chi_{J_{k}}\right\|_{q(.), E^{*}},
$$

where C does not depend on for any $k \in \mathbb{Z}$. This implies that

$$
\lim _{k}\|<f(.), g(.)>\|_{m(.), J_{k}} \leq \lim _{k} C\left\|f \chi_{J_{k}}\right\|_{r(.), E} \lim _{k}\left\|g \chi_{J_{k}}\right\|_{q(.), E^{*}}=0
$$

and $<f(),. g()>.\in\left(L^{m(.)}(\mathbb{R}), c_{0}\right)$. If we use the definition of the norm $\|\cdot\|_{\left(L^{r(.)}(\mathbb{R}, E), \ell^{\infty}\right)}$, then we get

$$
\begin{aligned}
\|<f(.), g(.)>\|_{\left(L^{r(.), \ell \infty}\right)} & =\sup _{k}\left\|f \chi_{J_{k}}\right\|_{r(.)} \\
& \leq C \sup _{k}\left\|f \chi_{J_{k}}\right\|_{r(.), E}\left\|g \chi_{J_{k}}\right\|_{q(\cdot), E^{*}} \\
& \leq C \sup _{k}\left\|f \chi_{J_{k}}\right\|_{r(\cdot), E} \sup _{k}\left\|g \chi_{J_{k}}\right\|_{r(.), E} \\
& =C\|f\|_{\left(L^{r(.)}(\mathbb{R}, E), \ell^{\infty}\right)}\|g\|_{\left(L^{q(\cdot)}\left(\mathbb{R}, E^{*}\right), \ell^{\infty}\right)}
\end{aligned}
$$

Definition 10. $L_{c}^{r(.)}(\mathbb{R}, E)$ denotes the functions f in $L^{r(.)}(\mathbb{R}, E)$ such that supp $f \subset$ \mathbb{R} is compact,that is,

$$
L_{c}^{r(.)}(\mathbb{R}, E)=\left\{f \in L^{r(.)}(\mathbb{R}, E): \text { suppf compact }\right\}
$$

Let $K \subset \mathbb{R}$ be given. The cardinality of the set

$$
S(K)=\left\{J_{k}: J_{k} \cap K \neq \varnothing\right\}
$$

is denoted by $|S(K)|$, where $\left\{J_{k}\right\}_{k \in \mathbb{Z}}$ is a collection of intervals.
Proposition 2. If g belongs to $L_{c}^{r(.)}(\mathbb{R}, E)$, then
(i) $\|g\|_{\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)} \leq|S(K)|^{\frac{1}{s}}\|g\|_{r(.), E}$ for $1 \leq s<\infty$,
(ii) $\|g\|_{\left(L^{r(.)}(\mathbb{R}, E), \ell^{\infty}\right)} \leq|S(K)|\|g\|_{r(.), E}$ for $s=\infty$,
(iii) $L_{c}^{r(.)}(\mathbb{R}, E) \subset\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)$ for $1 \leq s \leq \infty$, where K is the compact support of g.
Proof. (i) Since K is compact, then $K \subset \bigcup_{i=1}^{|S(K)|} J_{k_{i}}$ and

$$
\begin{aligned}
\|g\|_{\left(L^{\left.r(.)(\mathbb{R}, E), \ell^{s}\right)}\right.} & =\left(\sum_{k \in \mathbb{Z}}\left\|g \chi_{J_{k}}\right\|_{r(.), E}^{s}\right)^{1 / s} \\
& =\left(\sum_{J_{k_{i}} \in S(K)}\left\|g \chi_{J_{k}}\right\|_{r(.), E}^{s}\right)^{1 / s} \\
& \leq|S(K)|^{\frac{1}{s}}\|g\|_{r(.), E}
\end{aligned}
$$

for $1 \leq s<\infty$, where the number of $J_{k_{i}}$ is finite.
(ii) Let $s=\infty$.Then

$$
\begin{aligned}
\|g\|_{\left(L^{r(.)}(\mathbb{R}, E), \ell^{s}\right)} & =\sup _{k \in \mathbb{Z}}\left\|g \chi_{J_{k}}\right\|_{r(.), E} \\
& =\sup _{i=1,2, . .|S(K)|}\left\|g \chi_{J_{k_{i}}}\right\|_{r(.), E} \\
& \leq|S(K)|\|g\|_{r(.), E}
\end{aligned}
$$

Theorem 5. (i) $L_{c}^{r(.)}(\mathbb{R}, E)$ is subspace of $\left(L^{r(.)}(\mathbb{R}, E), c_{0}\right)$ for $1 \leq s<\infty$.
(ii) $C_{0}(\mathbb{R}, E)$ is subspace of $\left(L^{r(.)}(\mathbb{R}, E), c_{0}\right)$.

Proof. (i) Firstly, we show that $L_{c}^{r(.)}(\mathbb{R}, E) \subset\left(L^{r(.)}(\mathbb{R}, E), c_{0}\right)$. Let $f \in L_{c}^{r(.)}(\mathbb{R}, E)$ be given. Since f has compact support, then $\left\|f \chi_{J_{k}}\right\|_{r(.), E}$ is zero for all, but finitely many J_{k}. By definition of c_{0}, we get $\left\{\left\|f \chi_{J_{k}}\right\|_{r(\cdot), E}\right\}_{k \in \mathbb{Z}} \in c_{0}$. Hence, $L_{c}^{r(.)}(\mathbb{R}, E) \subset\left(L^{r(.)}(\mathbb{R}, E), c_{0}\right)$.
(ii) If $f \in C_{0}(\mathbb{R}, E)$ and given $0<\varepsilon<1$, then there exists a compact set $K \subset \mathbb{R}$ such that $\|f(x)\|_{E}<\varepsilon$ for all $x \notin K$. Since K is compact, then $K \subset \cup_{i=1}^{n} J_{k_{i}}$ (n is finite) and $\left\|f(.) \chi_{J_{k}}\right\|_{r(.), E}<\varepsilon$ for all $k \neq k_{i}, i=1,2, . . n$. Indeed, by using $\varrho_{r(.), E}(f) \rightarrow 0 \Leftrightarrow\|f(.)\|_{r(.), E} \rightarrow 0\left(r^{+}<\infty\right)$, and $\left|J_{k}\right|=1$ (measure of $\left.J_{k}\right)$ it is written that

$$
\begin{aligned}
\varrho_{r(.), E}(f) & =\int_{J_{k}}\|f(x)\|_{E}^{r(.)} d x \\
& \leq \varepsilon^{r^{-}}\left|J_{k}\right| \rightarrow 0 .
\end{aligned}
$$

Therefore, we obtain $f \in\left(L^{r(.)}(\mathbb{R}, E), c_{0}\right)$ due to definition of norm of $\left(L^{r(.)}(\mathbb{R}, E), c_{0}\right)$.

4. VECTOR-VALUED CLASSICAL AMALGAM SPACES

In this section, we consider that G is a locally compact Abelian group, and A is a commutative Banach algebra with Haar measure μ. By the Structure Theorem, $G=\mathbb{R}^{a} \times G_{1}$, where a is a nonnegative integer and G_{1} is a locally compact abelian group which contains an open compact subgroup H. Let $I=[0,1)^{a} \times H$ and $J=\mathbb{Z}^{a} \times T$, where T is a transversal of H in G_{1}, i.e. $G_{1}=\bigcup_{t \in T}(t+H)$ is a coset decomposition of G_{1}. For $\alpha \in J$ we define $I_{\alpha}=\alpha+I$, and therefore G is equal to the disjoint union of relatively compact sets I_{α}. We normalize μ so that $\mu(I)=\mu\left(I_{\alpha}\right)=1$ for all α [11], [29].

Definition 11. Let $1 \leq p, q<\infty$. The vector-valued classical amalgam spaces ($\left.L^{p}(G, A), \ell^{q}\right)$ are the normed space

$$
\left(L^{p}(G, A), \ell^{q}\right)=\left\{f \in L_{l o c}^{p}(G, A):\|f\|_{\left(L^{p}(G, A), \ell^{q}\right)}<\infty\right\}
$$

where

$$
\|f\|_{\left(L^{p}(G, A), \ell^{q}\right)}=\left(\sum_{\alpha \in J}\left\|f \chi_{I_{\alpha}}\right\|_{p, A}^{q}\right)^{1 / q}, 1 \leq p, q<\infty
$$

Now we give Young's inequality for vector-valued amalgam spaces.
Theorem 6. ([22])Let $1 \leq p_{1}, q_{1}, p_{2}, q_{2}<\infty$. If $f \in\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right)$ and $g \in$ $\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)$, then $f * g \in\left(L^{r_{1}}(G, A), \ell^{r_{2}}\right)$, where $\frac{1}{p_{1}}+\frac{1}{p_{2}} \geq 1, \frac{1}{q_{1}}+\frac{1}{q_{2}} \geq 1$, $\frac{1}{r_{1}}=\frac{1}{p_{1}}+\frac{1}{p_{2}}-1$ and $\frac{1}{r_{2}}=\frac{1}{q_{1}}+\frac{1}{q_{2}}-1$. Moreover, there exists a $C>0$ such that

$$
\|f * g\|_{\left(L^{r_{1}}(G, A), \ell^{r_{2}}\right)} \leq C\|f\|_{\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right)}\|g\|_{\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)} .
$$

Definition 12. Let A be a Banach algebra. A Banach space B is said to be a Banach A-module if there exists a bilinear operation $\cdot: A \times B \rightarrow B$ such that
(i) $(f \cdot g) \cdot h=f \cdot(g \cdot h)$ for all $f, g \in A, h \in B$.
(ii) For some constant $C \geq 1,\|f \cdot h\|_{B} \leq C\|f\|_{A}\|h\|_{B}$ for all $f \in A, h \in B$.

By Theorem 6, we have the following inequality
$\|f * g\|_{\left(L^{p}(G, A), \ell^{q}\right)} \leq C\|f\|_{\left(L^{p}(G, A), \ell^{q}\right)}\|g\|_{\left(L^{1}(G, A), \ell^{1}\right)}=C\|f\|_{\left(L^{p}(G, A), \ell^{q}\right)}\|g\|_{L^{1}(G, A)}$
for all $f \in\left(L^{p}(G, A), \ell^{q}\right)$ and $g \in L^{1}(G, A)$, where $C \geq 1$, i.e. the amalgam space $\left(L^{p}(G, A), \ell^{q}\right)$ is a Banach $L^{1}(G, A)$-module with respect to convolution. Moreover, it is easy to see that the amalgam space $\left(L^{p}(G, A), \ell^{1}\right)$ is a Banach algebra under convolution $p \geq 1$, if we define the norm $\mid\|f\|_{\left(L^{p}(G, A), \ell^{1}\right)}=C\|f\|_{\left(L^{p}(G, A), \ell^{1}\right)}$ for $\left(L^{p}(G, A), \ell^{1}\right)$. Recall that $\left(L^{p}(G, A), \ell^{1}\right) \subset L^{1}(G, A)$.
Definition 13. Let V and W be two Banach modules over a Banach algebra A. Then a multiplier from V into W is a bounded linear operator T from V into W, which commutes with module multiplication, i.e. $T(a v)=a T(v)$ for $a \in A$ and $v \in V$. We denote by $\operatorname{Hom}_{A}(V, W)$ the space of all multipliers from V into W.

Let V and W be left and right Banach A-modules, respectively, and $V \otimes_{\gamma} W$ be the projective tensor product of V and W [6], [28]. If K is the closed linear subspace of $V \otimes_{\gamma} W$, which is spanned by all elements of the form $a v \otimes w-v \otimes a w$, $a \in A, v \in V, w \in W$, then the A-module tensor product $V \otimes_{A} W$ is defined to be the quotient Banach space $\left(V \otimes_{\gamma} W\right) / K$. Every element t of $\left(V \otimes_{\gamma} W\right) / K$ can be written

$$
t=\sum_{i=1}^{\infty} v_{i} \otimes w_{i}, v_{i} \in V, w_{i} \in W
$$

where $\sum_{i=1}^{\infty}\left\|v_{i}\right\|\left\|w_{i}\right\|<\infty$. Moreover, $\left(V \otimes_{\gamma} W\right) / K$ is a normed space according to

$$
\|t\|=\inf \left\{\sum_{i=1}^{\infty}\left\|v_{i}\right\|\left\|w_{i}\right\|<\infty\right\}
$$

where the infimum is taken over all possible representations for t [26]. It is known that

$$
\operatorname{Hom}_{A}\left(V, W^{*}\right) \cong\left(V \otimes_{A} W\right)^{*}
$$

where W^{*} is dual of W (Corollary 2.13, [25]). The linear functional T on $H o m_{A}\left(V, W^{*}\right)$, which corresponds to $t \in V \otimes_{A} W$ gets the value

$$
<t, T>=\sum_{i=1}^{\infty}<w_{i}, T v_{i}>
$$

Moreover, it is well known that the ultraweak*-operator topology on $\operatorname{Hom}_{A}\left(V, W^{*}\right)$ corresponds to the weak*-topology on $\left(V \otimes_{A} W\right)^{*}$ [26].

5. THE MULTIPLIERS OF THE SPACE A $A_{p_{1}, p_{2}}^{q_{1}, q_{2}}(G, A)$

By Theorem 6, a linear operator $b:\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right) \times\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right) \rightarrow$ $\left(L^{r_{1}}(G, A), \ell^{r_{2}}\right)$ can be defined by

$$
b(f, g)=\tilde{f} * g, f \in\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right), g \in\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)
$$

where $\tilde{f}(x)=f(-x)$ and $\|\tilde{f}\|_{\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right)}=\|f\|_{\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right)}$. It is easy to see that $\|b\| \leq C$. Furthermore, there exists a bounded linear operator B from $\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right)$ $\otimes_{\gamma}\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)$ into $\left(L^{r_{1}}(G, A), \ell^{r_{2}}\right)$ such that $B(f \otimes g)=b(f, g)$, where $f \in\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right), g \in\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)$ and $\|B\| \leq C$ by Theorem 6 in [6].

Definition 14. $A_{p_{1}, p_{2}}^{q_{1}, q_{2}}(G, A)$ denotes the range of B with the quotient norm. Hence, we write

$$
A_{p_{1}, p_{2}}^{q_{1}, q_{2}}(G, A)=\left\{h=\sum_{i=1}^{\infty} \widetilde{f}_{i} * g_{i}: \sum_{i=1}^{\infty}\left\|f_{i}\right\|_{\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right)}\left\|g_{i}\right\|_{\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)}<\infty\right\}
$$

for $f_{i} \in\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right), g_{i} \in\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)$ and

$$
\||h|\|=\inf \left\{\sum_{i=1}^{\infty}\left\|f_{i}\right\|_{\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right)}\left\|g_{i}\right\|_{\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)}: h=\sum_{i=1}^{\infty} \widetilde{f}_{i} * g_{i}\right\}
$$

It is clear that $A_{p_{1}, p_{2}}^{q_{1}, q_{2}}(G, A) \subset\left(L^{r_{1}}(G, A), \ell^{r_{2}}\right)$ and $\|h\|_{\left(L^{r_{1}}(G, A), \ell^{r_{2}}\right)} \leq C\||h|\|$. Moreover, by using the technique given in Theorem 2.4 by [12], $A_{p_{1}, p_{2}}^{q_{1}, q_{2}}(G, A)$ can be showed a Banach space with respect to $\||\cdot|\|$.

Let K be the closed linear subspace of $\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right) \otimes_{\gamma}\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)$, which is spanned by all elements of the form $(\varphi * f) \otimes g-f \otimes(\widetilde{\varphi} * g)$, where $f \in$ $\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right), g \in\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)$ and $\varphi \in L^{p_{1}}(G, A)$. Then the $L^{1}(G, A)-$ module tensor product $\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right) \otimes_{L^{1}(G, A)}\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)$ is defined to be the quotient Banach space $\left(\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right) \otimes_{\gamma}\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)\right) / K$. We define the norm

$$
\|h\|=\inf \left\{\sum_{i=1}^{\infty}\left\|f_{i}\right\|_{\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right)}\left\|g_{i}\right\|_{\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)}: h=\sum_{i=1}^{\infty} f_{i} \otimes g_{i}\right\}
$$

for $h \in\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right) \otimes_{L^{1}(G, A)}\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)$ Also, it is well known that this space is a Banach space [26].

In the following Lemma, we use numbers p and q given in Lemma 3.2 in [1].
Lemma 1. Let $1 \leq p_{1}, q_{1}, p_{2}, q_{2}<\infty, \frac{1}{p_{1}}+\frac{1}{p_{2}} \geq 1, \frac{1}{q_{1}}+\frac{1}{q_{2}} \geq 1, \frac{1}{r_{1}}=\frac{1}{p_{1}}+\frac{1}{p_{2}}-1$ and $\frac{1}{r_{2}}=\frac{1}{q_{1}}+\frac{1}{q_{2}}-1, p=\frac{p_{1} p_{2}^{\prime}}{p_{1} p_{2}^{\prime}+p_{1}-p_{2}^{\prime}}$ and $q=\frac{q_{1} q_{2}^{\prime}}{q_{1} q_{2}^{\prime}+q_{1}-q_{2}^{\prime}}$, where $\frac{1}{p_{2}}+\frac{1}{p_{2}^{\prime}}=1$ and $\frac{1}{q_{2}}+\frac{1}{q_{2}^{\prime}}=1$. If we define $T_{\varphi} f=f * \varphi$ for $f \in\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right)$ and $\varphi \in$ $C_{C}(G, A)$, then we have $T_{\varphi} \in \operatorname{Hom}_{L^{1}(G, A)}\left(\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right),\left(L^{p_{2}^{\prime}}\left(G, A^{*}\right), \ell^{q_{2}^{\prime}}\right)\right)$ and the inequality

$$
\left\|T_{\varphi}\right\| \leq C\|\varphi\|_{\left(L^{p}(G, A), \ell^{q}\right)}
$$

for some $C>0$.
Proof. Let $f \in\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right)$ and $\varphi \in C_{C}(G, A) \subset\left(L^{p}(G, A), \ell^{q}\right)$ be given. Due to $p=\frac{p_{1} p_{2}^{\prime}}{p_{1} p_{2}^{\prime}+p_{1}-p_{2}^{\prime}}$ and $q=\frac{q_{1} q_{2}^{\prime}}{q_{1} q_{2}^{\prime}+q_{1}-q_{2}^{\prime}}, \frac{1}{p_{1}}+\frac{1}{p}=1+\frac{1}{p_{2}^{\prime}}>1$ and $\frac{1}{r_{1}}=\frac{1}{p_{1}}+\frac{1}{p}-1$, $\frac{1}{q_{1}}+\frac{1}{q}=1+\frac{1}{q_{2}^{\prime}}>1$ and $\frac{1}{r_{2}}=\frac{1}{q_{1}}+\frac{1}{q}-1$, we have $r_{1}=p_{2}^{\prime}$ and $r_{2}=q_{2}^{\prime}$. Therefore, by Theorem 6 we obtain $f * \varphi \in\left(L^{r_{1}}(G, A), \ell^{r_{2}}\right)=\left(L^{p_{2}^{\prime}}(G, A), \ell^{q_{2}^{\prime}}\right)$ and

$$
\left\|T_{\varphi} f\right\|_{\left(L^{p_{2}^{\prime}}(G, A), \ell^{q_{2}^{\prime}}\right)} \leq C\|f\|_{\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right)}\|\varphi\|_{\left(L^{p}(G, A), \ell^{q}\right)}
$$

i.e. $T_{\varphi} f$ is continuous. Also, we can write the inequality

$$
\left\|T_{\varphi}\right\| \leq C\|\varphi\|_{\left(L^{p}(G, A), \ell^{q}\right)}
$$

for some $C>0$.
Definition 15. A locally compact Abelian group G is said to satisfy the property $P_{\left(p_{1}, p_{2}\right)}^{\left(q_{1}, q_{2}\right)}$ if every element of $\operatorname{Hom}_{L^{1}(G, A)}\left(\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right),\left(L^{p_{2}^{\prime}}\left(G, A^{*}\right), \ell^{q_{2}^{\prime}}\right)\right)$ can be approximated in the ultraweak*-operator topology by operators $T_{\varphi}, \varphi \in C_{C}(G, A)$.

Theorem 7. Let G be a locally compact Abelian group. If $\frac{1}{p_{1}}+\frac{1}{p_{2}} \geq 1, \frac{1}{q_{1}}+\frac{1}{q_{2}} \geq 1$, $\frac{1}{r_{1}}=\frac{1}{p_{1}}+\frac{1}{p_{2}}-1$ and $\frac{1}{r_{2}}=\frac{1}{q_{1}}+\frac{1}{q_{2}}-1$, then the following statements are equivalent:
(i) G satisfies the property $P_{\left(p_{1}, p_{2}\right)}^{\left(q_{1}, q_{2}\right)}$.
(ii) The kernel of B is K such that

$$
\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right) \otimes_{L^{1}(G, A)}\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right) \cong \mathbf{A}_{p_{1}, p_{2}}^{q_{1}, q_{2}}(G, A)
$$

Proof. Since $B((\varphi * f) \otimes g-f \otimes(\widetilde{\varphi} * g))=(\varphi * f)^{\sim} * g-\widetilde{f} *(\widetilde{\varphi} * g)=0$, then $K \subset \operatorname{Ker} B$. Assume that G satisfies the property $P_{\left(p_{1}, p_{2}\right)}^{\left(q_{1}, q_{2}\right)}$. To display $\operatorname{Ker} B \subset K$ it is enough to prove that $K^{\perp} \subset(\operatorname{Ker} B)^{\perp}$ due to the fact that K is the closed linear subspace of $\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right) \otimes_{\gamma}\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)$. It is well known that

$$
K^{\perp} \cong\left(\left(\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right) \otimes_{\gamma}\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)\right) / K\right)^{*}
$$

[8]. Also, we write

$$
K^{\perp} \cong\left(\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right) \otimes_{L^{1}(G, A)}\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)\right)^{*}
$$

Moreover, by using Corollary 2.13 in [25], we obtain

$$
K^{\perp} \cong \operatorname{Hom}_{L^{1}(G, A)}\left(\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right),\left(L^{p_{2}^{\prime}}\left(G, A^{*}\right), \ell^{q_{2}^{\prime}}\right)\right)
$$

Thus, there is a multiplier $T \in \operatorname{Hom}_{L^{1}(G, A)}\left(\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right),\left(L^{p_{2}^{\prime}}\left(G, A^{*}\right), \ell^{q_{2}^{\prime}}\right)\right)$ which corresponds to $F \in K^{\perp}$ such that

$$
<t, F>=\sum_{i=1}^{\infty}<g_{i}, T f_{i}>
$$

where $t \in \operatorname{Ker} B, t=\sum_{i=1}^{\infty} f_{i} \otimes g_{i}, \sum_{i=1}^{\infty}\left\|f_{i}\right\|_{\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right)}\left\|g_{i}\right\|_{\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)}<\infty$ and $f_{i} \in\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right), g_{i} \in\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)$. Also, due to $t \in \operatorname{Ker} B$ we get

$$
\begin{equation*}
B\left(\sum_{i=1}^{\infty} f_{i} \otimes g_{i}\right)=\sum_{i=1}^{\infty} \tilde{f}_{i} * g_{i}=0 \tag{5.1}
\end{equation*}
$$

Now, we show that

$$
\begin{equation*}
<t, F>=\sum_{i=1}^{\infty}<g_{i}, T f_{i}>=0 \tag{5.2}
\end{equation*}
$$

Furthermore, since G satisfies the property $P_{\left(p_{1}, p_{2}\right)}^{\left(q_{1}, q_{2}\right)}$, then there exists a net $\left\{\left(\varphi_{j}\right): j \in I\right\} \subset C_{C}(G, A)$ such that the operators $T_{\varphi_{j}}$ defined in Lemma 1 converges to T in the ultraweak*-operator topology, that is,

$$
\lim _{j \in I} \sum_{i=1}^{\infty}<g_{i}, T_{\varphi_{j}} f_{i}>=\lim _{j \in I} \sum_{i=1}^{\infty}<g_{i}, f_{i} * \varphi_{j}>=\sum_{i=1}^{\infty}<g_{i}, T f_{i}>
$$

So, to obtain (5.2), it is enough to show that

$$
\sum_{i=1}^{\infty}<g_{i}, f_{i} * \varphi_{j}>=0
$$

for all $j \in I$. It can be seen easily

$$
\begin{equation*}
\sum_{i=1}^{\infty}<g_{i}, f_{i} * \varphi_{j}>=\sum_{i=1}^{\infty}<\widetilde{f}_{i} * g_{i}, \varphi_{j}> \tag{5.3}
\end{equation*}
$$

If we use the equalities (5.1), (5.3) and Hölder inequality for amalgam spaces, then we have

$$
\left|\sum_{i=1}^{\infty}<g_{i}, f_{i} * \varphi_{j}>\right| \leq\left\|\sum_{i=1}^{\infty} \widetilde{f}_{i} * g_{i}\right\|_{\left(L^{r_{1}}(G, A), \ell^{r_{2}}\right)}\left\|\varphi_{j}\right\|_{\left(L^{r_{1}^{\prime}}(G, A), \ell^{r_{2}^{\prime}}\right)}=0
$$

where $\sum_{i=1}^{\infty} \widetilde{f}_{i} * g_{i} \in\left(L^{r_{1}}(G, A), \ell^{r_{2}}\right)$ and $\varphi_{j} \in C_{C}(G, A) \subset\left(L^{r_{1}^{\prime}}(G, A), \ell^{r_{2}^{\prime}}\right)$. Therefore, $<t, F>=0$ for all $t \in \operatorname{Ker} B$. That means $F \in(\operatorname{Ker} B)^{\perp}$. Hence $\operatorname{Ker} B=K$.

By definition of $\mathbf{A}_{p_{1}, p_{2}}^{q_{1}, q_{2}}(G, A)$ and the First Isomorphism Theorem, we get

$$
\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right) \otimes_{\gamma}\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right) / K \cong \mathbf{A}_{p_{1}, p_{2}}^{q_{1}, q_{2}}(G, A)
$$

and
$\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right) \otimes_{L^{1}(G, A)}\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)=\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right) \otimes_{\gamma}\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right) / K$.
This proves

$$
\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right) \otimes_{L^{1}(G, A)}\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right) \cong \mathbf{A}_{p_{1}, p_{2}}^{q_{1}, q_{2}}(G, A)
$$

Suppose conversely that $\operatorname{Ker} B=K$. If we show that the operators of the form T_{φ} for $\varphi \in C_{C}(G, A)$ are dense in $\operatorname{Hom}_{L^{1}(G, A)}\left(\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right),\left(L^{p_{2}^{\prime}}\left(G, A^{*}\right), \ell^{q_{2}^{\prime}}\right)\right)$ in the ultraweak*-operator topology, then we finish the proof. Hence, it is sufficient to prove that the corresponding functionals are dense in

$$
\left(\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right) \otimes_{L^{1}(G, A)}\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)\right)^{*}
$$

in the weak* topology by Theorem 1.4 in [26]. Let M be set of the linear functionals corresponding to the operators T_{φ}. Let $t \in \operatorname{Ker} B$ and $F \in M$. Since

$$
\left(\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right) \otimes_{L^{1}(G, A)}\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)\right)^{*} \cong K^{\perp}
$$

then $F \in M \subset K^{\perp}$ and $<t, F>=0$. Hence we find $\operatorname{Ker} B \subset M^{\perp}$. Conversely, let $t \in M^{\perp}$. Since $M^{\perp} \subset\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right) \otimes_{L^{1}(G, A)}\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)$, then there exist $f_{i} \in\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right), g_{i} \in\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)$ such that

$$
t=\sum_{i=1}^{\infty} f_{i} \otimes g_{i}, \quad \sum_{i=1}^{\infty}\left\|f_{i}\right\|_{\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right)}\left\|g_{i}\right\|_{\left(L^{p_{2}}(G, A), \ell^{q_{2}}\right)}<\infty
$$

and $<t, F>=0$ for all $F \in M$. Also, there is an operator

$$
T_{\varphi} \in \operatorname{Hom}_{L^{1}(G, A)}\left(\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right),\left(L^{p_{2}^{\prime}}\left(G, A^{*}\right), \ell^{q_{2}^{\prime}}\right)\right)
$$

corresponding to F such that

$$
\begin{aligned}
<t, F>=<t, T_{\varphi}> & =\sum_{i=1}^{\infty}<g_{i}, T_{\varphi} f_{i}>=\sum_{i=1}^{\infty}<\tilde{f}_{i} * g_{i}, \varphi_{j}> \\
& =<\sum_{i=1}^{\infty} \tilde{f}_{i} * g_{i}, \varphi_{j}>=0
\end{aligned}
$$

by using (5.2). Therefore, we obtain

$$
B(t)=\sum_{i=1}^{\infty} \tilde{f}_{i} * g_{i}=0
$$

and $M^{\perp} \subset \operatorname{Ker} B$. Consequently, $\operatorname{Ker} B=M^{\perp}$. This completes the theorem.
Corollary 2. Let G be a locally compact Abelian group. If $\frac{1}{p_{1}}+\frac{1}{p_{2}} \geq 1, \frac{1}{q_{1}}+\frac{1}{q_{2}} \geq 1$, $\frac{1}{r_{1}}=\frac{1}{p_{1}}+\frac{1}{p_{2}}-1$ and $\frac{1}{r_{2}}=\frac{1}{q_{1}}+\frac{1}{q_{2}}-1$ and G satisfies the property $P_{\left(p_{1}, p_{2}\right)}^{\left(q_{1}, q_{2}\right)}$, then

$$
\operatorname{Hom}_{L^{1}(G, A)}\left(\left(L^{p_{1}}(G, A), \ell^{q_{1}}\right),\left(L^{p_{2}^{\prime}}\left(G, A^{*}\right), \ell^{q_{2}^{\prime}}\right)\right) \cong\left(\mathbf{A}_{p_{1}, p_{2}}^{q_{1}, q_{2}}(G, A)\right)^{*}
$$

References

[1] Avcı, H. and Gürkanli, A. T. Multipliers and tensor products of $L(p, q)$ Lorentz spaces, Acta Math Sci Ser. B Engl. Ed., 27, 2007, 107-116.
[2] Aydın, I. and Gürkanlı, A. T. On some properties of the spaces $A_{\omega}^{p(x)}\left(\mathbb{R}^{n}\right)$. Proc of the Jang Math Soc, 12, 2009, No.2, pp.141-155.
[3] Aydın, I. and Gürkanlı, A. T. Weighted variable exponent amalgam spaces $W\left(L^{p(x)} ; L_{w}^{q}\right)$, Glas Mat, Vol. 47(67), 2012,165-174.
[4] Aydın, I. Weighted variable Sobolev spaces and capacity, J Funct Space Appl, Volume 2012, Article ID 132690, 17 pages, doi:10.1155/2012/132690.
[5] Aydın, I. On variable exponent amalgam spaces, Analele Stiint Univ, Vol.20(3), 2012, 5-20.
[6] Bonsall, F. F. and Duncan, J. Complete normed algebras, Springer-Verlag, Belin, Heidelberg, new-York, 1973.
[7] Cheng, C. and Xu, J. Geometric properties of Banach space valued Bochner-Lebesgue spaces with variable exponent, J Math Inequal, Vol.7(3), 2013, 461-475.
[8] Conway, J. B. A course in functional analysis, New-york, Springer-Verlag, 1985.
[9] Diestel, J. and UHL, J.J. Vector measures, Amer Math Soc, 1977.
[10] Feichtinger, H. G. Banach convolution algebras of Wiener type, In: Functions, Series, Operators, Proc. Conf. Budapest 38, Colloq. Math. Soc. Janos Bolyai, 1980, 509-524.
[11] Fournier, J. J. and Stewart, J. Amalgams of L^{p} and ℓ^{q}, Bull Amer Math Soc, 13, 1985, 1-21.
[12] Gaudry, G. I. Quasimeasures and operators commuting with convolution, Pac J Math., 1965, 13(3), 461-476.
[13] Gürkanlı, A. T. The amalgam spaces $W\left(L^{p(x)} ; L^{\left\{p_{n}\right\}}\right)$ and boundedness of Hardy-Littlewood maximal operators, Current Trends in Analysis and Its Applications: Proceedings of the 9th ISAAC Congress, Krakow 2013.
[14] Gürkanlı, A. T. and Aydın, I. On the weighted variable exponent amalgam space $W\left(L^{p(x)} ; L_{m}^{q}\right)$, Acta Math Sci,34B(4), 2014,1-13.
[15] Heil, C. An introduction to weighted Wiener amalgams, In: Wavelets and their applications Chennai, January 2002, Allied Publishers, New Delhi, 2003, p. 183-216.
[16] Holland, F. Harmonic analysis on amalgams of L^{p} and ℓ^{q}, J. London Math. Soc. (2), 10, 1975, 295-305.
[17] Kokilashvili, V., Meskhi, A. and Zaighum, A. Weighted kernel operators in variable exponent amalgam spaces, J Inequal Appl, 2013, DOI:10.1186/1029-242X-2013-173.
[18] Kovacik, O. and Rakosnik, J. On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czech Math J. 41(116), 1991, 592-618.
[19] Köthe, G. Topological vector spaces, V.I, Berlin, Springer-Verlag, 1969.
[20] Kulak, Ö. and Gürkanl, A. T. Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces, J Inequal Appl, 2014, 2014:476.
[21] Lakshmi, D. V. and Ray, S. K. Vector-valued amalgam spaces, Int J Comp Cog, Vol. 7(4), 2009, 33-36.
[22] Lakshmi, D. V. and Ray, S. K. Convolution product on vector-valued amalgam spaces, Int J Comp Cog, Vol. 8(3), 2010, 67-73.
[23] Meskhi, A. and Zaighum, M. A. On The boundedness of maximal and potential operators in variable exponent amalgam spaces, J Math Inequal, Vol. 8(1), 2014, 123-152.
[24] Öztop, S. and Gurkanli, A T. Multipliers and tensor product of weighted L^{p}-spaces, Acta Math Scientia, 2001, 21B: 41-49.
[25] Rieffel, M. A. Induced Banach algebras and locally compact groups, J Funct Anal, 1967, 443-491.
[26] Rieffel, M. A. Multipliers and tensor products of L^{p} spaces of locally compact geroups, Stud Math, 1969, 33, 71-82.
[27] Sağır, B. Multipliers and tensor products of vector-valued $L^{p}(G, A)$ spaces, Taiwan J Math, 7(3), 2003, 493-501.
[28] Schatten, R. A Theory of Cross-Spaces, Annal Math Stud, 26, 1950.
[29] Squire, M. L. T. Amalgams of L^{p} and ℓ^{q}, Ph.D. Thesis, McMaster University, 1984.
[30] Wiener, N. On the representation of functions by trigonometric integrals, Math. Z., 24, 1926, 575-616.

Current address, Ismail AYDIN: Sinop University, Faculty of Sciences and Letters Department of Mathematics, Sinop, Turkey.

E-mail address: iaydin@sinop.edu.tr iaydinmath@gmail.com

[^0]: Received by the editors: April 12, 2016; Accepted: December 06, 2016.
 2010 Mathematics Subject Classification. 43A15, 46E30, 43A22.
 Key words and phrases. Variable exponent, amalgam spaces, multipliers.

