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CONVERGENCE OF SOLUTIONS OF AN IMPULSIVE
DIFFERENTIAL SYSTEM WITH A PIECEWISE CONSTANT

ARGUMENT

GIZEM. S. OZTEPE

Abstract. We prove the existence and uniqueness of the solutions of an im-
pulsive differential system with a piecewise constant argument. Moreover, we
obtain suffi cient conditions for the convergence of these solutions and then
prove that the limits of the solutions can be calculated by a formula.

1. Introduction

The problem on asymptotic constancy for delay differential equations, difference
equations, impulsive delay equations and impulsive equations with piecewise con-
stant arguments has been dealt with by many authors. Now, let us give a quick
overview on the existing literature of this subject.
Atkinson and Haddock [1] developed conditions which ensure that all solutions

of certain retarded functional differential equations were asymptotically constant
as t → ∞. Bastinec et.al [2] considered the linear homogeneous differential equa-
tion with delay and they proved explicit tests for convergence of all its solutions.
Diblik [11] established a criterion of asymptotic convergence of all solutions of a
nonlinear scalar differential equation with delay corresponding to the initial point.
Bereketoglu and Pituk [9] gave suffi cient conditions for the asymptotic constancy
of solutions of nonhomogeneous linear delay differential equations with unbounded
delay and they also computed the limits of solutions in terms of the initial con-
ditions and a special matrix solution of the corresponding adjoint equation. In
[12] Diblik and Ruzickova studied the asymptotic behavior of the solutions of the
first order differential equation containing two delays. Bereketoglu and Karakoc
[4] obtained suffi cient conditions for the asymptotic constancy of solutions for an
impulsive differential equations. Suffi cient conditions for the asymptotic constancy
and asymptotic convergence of solutions of an initial value problem for impulsive
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linear delay differential equations were presented in [15] by Karakoc and Bereke-
toglu. Bereketoglu and Huseynov in [3] gave suffi cient conditions for the asymptotic
constancy of the solutions of a linear system of difference equations with delays.
Berezansky et.al. [10] investigated the asymptotic convergence of the solutions of a
discrete equation with two delays in the critical case. Györi et.al. derived suffi cient
conditions for the convergence of solutions of a nonhomogeneous linear system of
impulsive delay differential equations and a limit formula in [13]. In [5] Bereketoglu
and Karakoc obtained suffi cient conditions for the asymptotic constancy of the so-
lutions of a system of nonhomogeneous linear impulsive pantograph equations. In
[16], [7], [8] and [6] authors considered the asymptotic constancy of different types of
impulsive differential equations with piecewise constant arguments and formulated
the limit value of the solutions in terms of the initial condition and the solution of
the integral equation for each type of equations.
In the view of the our experiences, we aim to extend the results obtained in [8]

to a impulsive differential equations system with a piecewise constant argument.
In this paper, we consider the following initial value problem (IVP) which consists

of a non-homogeneous linear impulsive differential system with a piecewise constant
argument

X ′ (t) = A (t) (X (t)−X (btc)) + F (t) , t 6= n ∈ Z+, t ≥ 0, (1)

∆X (n) = B (n)X (n) +D (n) , n ∈ Z+, (2)

with an initial condition
X (0) = X0, (3)

where Z+ = {1, 2, . . .} , A : [0,∞) → Rk×k is a continuous matrix function, F :
[0,∞) → Rk is a continuous vector function, B : Z+ → Rk×k is a continuous
matrix function such that det(I − B(n + 1)) 6= 0 where I is the k × k identity
matrix, D : Z+ → Rk is a continuous vector function, ∆X(n) = X(n+) −X(n−)
such that X(n+) = limt→n+ X(t) and X(n−) = limt→n− X(t), b.c denotes the
greatest integer function and X0 ∈ Rk.
Throughout this paper, the norm ‖.‖ of a vector is the sum of the absolute

values of its elements and the corresponding matrix norm is given by ‖A‖ =

max
1≤j≤k

{
k∑
i=1

|aij |} where A = (aij) is a k × k matrix.

2. Existence and Uniqueness

In this section we give a theorem which insures that the system (1)-(3) has a
unique solution, but first of all, let us give definitions for the solution and set of
piecewise right continuous functions:

Definition 1. A function X (t) defined on [0,∞) is said to be a solution of the
initial value problem (1)-(3) if it satisfies the following conditions:
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D1. X : [0,∞) → Rk is continuous with the possible exception of the points
t = n ∈ Z+,
D2. X (t) is right continuous and has left-hand limits at the points t = n ∈ Z+,
D3. X

′ (t) exists for every t ∈ [0,∞) with the possible exception of the points
t = n ∈ Z+ where one-sided derivatives exist,
D4. X (t) satisfies (1) for any t ∈ (0,∞) with the possible exception of the points

t = n ∈ Z+,
D5. X (t) satisfies (2) for every t = n ∈ Z+,
D6. X (0) = X0.

Definition 2. If ϕ : [0,∞) → Rk×k is continuous for t ∈ [0,∞) , t 6= n ∈ Z+
and right continuous at the points t = n ∈ Z+, then the set of such kind of func-
tions is called the set of piecewise right continuous functions and is denoted by
PRC

(
[0,∞) ,Rk×k

)
.

Theorem 1. The initial value problem (1)-(3) has a unique solution.

Proof. Since btc = 0 for 0 ≤ t < 1, (1) can be written as

X ′(t) = A(t)X(t)−A(t)X(0) + F (t)

or
X ′(t) = A(t)X(t)−A(t)X0 + F (t) (4)

where X0 is the initial condition given in (3). Since A(t) and F (t) are continuous
functions, non-homogeneous ordinary differential equations system (4) has a unique
solution and this solution is given by

X(t) = Φ(t)Φ−1(0)X0 +

∫ t

0

Φ(t)Φ−1(s)(−A(s)X0 + F (s)) ds (5)

where Φ(t) is the fundamental matrix of the homogeneous system

X ′(t) = A(t)X(t).

Let us denote the solution (5) as X0(t) since it is defined on the interval 0 ≤ t < 1.
On the other hand, let X1(t) be the solution of Eq.(1) on the interval [1, 2). Then
X1(t) is

X1(t) = Φ(t)Φ−1(1)X1(1) +

∫ t

1

Φ(t)Φ−1(s)(−A(s)X1(1) + F (s)) ds. (6)

Now we use the impulse condition (2) at the point t = 1:
Substituting t = 1 in (2), we get

∆X(1) = X(1+)−X(1−) = B(1)X(1) +D(1).

Since the solution of (1) is right continuous at integer points, we have

X1(1)−X0(1) = B(1)X1(1) +D(1)

X0(1) = (I −B(1))X1(1)−D(1). (7)
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Considering (5) and (6) in (7) yields us

X1(1) = (I −B(1))
−1
(

Φ(1)Φ−1(0)−
∫ 1

0

Φ(1)Φ−1(s)A(s) ds

)
X0

+ (I −B(1))
−1
(∫ 1

0

Φ(1)Φ−1(s)F (s) ds+D(1)

)
. (8)

Hence we can find X1(1) in terms of the given impulse and initial conditions. Writ-
ing (8) in (6) gives us the solution X1(t) of Eq.(1) on [1, 2).
Moreover, the solution X2(t) of Eq.(1) on the interval [2, 3) is given by

X2(t) = Φ(t)Φ−1(2)X2(2) +

∫ t

2

Φ(t)Φ−1(s)(−A(s)X2(2) + F (s)) ds

and using impulse condition at t = 2, we obtain

X1(2) = (I −B(2))X2(2)−D(2).

So again we can find X2(2) in terms of the given initial and impulse conditions.
Following this method, we find the solutionXn(t) of Eq.(1) on the interval [n, n+ 1)
as

Xn(t) = Φ(t)Φ−1(n)Xn(n) +

∫ t

n

Φ(t)Φ−1(s)(−A(s)Xn(n) + F (s)) ds. (9)

Then considering the impulse condition (2) at the point t = n + 1 yields the non-
homogeneous difference equation system

Zn+1 = M(n)Zn +N(n), n ≥ 0, (10)

where Zn = Xn(n),

M(n) = (I −B(n+ 1))
−1
(

Φ(n+ 1)Φ−1(n)−
∫ n+1

n

Φ(n+ 1)Φ−1(s)A(s) ds

)
,

(11)
and

N(n) = (I −B(n+ 1))
−1
(∫ n+1

n

Φ(n+ 1)Φ−1(s)F (s) ds+D(n+ 1)

)
. (12)

The difference system (10) with the condition Z0 = X0 has a unique solution.
Writing this unique solution in (9) gives the unique solution of (1)-(3) on the
interval [n, n+ 1) . So by taking into account btc = n, we obtain the unique solution
of (1)-(3) on the interval [0,∞). �

In the rest of the paper, assume that there is a constant L > 0 such that

‖Zn‖ ≤ L, n ≥ 0, (13)

where Zn is the solution of (10).
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Remark 1. Note that a straightforward verification shows that the solution of the
initial value problem (1)-(3) satisfies the integral equation

X (t) = X0 +

t∫
0

A (s)X (s) ds−
t∫
0

A (s)X (bsc) ds+

t∫
0

F (s) ds

+

btc∑
i=1

B (i)X (i) +

btc∑
i=1

D (i) . (14)

Proof. Taking the integral of both sides of Eq.(1) from 0 to t gives us

t∫
0

X ′ (s) ds =

t∫
0

A (s)X (s) ds−
t∫
0

A (s)X (bsc) ds+

t∫
0

F (s) ds. (15)

On the other hand, the left side of the Eq.(15) can be re-written as follows

t∫
0

X ′ (s) ds =

1−∫
0+

X ′ (s) ds+

2−∫
1+

X ′ (s) ds+

3−∫
2+

X ′ (s) ds+ . . .

t∫
n+

X ′ (s) ds

= X(1−)−X(0+) +X(2−)−X(1+) +X(3−)−X(2+)

+ . . .+X(t)−X(n+)

= X(t)−X(0+)− {
[
X(1+)−X(1−)

]
+
[
X(2+)−X(2−)

]
+ . . .+

[
X(n+)−X(n−)

]
}

= X(t)−X(0+)− {∆X(1) + ∆X(2) + . . .+ ∆X(n)}. (16)

Since X is right continuous at t = 0, Eq. (16) is written as

t∫
0

X ′ (s) ds = X(t)−X(0)−
n∑
i=1

∆X(i)

= X(t)−X(0)−
n∑
i=1

(B(i)X(i) +D(i))

= X(t)−X(0)−
btc∑
i=1

B(i)X(i)−
btc∑
i=1

D(i). (17)

Writing (17) in (15) gives us the formula (14). �

We will use this formula in the proof of our results in the next section.
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3. Main Results

In this part, it is shown that the IVP (1)-(3) tends to a constant vector as t→∞,
and then the limit value of the solution of (1)-(3) is computed when B(n) = 0.

Theorem 2. Assume that K1, K2, L1 and L2 are real positive constants such
that

(i)

∞∫
0

‖A (s)‖ ds ≤ K1 <∞, (ii)

∞∫
0

‖F (s)‖ ds ≤ K2 <∞,

(iii)

∞∏
i=1

(1 + ‖B (i)‖) ≤ L1 <∞, (iv)

∞∑
i=1

‖D (i)‖ ≤ L2 <∞.

Then, the solution of the IVP (1)-(3) tends to a constant vector as t→∞.

Proof. For the proof of Theorem 2, we need the following Samoilenko and Per-
estyuk’s well-known lemma [17] and Theorem 7.4.6 in [14]:

Lemma 1. Let a non-negative piecewise continuous function u (t) satisfy the in-
equality

u (t) ≤ c+

t∫
t0

v (s)u (s) ds+
∑

t0≤τ i<t
βiu (τ i) , t ≥ t0,

where c ≥ 0, βi ≥ 0, v (s) > 0, τ i are the first kind discontinuity points of the
function u (t) . Then the following estimate holds for the function u (t)

u (t) ≤ c
∏

t0≤τ i<t
(1 + βi) exp

 t∫
t0

v (s) ds

 , t ≥ t0.

Theorem 3. (Theorem 7.4.6 in [14]) The infinite product
∏∞
k=1(1 + ck) converges

absolutely if and only if the infinite series
∑∞
k=1 ck converges absolutely.

Now we can start the proof of Theorem 2:
Let X (t) be the solution of the IVP (1)-(3). So the integral equation (14) is

satisfied and we have

‖X (t)‖ ≤
∥∥X0

∥∥+

t∫
0

‖A (s)‖ ‖X (s)‖ ds+

t∫
0

‖A (s)‖ ‖X (bsc)‖ ds+

t∫
0

‖F (s)‖ ds

+

btc∑
i=1

‖B (i)‖ ‖X (i)‖+

btc∑
i=1

‖D (i)‖ .
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Since 0 ≤ s ≤ t, the function X (bsc) corresponds to the solution of the difference
equation (10). Hence considering (13) with the assumptions (i), (ii), (iv), we get

‖X (t) ‖ ≤ c+

t∫
0

‖A (s)‖ ‖X (s)‖ ds+

btc∑
i=1

‖B (i)‖ ‖X (i)‖ (18)

where c = ‖X0‖+ LK1 +K2 + L2. Applying Lemma 1 to (18) yields

‖X (t)‖ ≤ c
btc∏
i=0

(1 + ‖B (i)‖) exp

 t∫
0

‖A (s)‖ ds


≤ c

∞∏
i=0

(1 + ‖B (i)‖) exp

 ∞∫
0

‖A (s)‖ ds

 .

So, considering (i) and (iii) in the last inequality gives us that X (t) is bounded,
that is

‖X (t) ‖ ≤M, t ≥ 0, (19)

where M = cL1e
K1 .

On the other hand, from the integral equation (14) it can be written that

‖X (t)−X (s)‖ ≤
t∫
s

‖A (u)‖ ‖X (u)‖ du+

t∫
s

‖A (u)‖ ‖X ([u])‖ du+

t∫
s

‖F (u)‖ du

+

btc∑
i=bsc+1

‖B (i)‖ ‖X (i)‖+

btc∑
i=bsc+1

‖D (i)‖ , (20)

for 0 ≤ s ≤ t < ∞. Using the boundedness of X (n) and X (t) which are given in
(13) and (19), we obtain

‖X (t)−X (s)‖ ≤ (M + L)

∞∫
s

‖A (u)‖ du+

∞∫
s

‖F (u)‖ du

+ L

∞∑
i=bsc+1

‖B (i)‖+

∞∑
i=bsc+1

‖D (i)‖ . (21)

Here we note that condition (iii) implies
∞∑
i=1

‖B (i)‖ <∞ (22)

from Theorem 3. So considering (22) with the conditions (i), (ii), (iv) in (21), it is
easy to see that

lim
s→∞

‖X (t)−X (s)‖ = 0.
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By Cauchy convergence criterion, we get lim
t→∞

X (t) ∈ Rk. �

Now let us take B (n) = 0 in (2). In this case, the IVP (1)-(3) reduces to

X ′ (t) = A (t) (X (t)−X (btc)) + F (t) , t 6= n ∈ Z+, t ≥ 0, (23)

∆X (n) = D (n) , n ∈ Z+, (24)

X (0) = X0. (25)

Theorem 4. If
bt+1c∫
t

‖A (s)‖ ds ≤ ρ < 1, (26)

then there is a unique bounded matrix function Y ∈ PRC
(
[0,∞) ,Rk×k

)
such that

the equation

Y (t) = I +

bt+1c∫
t

Y (s)A (s) ds, t ≥ 0 (27)

holds.

Proof. Consider the space

B =

{
Y ∈ PRC

(
[0,∞) ,Rk×k

)
: ‖Y ‖B ≤ λ, λ ≥

1

1− ρ

}
where

‖Y ‖B = sup
t≥0
‖Y (t)‖ , Y ∈ B.

For Y ∈ B and t ≥ 0, let us define

TY (t) = I +

bt+1c∫
t

Y (s)A (s) ds. (28)

It can be easily seen that

TY
(
t+∗
)

= TY
(
t−∗
)

= TY (t∗) , t∗ ∈ (n, n+ 1) ,

TY
(
n+
)

= lim
t→n+

TY (t) = TY (n) , n ∈ Z+,

TY
(
n−
)

= lim
t→n−

TY (t) = I, n ∈ Z+.

So TY ∈ PRC
(
[0,∞) ,Rk×k

)
. Moreover, taking the norm of both sides of (28)

yields that

‖TY ‖B ≤ 1 + ‖Y ‖B

 bt+1c∫
t

‖A (s)‖ ds

 . (29)
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Considering (26) in (29) gives us that

‖TY ‖B ≤ 1 + ρ ‖Y ‖B ≤ λ.

Hence T maps B into itself.
On the other hand, for any Y and Z ∈ B

‖TY − TZ‖B ≤ ρ ‖Y − Z‖B .

Since ρ < 1, T : B → B is a contraction. Therefore, by the well known Banach fixed
point theorem, there is a unique piecewise right continuous and bounded solution
of Eq.(27). �

Lemma 2. If (26) is true, then the solution Y of the integral equation (27) satisfies
the equation 

Y ′(t) = −Y (t)A (t) , t 6= n, t ≥ 0,

∆Y (n) =
n+1∫
n

Y (s)A (s) ds, n ∈ Z+.
(30)

Proof. Taking the derivative of (27) for t ∈ (n, n+ 1) , n ∈ Z+, we obtain

Y ′ (t) = −Y (t)A (t) .

Moreover, we calculate ∆Y (n) as

∆Y (n) = Y
(
n+
)
− Y

(
n−
)

= I +

n+1∫
n

Y (s)A (s) ds− I

=

n+1∫
n

Y (s)A (s) ds.

So we obtain the Eq.(30). �

Now, for t ≥ 0 let us define the function

C (t) = Y (t)X (t)−
bt+1c∫
t

Y (s)A (s)X (bsc) ds (31)

where Y is the solution of Eq.(27) and X is the solution of (23)-(25).

Lemma 3. If (26) is satisfied, then

C (t) = C (0) +

t∫
0

Y (s)F (s) ds+

btc∑
i=1

D (i) . (32)
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Proof. For the proof it is enough to show that C (t) defined by (31) satisfies the
equation {

C ′ (t) = Y (t)F (t) , t 6= n, t ≥ 0,

∆C (n) = D (n) , n ∈ Z+,
(33)

because taking the integral of both sides of the (33) from 0 to t gives us (32) as in
Remark 1. Now, let us obtain (33):
For t ∈ (n, n+ 1), (31) is reduced to

C (t) = Y (t)X (t)−

 n+1∫
t

Y (s)A (s) ds

X (n) . (34)

Differentiating (34) and considering (30) and (23) yields

C ′ (t) = Y ′ (t)X (t) + Y (t)X ′ (t) + Y (t)A (t)X (n)

= −Y (t)A (t)X (t) + Y (t) {A (t) (X (t)−X (n)) + F (t)}+ Y (t)A (t)X (n)

= Y (t)F (t) .

So the first part of the Eq.(33) is obtained.
On the other hand, we need C (n+) and C (n−) to compute ∆C (n) :

C
(
n+
)

= lim
t→n+

C (t) = Y (n)X (n)−

 n+1∫
n

Y (s)A (s) ds

X (n) , (35)

C
(
n−
)

= lim
t→n−

C (t) = Y
(
n−
)
X
(
n−
)
. (36)

From (30), we have

∆Y (n) = Y (n+)− Y (n−) =

n+1∫
n

Y (s)A (s) ds.

Since Y is right continuous at the points n ∈ Z+, we get

Y
(
n−
)

= Y (n)−
n+1∫
n

Y (s)A (s) ds. (37)

Similarly, from (24)

∆X(n) = X(n+)−X(n−) = D (n)

X
(
n−
)

= X (n)−D (n) (38)
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in view of the right continuity of X at the points n ∈ Z+.
Substituting (37) and (38) in (36), gives us

C
(
n−
)

=

Y (n)−
n+1∫
n

Y (s)A (s) ds

 (X (n)−D (n)) . (39)

Considering (35) and (39) in ∆C (n) = C (n+)− C (n−) we get

∆C (n) = D (n) ,

and this is the second part of the Eq.(33). �

Theorem 5. Suppose that assumptions (i), (ii), (iv) in Theorem 2 and the condition
(26) are satisfied. Then the limit value of the solution of X (t) of IVP (23)-(25),
when t→∞, is given by the formula

lim
t→∞

X (t) = X0 +

∞∫
0

Y (s)F (s) ds+

∞∑
i=1

D (i) (40)

where Y is a solution of the Eq.(27).

Proof. Let X (t) be the solution of IVP (23)-(25). For the proof it is suffi cient to
show that

lim
t→∞

X (t) = C (0) +

∞∫
0

Y (s)F (s) ds+

∞∑
i=1

D (i) , (41)

where Y and C are given by (27) and (31), respectively.
From (32), we have for

X (t)− C (0)−
∞∫
0

Y (s)F (s) ds−
∞∑
i=1

D (i)

= X (t)−

C (0) +

t∫
0

Y (s)F (s) ds+

btc∑
i=1

D (i)

− ∞∫
t

Y (s)F (s) ds−
∞∑

i=btc+1

D (i)

= X (t)− C (t)−
∞∫
t

Y (s)F (s) ds−
∞∑

i=btc+1

D (i) .

(42)
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Considering (31) in (42), we have

X (t)− C (0)−
∞∫
0

Y (s)F (s) ds−
∞∑
i=1

D (i)

= X (t)−Y (t)X (t)+

[t+1]∫
t

Y (s)A (s)X (bsc) ds−
∞∫
t

Y (s)F (s) ds−
∞∑

i=btc+1

D (i) .

(43)

On the other hand, multiplying (27) by X (t) yields

X (t) = Y (t)X (t)−
[t+1]∫
t

Y (s)A (s)X (t) ds. (44)

Substituting (44) into (43), we obtain

X (t)− C (0)−
∞∫
0

Y (s)F (s) ds−
∞∑
i=1

D (i)

=

bt+1c∫
t

Y (s)A (s) (X (bsc)−X (t)) ds−
∞∫
t

Y (s)F (s) ds−
∞∑

i=btc+1

D (i) . (45)

From (45), it is found that

‖X (t)− C (0)−
∞∫
0

Y (s)F (s) ds−
∞∑
i=1

D (i) ‖

≤ ‖Y ‖B (L+M)

bt+1c∫
t

‖A (s) ‖ds+ ‖Y ‖B
∞∫
t

‖F (s) ‖ds+

∞∑
i=btc+1

‖D (i) ‖.

Here (13), (19) and the boundedness of Y (t) is used. Thus we conclude that (41)
is true for t→∞. Taking into account (31), it can be easily verified that the limit
relation (41) is reduced to (40). �

Now let us give an example to illustrate our results.

Example 1. Consider the following IVP:
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X ′ (t) =

( 1
(1+2t)2

0

0 0

)
(X (t)−X (btc)) +

(
0
1

(1+2t)2

)
, t 6= n, (46)

∆X (n) =

(
1
2n

0

)
, n ∈ Z+, (47)

X (0) =

(
1
1

)
. (48)

First we show that the solutions of the corresponding difference equation of (46)-

(48) are bounded. Φ (t) =

(
e

−1
2(1+2t) 0

0 1

)
is the fundamental matrix of the homoge-

neous system X ′ (t) =
(

1
(1+2t)2

0

0 0

)
X (t) . Considering this fundamental matrix in

the formulas (11) and (12), we find

M (n) =

(
1 0
0 1

)
, N (n) =

( 1
2n+1
1

(3+2n)(1+2n) ,

)
respectively. Thus the corresponding difference system is found as

Zn+1 =

(
1 0
0 1

)
Zn +

( 1
2n+1
1

(3+2n)(1+2n)

)
, n ≥ 0. (49)

The solution of the system (49) with the initial condition (48) is given as

Z(n) =

 1 +
n−1∑
r=0

1
2r+1

1 +
n−1∑
r=0

1
(3+2r)(1+2r)


and it is clear that this solution is bounded.
Now let us verify the hypotheses of Theorem 5:
By considering the convenient matrix and vector norms, we have

(i)

∞∫
0

‖A (s)‖ ds =

∞∫
0

1

(1 + 2s)
2 ds =

1

2
<∞,

(ii)

∞∫
0

‖F (s)‖ ds =

∞∫
0

1

(1 + 2s)
2 ds =

1

2
<∞,

(iv)

∞∑
i=1

‖D (i)‖ =

∞∑
i=1

1

2i
= 1 <∞.
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On the other hand, for n ≤ t < n+ 1 the condition (26) can be written as

bt+1c∫
t

‖A (s)‖ ds ≤
n+1∫
n

‖A (s)‖ ds =

n+1∫
n

1

(1 + 2s)
2 ds =

1

(1 + 2n)(3 + 2n)
< 1.

So, all hypotheses of Theorem 5 are satisfied. Hence the limit of X (t) of (46)-(48)
is computed as

lim
t→∞

X (t) =

(
1
1

)
+

∞∫
0

Y (s)

(
0
1

(1+2s)2

)
ds+

∞∑
i=1

(
1
2i

0

)
or

lim
t→∞

X (t) =

(
2
1

)
+

∞∫
0

Y (s)

(
0
1

(1+2s)2

)
ds

where Y (t) is the solution of

Y (t) = I +

bt+1c∫
t

Y (s)

( 1
(1+2s)2

0

0 0

)
ds.
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β (t) [y (t− δ)− y (t− τ)] in the critical case, J. Math. Anal. Appl.,331(2) (2007), 1361-1370.
[13] I. Györi, F. Karakoc and H. Bereketoglu, Convergence of solutions of a linear impulsive

differential equations system with many delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A
Math. Anal., 18(2) (2011), 191-202.

[14] L. S. Hahn and B. Epstein. Classical complex analysis. Royal Society of Chemistry, (1996).
[15] F. Karakoc and H. Bereketoglu, Some results for linear impulsive delay differential equations,

Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 16 (3) (2009), 313-326.
[16] G. S. Oztepe and H. Bereketoglu, Convergence in an impulsive advanced differential equations

with piecewise constant argument, Bull. Math. Anal. Appl., 4 (2012), 57-70.
[17] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations. World Scientific,

(1995).

Current address : Gizem. S. OZTEPE :Ankara University, Faculty of Sciences, Dept. of
Mathematics, Ankara, TURKEY

E-mail address : gseyhan@ankara.edu.tr


