CONVEXITY PROPERTIES AND INEQUALITIES CONCERNING THE (p, k)-GAMMA FUNCTION

KWARA NANTOMAH

Abstract

In this paper, some convexity properties and some inequalities for the (p, k)-analogue of the Gamma function, $\Gamma_{p, k}(x)$ are given. In particular, a (p, k)-analogue of the celebrated Bohr-Mollerup theorem is given. Furthermore, a (p, k)-analogue of the Riemann zeta function, $\zeta_{p, k}(x)$ is introduced and some associated inequalities are derived. The established results provide the (p, k)-generalizations of some known results concerning the classical Gamma function.

1. Introduction

In a recent paper [10], the authors introduced a (p, k)-analogue of the Gamma function defined for $p \in \mathbb{N}, k>0$ and $x \in \mathbb{R}^{+}$as

$$
\begin{align*}
\Gamma_{p, k}(x) & =\int_{0}^{p} t^{x-1}\left(1-\frac{t^{k}}{p k}\right)^{p} d t \tag{1.1}\\
& =\frac{(p+1)!k^{p+1}(p k)^{\frac{x}{k}-1}}{x(x+k)(x+2 k) \ldots(x+p k)} \tag{1.2}
\end{align*}
$$

satisfying the basic properties

$$
\begin{align*}
\Gamma_{p, k}(x+k) & =\frac{p k x}{x+p k+k} \Gamma_{p, k}(x), \tag{1.3}\\
\Gamma_{p, k}(a k) & =\frac{p+1}{p} k^{a-1} \Gamma_{p}(a), \quad a \in \mathbb{R}^{+} \\
\Gamma_{p, k}(k) & =1
\end{align*}
$$

[^0]The (p, k)-analogue of the Digamma function is defined for $x>0$ as

$$
\begin{align*}
\psi_{p, k}(x)=\frac{d}{d x} \ln \Gamma_{p, k}(x) & =\frac{1}{k} \ln (p k)-\sum_{n=0}^{p} \frac{1}{n k+x} \tag{1.4}\\
& =\frac{1}{k} \ln (p k)-\int_{0}^{\infty} \frac{1-e^{-k(p+1) t}}{1-e^{-k t}} e^{-x t} d t
\end{align*}
$$

Also, the (p, k)-analogue of the Polygamma functions are defined as

$$
\begin{align*}
\psi_{p, k}^{(m)}(x)=\frac{d^{m}}{d x^{m}} \psi_{p, k}(x) & =\sum_{n=0}^{p} \frac{(-1)^{m+1} m!}{(n k+x)^{m+1}} \tag{1.5}\\
& =(-1)^{m+1} \int_{0}^{\infty}\left(\frac{1-e^{-k(p+1) t}}{1-e^{-k t}}\right) t^{m} e^{-x t} d t
\end{align*}
$$

where $m \in \mathbb{N}$, and $\psi_{p, k}^{(0)}(x) \equiv \psi_{p, k}(x)$.
The functions $\Gamma_{p, k}(x)$ and $\psi_{p, k}(x)$ satisfy the following commutative diagrams.

The (p, k)-analogue of the classical Beta function is defined as

$$
\begin{equation*}
B_{p, k}(x, y)=\frac{\Gamma_{p, k}(x) \Gamma_{p, k}(y)}{\Gamma_{p, k}(x+y)}, \quad x>0, y>0 \tag{1.6}
\end{equation*}
$$

The purpose of this paper is to establish some convexity properties and some inequalities involving the function, $\Gamma_{p, k}(x)$. In doing so, a (p, k)-analogue of the Bohr-Mollerup theorem is proved. Also, a (p, k)-analogue of the Riemann zeta function, $\zeta_{p, k}(x)$ is introduced and some associated inequalities relating $\Gamma_{p, k}(x)$ and $\zeta_{p, k}(x)$ are derived. We present our findings in the following sections.

2. Convexity Properties Involving the (p, k)-Gamma function

Let us begin by recalling the following basic definitions and concepts.
Definition 1. A function $f:(a, b) \rightarrow \mathbb{R}$ is said to be convex if

$$
\begin{equation*}
f(\alpha x+\beta y) \leq \alpha f(x)+\beta f(y) \tag{2.1}
\end{equation*}
$$

for all $x, y \in(a, b)$, where $\alpha, \beta>0$ such that $\alpha+\beta=1$.
Lemma 1. Let $f:(a, b) \rightarrow \mathbb{R}$ be a twice differentiable function. Then f is said to be convex if and only if $f^{\prime \prime}(x) \geq 0$ for every $x \in(a, b)$.

Remark 1. A function f is said to be concave if $-f$ is convex, or equivalently, if the inequality (2.1) is reversed.

Definition 2. A function $f:(a, b) \rightarrow \mathbb{R}^{+}$is said to be logarithmically convex if the inequality

$$
\log f(\alpha x+\beta y) \leq \alpha \log f(x)+\beta \log f(y)
$$

or equivalently

$$
f(\alpha x+\beta y) \leq(f(x))^{\alpha}(f(y))^{\beta}
$$

holds for all $x, y \in(a, b)$ and $\alpha, \beta>0$ such that $\alpha+\beta=1$.
Theorem 1. The function, $\Gamma_{p, k}(x)$ is logarithmically convex.
Proof. Let $x, y>0$ and $\alpha, \beta>0$ such that $\alpha+\beta=1$. Then, by the integral representation (1.1) and by the Hölder's inequality for integrals, we obtain

$$
\begin{aligned}
\Gamma_{p, k}(\alpha x+\beta y) & =\int_{0}^{p} t^{\alpha x+\beta y-1}\left(1-\frac{t^{k}}{p k}\right)^{p} d t \\
& =\int_{0}^{p} t^{\alpha(x-1)} t^{\beta(y-1)}\left(1-\frac{t^{k}}{p k}\right)^{p(\alpha+\beta)} d t \\
& =\int_{0}^{p} t^{\alpha(x-1)}\left(1-\frac{t^{k}}{p k}\right)^{\alpha p} t^{\beta(y-1)}\left(1-\frac{t^{k}}{p k}\right)^{\beta p} d t \\
& \leq\left(\int_{0}^{p} t^{x-1}\left(1-\frac{t^{k}}{p k}\right)^{p} d t\right)^{\alpha}\left(\int_{0}^{p} t^{y-1}\left(1-\frac{t^{k}}{p k}\right)^{p} d t\right)^{\beta} \\
& =\left(\Gamma_{p, k}(x)\right)^{\alpha}\left(\Gamma_{p, k}(y)\right)^{\beta}
\end{aligned}
$$

as required.
Remark 2. Since every logarithmically convex function is also convex [13, p. 66], it follows that the function $\Gamma_{p, k}(x)$ is convex.

Remark 3. Theorem 1 was proved in [10] by using a different procedure. In the present work, we provide a much simpler alternative proof by using the Hölder's inequality for integrals.

The next theorem is the (p, k)-analogue of the celebrated Bohr-Mollerup theorem.
Theorem 2. Let $f(x)$ be a positive function on $(0, \infty)$. Suppose that
(a) $f(k)=1$,
(b) $f(x+k)=\frac{p k x}{x+p k+k} f(x)$,
(c) $\ln f(x)$ is convex.

Then, $f(x)=\Gamma_{p, k}(x)$.

Proof. Define ϕ by $e^{\phi(x)}=\frac{f(x)}{\Gamma_{p, k}(x)}$ for $x>0, p \in \mathbb{N}$ and $k>0$. Then by (a) we obtain

$$
e^{\phi(k)}=\frac{f(k)}{\Gamma_{p, k}(k)}=1
$$

implying that $\phi(k)=0$. Also by (b), we obtain

$$
e^{\phi(x+k)}=\frac{f(x+k)}{\Gamma_{p, k}(x+k)}=\frac{f(x)}{\Gamma_{p, k}(x)}=e^{\phi(x)}
$$

which implies $\phi(x+k)=\phi(x)$. Thus $\phi(x)$ is periodic with period k.
Next we want to show that $\phi(x)=\ln f(x)-\ln \Gamma_{p, k}(x)$ is a constant. That is

$$
\phi^{\prime}(x)=0 \quad \Leftrightarrow \quad \lim _{h \rightarrow 0} \frac{\phi(x+h)-\phi(x)}{h}=0 .
$$

By (c) and Theorem 1, the functions $\ln f(x)$ and $\ln \Gamma_{p, k}(x)$ are convex. This implies $\ln f(x)$ and $\ln \Gamma_{p, k}(x)$ are continuous. Then for $\varepsilon>0$, there exist $\delta_{1}, \delta_{2}>0$ such that

$$
|\ln f(x+h)-\ln f(x)|<\frac{|h| \varepsilon}{2} \quad \text { whenever } \quad|h|<\delta_{1}
$$

and

$$
\left|\ln \Gamma_{p, k}(x+h)-\ln \Gamma_{p, k}(x)\right|<\frac{|h| \varepsilon}{2} \quad \text { whenever } \quad|h|<\delta_{2}
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then for $|h|<\delta$, we have

$$
\begin{aligned}
\left|\frac{\phi(x+h)-\phi(x)}{h}\right| & =\left|\frac{\ln f(x+h)-\ln \Gamma_{p, k}(x+h)-\ln f(x)+\ln \Gamma_{p, k}(x)}{h}\right| \\
& \leq\left|\frac{\ln f(x+h)-\ln f(x)}{h}\right|+\left|\frac{\ln \Gamma_{p, k}(x+h)-\ln \Gamma_{p, k}(x)}{h}\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

proving that $\phi^{\prime}(x)=0$. Since $\phi(x)$ is a constant and $\phi(k)=0$, then $\phi(x)=0$ for every x. Hence $e^{0}=\frac{f(x)}{\Gamma_{p, k}(x)}$. Therefore $f(x)=\Gamma_{p, k}(x)$.

Theorem 3. The function, $B_{p, k}(x, y)$ as defined by (1.6) is logarithmically convex on $(0, \infty) \times(0, \infty)$.

Proof. For $x, y>0$, let $B_{p, k}(x, y)$ be defined as in (1.6). Then

$$
\ln B_{p, k}(x, y)=\ln \Gamma_{p, k}(x)+\ln \Gamma_{p, k}(y)-\ln \Gamma_{p, k}(x+y)
$$

Without loss of generality, let y be fixed. Then,

$$
\left(\ln B_{p, k}(x, y)\right)^{\prime \prime}=\psi_{p, k}^{\prime}(x)-\psi_{p, k}^{\prime}(x+y)>0
$$

since $\psi_{p, k}^{\prime}(x)$ is decreasing for $x>0$. This completes the proof.
Remark 4. Theorem 3 is a (p, k)-analogue of Theorem 6 of [1].

Corollary 1. Let $p \in \mathbb{N}$ and $k>0$. Then the inequality

$$
\begin{equation*}
\psi_{p, k}^{\prime}(x) \psi_{p, k}^{\prime}(y) \geq\left[\psi_{p, k}^{\prime}(x)+\psi_{p, k}^{\prime}(y)\right] \psi_{p, k}^{\prime}(x+y) \tag{2.2}
\end{equation*}
$$

is valid for $x, y>0$.
Proof. This follows from the logarithmic convexity of $B_{p, k}(x, y)$. Let

$$
\phi(x, y)=\ln B_{p, k}(x, y)=\ln \Gamma_{p, k}(x)+\ln \Gamma_{p, k}(y)-\ln \Gamma_{p, k}(x+y) .
$$

Since $\phi(x, y)$ is convex on $(0, \infty) \times(0, \infty)$, then its discriminant, Δ is positive semidefinite. That is,

$$
\frac{\partial^{2} \phi}{\partial x^{2}}>0, \quad \Delta=\frac{\partial^{2} \phi}{\partial x^{2}} \cdot \frac{\partial^{2} \phi}{\partial y^{2}}-\left(\frac{\partial^{2} \phi}{\partial x \partial y}\right)\left(\frac{\partial^{2} \phi}{\partial y \partial x}\right) \geq 0
$$

implying that

$$
\left[\psi_{p, k}^{\prime}(x)-\psi_{p, k}^{\prime}(x+y)\right]\left[\psi_{p, k}^{\prime}(y)-\psi_{p, k}^{\prime}(x+y)\right]-\left[\psi_{p, k}^{\prime}(x+y)\right]^{2} \geq 0
$$

Thus,

$$
\psi_{p, k}^{\prime}(x) \psi_{p, k}^{\prime}(y)-\left[\psi_{p, k}^{\prime}(x)+\psi_{p, k}^{\prime}(y)\right] \psi_{p, k}^{\prime}(x+y) \geq 0
$$

which completes the proof.
Theorem 4. Let $x, y>0$ and $\alpha, \beta>0$ such that $\alpha+\beta=1$. Then

$$
\begin{equation*}
\psi_{p, k}(\alpha x+\beta y) \geq \alpha \psi_{p, k}(x)+\beta \psi_{p, k}(y) \tag{2.3}
\end{equation*}
$$

Proof. It suffices to show that $-\psi_{p, k}(x)$ is convex on $(0, \infty)$. By (1.5) we obtain

$$
-\psi_{p, k}^{\prime \prime}(x)=\sum_{n=0}^{p} \frac{2}{(n k+x)^{3}}>0
$$

Then (2.3) follows from Definition 1.
Theorem 5. Let $p \in \mathbb{N}, k>0$ and $a>0$. Then the function $Q(x)=a^{x} \Gamma_{p, k}(x)$ is convex on $(0, \infty)$.
Proof. Recall that $\Gamma_{p, k}(x)$ is logarithmically convex. Thus,

$$
\Gamma_{p, k}(\alpha x+\beta y) \leq\left(\Gamma_{p, k}(x)\right)^{\alpha}\left(\Gamma_{p, k}(y)\right)^{\beta}
$$

for $x, y>0$ and $\alpha, \beta>0$ such that $\alpha+\beta=1$. Then,

$$
\begin{equation*}
Q(\alpha x+\beta y)=a^{\alpha x+\beta y} \Gamma_{p, k}(\alpha x+\beta y) \leq a^{\alpha x+\beta y}\left(\Gamma_{p, k}(x)\right)^{\alpha}\left(\Gamma_{p, k}(y)\right)^{\beta} . \tag{2.4}
\end{equation*}
$$

Also recall from the Young's inequality that

$$
\begin{equation*}
u^{\alpha} v^{\beta} \leq \alpha u+\beta v \tag{2.5}
\end{equation*}
$$

for $u, v>0$ and $\alpha, \beta>0$ such that $\alpha+\beta=1$. Let $u=a^{x} \Gamma_{p, k}(x)$ and $v=a^{y} \Gamma_{p, k}(y)$. Then (2.5) becomes

$$
\begin{equation*}
a^{\alpha x+\beta y}\left(\Gamma_{p, k}(x)\right)^{\alpha}\left(\Gamma_{p, k}(y)\right)^{\beta} \leq \alpha a^{x} \Gamma_{p, k}(x)+\beta a^{y} \Gamma_{p, k}(y)=\alpha Q(x)+\beta Q(y) \tag{2.6}
\end{equation*}
$$

Combining (2.4) and (2.6) yields $Q(\alpha x+\beta y) \leq \alpha Q(x)+\beta Q(y)$ which concludes the proof.

Theorem 6. Let $p \in \mathbb{N}$ and $k>0$. Then the functions $A(x)=x \psi_{p, k}(x)$ is strictly convex on $(0, \infty)$.
Proof. Direct computations yield

$$
A^{\prime \prime}(x)=2 \psi_{p, k}^{\prime}(x)-x \psi_{p, k}^{\prime \prime}(x)
$$

which by (1.5) implies

$$
A^{\prime \prime}(x)=2 \sum_{n=0}^{p} \frac{1}{(n k+x)^{2}}-2 \sum_{n=0}^{p} \frac{x}{(n k+x)^{3}}=2 \sum_{n=0}^{p} \frac{n k}{(n k+x)^{3}}>0
$$

Thus, $A(x)$ is convex.
Remark 5. Corollary 1 and Theorems 4, 5 and 6 provide generalizations for some results proved in [14] and [6].

Definition 3 ([12],[15]). Let $f: I \subseteq(0, \infty) \rightarrow(0, \infty)$ be a continuous function. Then f is said to be geometrically (or multiplicatively) convex on I if any of the following conditions is satisfied.

$$
\begin{equation*}
f\left(\sqrt{x_{1} x_{2}}\right) \leq \sqrt{f\left(x_{1}\right) f\left(x_{2}\right)} \tag{2.7}
\end{equation*}
$$

or more generally

$$
\begin{equation*}
f\left(\prod_{i=1}^{n} x_{i}^{\lambda_{i}}\right) \leq \prod_{i=1}^{n}\left[f\left(x_{i}\right)\right]^{\lambda_{i}}, \quad n \geq 2 \tag{2.8}
\end{equation*}
$$

where $x_{1}, x_{2}, \ldots, x_{n} \in I$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}>0$ with $\sum_{i=1}^{n} \lambda_{i}=1$. If inequalities (2.7) and (2.8) are reversed, then f is said to be geometrically (or multiplicatively) concave on I.

Lemma $2([12])$. Let $f: I \subseteq(0, \infty) \rightarrow(0, \infty)$ be a differentiable function. Then f is a geometrically convex function if and only if the function $\frac{x f^{\prime}(x)}{f(x)}$ is nondecreasing.
Lemma 3 ([12]). Let $f: I \subseteq(0, \infty) \rightarrow(0, \infty)$ be a differentiable function. Then f is a geometrically convex function if and only if the function $\frac{f(x)}{f(y)} \geq\left(\frac{x}{y}\right)^{\frac{y f^{\prime}(y)}{f(y)}}$ holds for any $x, y \in I$.

Theorem 7. Let $f(x)=e^{x} \Gamma_{p, k}(x)$ for $p \in \mathbb{N}$ and $k \geq 1$. Then f is geometrically convex and the inequality

$$
\begin{equation*}
\frac{e^{y}}{e^{x}}\left(\frac{x}{y}\right)^{y\left[1+\psi_{p, k}(y)\right]} \leq \frac{\Gamma_{p, k}(x)}{\Gamma_{p, k}(y)} \leq \frac{e^{y}}{e^{x}}\left(\frac{x}{y}\right)^{x\left[1+\psi_{p, k}(x)\right]} \tag{2.9}
\end{equation*}
$$

is valid for $x>0$ and $y>0$..
Proof. We proceed as follows.

$$
\ln f(x)=x+\ln \Gamma_{p, k}(x) \quad \text { implying } \quad \frac{f^{\prime}(x)}{f(x)}=1+\psi_{p, k}(x)
$$

Then,

$$
\begin{aligned}
\left(\frac{x f^{\prime}(x)}{f(x)}\right)^{\prime} & =1+\psi_{p, k}(x)+x \psi_{p, k}^{\prime}(x) \\
& =1+\frac{1}{k} \ln (p k)-\sum_{n=0}^{p} \frac{1}{n k+x}+\sum_{n=0}^{p} \frac{x}{(n k+x)^{2}} \\
& =1+\frac{1}{k} \ln (p k)+\sum_{n=1}^{p}\left[\frac{x}{(n k+x)^{2}}-\frac{1}{n k+x}\right] \\
& =1+\frac{1}{k} \ln (p k)-\sum_{n=1}^{p} \frac{n k}{(n k+x)^{2}} \\
& \triangleq h(x) .
\end{aligned}
$$

Then $h^{\prime}(x)=2 \sum_{n=0}^{p} \frac{n k}{(n k+x)^{3}}>0$ implying that h is increasing. Moreover,

$$
\begin{aligned}
h(0) & =1+\frac{1}{k} \ln (p k)-\sum_{n=1}^{p} \frac{1}{n k} \\
& =1+\frac{1}{k} \ln k+\frac{1}{k}\left(\ln p-\sum_{n=1}^{p} \frac{1}{n}\right) \\
& >1+\frac{1}{k} \ln k-\frac{1}{k}>0
\end{aligned}
$$

since $\ln p-\sum_{n=1}^{p} \frac{1}{n}>-1$ (See eqn. (6) of [2]). Then for $x>0$, we have $h(x)>$ $h(0)>0$. Thus $\frac{x f^{\prime}(x)}{f(x)}$ is nondecreasing. Therefore, by Lemmas 2 and $3, f$ is geometrically convex and as a result, $\frac{f(x)}{f(y)} \geq\left(\frac{x}{y}\right)^{\frac{y f^{\prime}(y)}{f(y)}}$. Consequently, we obtain

$$
\begin{equation*}
\frac{e^{x} \Gamma_{p, k}(x)}{e^{y} \Gamma_{p, k}(y)} \geq\left(\frac{x}{y}\right)^{y\left[1+\psi_{p, k}(y)\right]} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{e^{y} \Gamma_{p, k}(y)}{e^{x} \Gamma_{p, k}(x)} \geq\left(\frac{y}{x}\right)^{x\left[1+\psi_{p, k}(x)\right]} \tag{2.11}
\end{equation*}
$$

Now combining (2.10) and (2.11) yields the result (2.9) as required.
Remark 6. In particular, by replacing x and y respectively by $x+k$ and $x+\frac{k}{2}$, inequality (2.9) takes the form:

$$
\begin{equation*}
\frac{1}{\sqrt{e^{k}}}\left(\frac{x+k}{x+\frac{k}{2}}\right)^{\left(x+\frac{k}{2}\right)\left[1+\psi_{p, k}\left(x+\frac{k}{2}\right)\right]} \leq \frac{\Gamma_{p, k}(x+k)}{\Gamma_{p, k}\left(x+\frac{k}{2}\right)} \leq \frac{1}{\sqrt{e^{k}}}\left(\frac{x+k}{x+\frac{k}{2}}\right)^{(x+k)\left[1+\psi_{p, k}(x+k)\right]} \tag{2.12}
\end{equation*}
$$

Remark 7. Theorem 7 gives a (p, k)-analogue of the previous results: $[3$, Theorem 1], [15, Theorem 1.2, Corollary 1.5] and [6, Theorem 3.5]. In particular, by letting $k=1$, we recover the result of [6].
Remark 8. Results of type (2.9) and (2.12) can also be found in [9].

3. Inequalities involving the (p, k)-Riemann zeta function

Definition 4. For $p \in \mathbb{N}, k>0$ and $x>0$, let $\zeta_{p, k}(x)$ be the (p, k)-analogue of the Riemann zeta function, $\zeta(x)$. Then $\zeta_{p, k}(x)$ is defined as

$$
\begin{equation*}
\zeta_{p, k}(x)=\frac{1}{\Gamma_{p, k}(x)} \int_{0}^{p} \frac{t^{x-k}}{\left(1+\frac{t^{k}}{p k}\right)^{p}-1} d t, \quad x>k \tag{3.1}
\end{equation*}
$$

The functions $\zeta_{p, k}(x)$ satisfies the commutative diagram:

where $\zeta_{p}(x)$ and $\zeta_{k}(x)$ respectively denote the p and k analogues of the Riemann zeta function. See [5] and [4] for instance.
Lemma 4 ([7]). Let f and g be two nonnegative functions of a real variable, and m, n be real numbers such that the integrals in (3.2) exist. Then

$$
\begin{equation*}
\int_{a}^{b} g(t)(f(t))^{m} d t \cdot \int_{a}^{b} g(t)(f(t))^{n} d t \geq\left(\int_{a}^{b} g(t)(f(t))^{\frac{m+n}{2}} d t\right)^{2} \tag{3.2}
\end{equation*}
$$

Theorem 8. Let $p \in \mathbb{N}, k>0$ and $x>0$. Then the inequality

$$
\begin{equation*}
\frac{x+p k+k}{x+p k+2 k} \cdot \frac{\zeta_{p, k}(x)}{\zeta_{p, k}(x+k)} \geq \frac{x}{x+k} \cdot \frac{\zeta_{p, k}(x+k)}{\zeta_{p, k}(x+2 k)}, \quad x>k \tag{3.3}
\end{equation*}
$$

holds.
Proof. Let $g(t)=\frac{1}{\left(1+\frac{t^{k}}{p k}\right)^{p}-1}, f(t)=t, m=x-k, n=x+k, a=0$ and $b=p$. Then (3.2) implies

$$
\int_{0}^{p} \frac{t^{x-k}}{\left(1+\frac{t^{k}}{p k}\right)^{p}-1} d t \cdot \int_{0}^{p} \frac{t^{x+k}}{\left(1+\frac{t^{k}}{p k}\right)^{p}-1} d t \geq\left(\int_{0}^{p} \frac{t^{x}}{\left(1+\frac{t^{k}}{p k}\right)^{p}-1} d t\right)^{2}
$$

which by relation (3.1) gives

$$
\begin{equation*}
\zeta_{p, k}(x) \Gamma_{p, k}(x) \cdot \zeta_{p, k}(x+2 k) \Gamma_{p, k}(x+2 k) \geq\left(\zeta_{p, k}(x+k) \Gamma_{p, k}(x+k)\right)^{2} \tag{3.4}
\end{equation*}
$$

Then by the functional equation (1.3), inequality (3.4) can be rearranged to obtain the desired result (3.3).

Remark 9.

(i) By letting $p \rightarrow \infty$ in (3.3), we obtain the result of Theorem 3.1 of [4].
(ii) By setting $k=1$ in (3.3), we obtain the result of Theorem 6 of [5].
(iii) By letting $p \rightarrow \infty$ and $k=1$ in (3.3), we obtain the result of Theorem 2.2 of [7].
Theorem 9. Let $p \in \mathbb{N}$ and $k>0$. Then for $x>k, y>k, \frac{1}{\alpha}+\frac{1}{\beta}=1$ such that $\frac{x}{\alpha}+\frac{y}{\beta}>k$, the inequality

$$
\begin{equation*}
\frac{\Gamma_{p, k}\left(\frac{x}{\alpha}+\frac{y}{\beta}\right)}{\left(\Gamma_{p, k}(x)\right)^{\frac{1}{\alpha}}\left(\Gamma_{p, k}(y)\right)^{\frac{1}{\beta}}} \leq \frac{\left(\zeta_{p, k}(x)\right)^{\frac{1}{\alpha}}\left(\zeta_{p, k}(y)\right)^{\frac{1}{\beta}}}{\zeta_{p, k}\left(\frac{x}{\alpha}+\frac{y}{\beta}\right)} \tag{3.5}
\end{equation*}
$$

holds.
Proof. We employ the Hölder's inequality:

$$
\begin{equation*}
\int_{a}^{b} f(t) g(t) d t \leq\left(\int_{a}^{b}(f(t))^{\alpha} d t\right)^{\frac{1}{\alpha}}\left(\int_{a}^{b}(g(t))^{\beta} d t\right)^{\frac{1}{\beta}} \tag{3.6}
\end{equation*}
$$

where $\alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1$. Let $f(t)=\frac{t^{\frac{x-k}{\alpha}}}{\left(\left(1+\frac{t^{k}}{p k}\right)^{p}-1\right)^{\frac{1}{\alpha}}}, g(t)=\frac{t^{\frac{y-k}{\beta}}}{\left(\left(1+\frac{t^{k}}{p k}\right)^{p}-1\right)^{\frac{1}{\beta}}}, a=0$ and $b=p$. Then (3.6) implies

$$
\int_{0}^{p} \frac{t^{\frac{x}{\alpha}+\frac{y}{\beta}-k}}{\left(1+\frac{t^{k}}{p k}\right)^{p}-1} d t \leq\left(\int_{0}^{p} \frac{t^{x-k}}{\left(1+\frac{t^{k}}{p k}\right)^{p}-1} d t\right)^{\frac{1}{\alpha}}\left(\int_{0}^{p} \frac{t^{y-k}}{\left(1+\frac{t^{k}}{p k}\right)^{p}-1} d t\right)^{\frac{1}{\beta}}
$$

By relation (3.1) we obtain

$$
\Gamma_{p, k}\left(\frac{x}{\alpha}+\frac{y}{\beta}\right) \zeta_{p, k}\left(\frac{x}{\alpha}+\frac{y}{\beta}\right) \leq\left(\Gamma_{p, k}(x) \zeta_{p, k}(x)\right)^{\frac{1}{\alpha}}\left(\Gamma_{p, k}(y) \zeta_{p, k}(y)\right)^{\frac{1}{\beta}}
$$

which when rearranged gives (3.5) as required.

Remark 10.

(1)
(i) By letting $p \rightarrow \infty$ in (3.5), we obtain the result of Theorem 3.3 of [4].
(ii) By letting $p \rightarrow \infty$ and $k=1$ in (3.5), we obtain the result of Theorem 7 of [5].
(iii) In particular, let $k=1$ in (3.5). Then by replacing x and y respectively by $x-1$ and $y+1$, we obtain

$$
\frac{\Gamma_{p}\left(\frac{x-1}{\alpha}+\frac{y+1}{\beta}\right)}{\left(\Gamma_{p}(x-1)\right)^{\frac{1}{\alpha}}\left(\Gamma_{p}(y+1)\right)^{\frac{1}{\beta}}} \leq \frac{\left(\zeta_{p}(x-1)\right)^{\frac{1}{\alpha}}\left(\zeta_{p}(y+1)\right)^{\frac{1}{\beta}}}{\zeta_{p}\left(\frac{x-1}{\alpha}+\frac{y+1}{\beta}\right)}
$$

which corresponds to Theorem 2.7 of [8].
Lemma 5 ([11]). Let $f:(0, \infty) \rightarrow(0, \infty)$ be a differentiable, logarithmically convex function. Then the function

$$
g(x)=\frac{(f(x))^{\alpha}}{f(\alpha x)}, \quad \alpha \geq 1
$$

is decreasing on its domain.
Lemma 6. Let $p \in \mathbb{N}, k>0$ and $\alpha \geq 1$. Then the inequality

$$
\begin{equation*}
\frac{\left[\Gamma_{p, k}(y+k)\right]^{\alpha}}{\Gamma_{p, k}(\alpha y+k)} \leq \frac{\left[\Gamma_{p, k}(x+k)\right]^{\alpha}}{\Gamma_{p, k}(\alpha x+k)} \leq 1 \tag{3.7}
\end{equation*}
$$

holds for $0 \leq x \leq y$.
Proof. Note that the function $f(x)=\Gamma_{p, k}(x+k)$ is differentiable and logarithmically convex. Then by Lemma $5, G(x)=\frac{\left[\Gamma_{p, k}(x+k)\right]^{\alpha}}{\Gamma_{p, k}(\alpha x+k)}$ is decreasing and for $0 \leq x \leq y$, we have $G(y) \leq G(x) \leq G(0)$ yielding the result.

Theorem 10. Let $p \in \mathbb{N}, k>0$ and $\alpha \geq 1$. Then the inequality

$$
\begin{equation*}
\frac{\left[\Gamma_{p, k}(y+k) \zeta_{p, k}(y+k)\right]^{\alpha}}{\Gamma_{p, k}(\alpha y+k) \zeta_{p, k}(\alpha y+k)} \leq \frac{\left[\zeta_{p, k}(x+k)\right]^{\alpha}}{\zeta_{p, k}(\alpha x+k)} \tag{3.8}
\end{equation*}
$$

is satisfied for $0<x \leq y$.
Proof. Let H be defined $x>0$ by

$$
\begin{equation*}
H(x)=\Gamma_{p, k}(x+k) \zeta_{p, k}(x+k)=\int_{0}^{p} \frac{t^{x}}{\left(1+\frac{t^{k}}{p k}\right)^{p}-1} d t \tag{3.9}
\end{equation*}
$$

Then for $x, y>0$ and $a, b>0$ such that $a+b=1$, we have

$$
\begin{aligned}
H(a x+b y) & =\int_{0}^{p} \frac{t^{a x+b y}}{\left(1+\frac{t^{k}}{p k}\right)^{p}-1} d t \\
& =\int_{0}^{p} \frac{t^{a x}}{\left(\left(1+\frac{t^{k}}{p k}\right)^{p}-1\right)^{a}} \cdot \frac{t^{b y}}{\left(\left(1+\frac{t^{k}}{p k}\right)^{p}-1\right)^{b}} d t \\
& \leq\left(\int_{0}^{p} \frac{t^{x}}{\left(1+\frac{t^{k}}{p k}\right)^{p}-1} d t\right)^{a}\left(\int_{0}^{p} \frac{t^{y}}{\left(1+\frac{t^{k}}{p k}\right)^{p}-1} d t\right)^{b} \\
& =(H(x))^{a}(H(y))^{b}
\end{aligned}
$$

Therefore, $H(x)$ is logarithmically convex. Then by Lemma 5, the function

$$
T(x)=\frac{\left[\Gamma_{p, k}(x+k) \zeta_{p, k}(x+k)\right]^{\alpha}}{\Gamma_{p, k}(\alpha x+k) \zeta_{p, k}(\alpha x+k)}
$$

is decreasing. Hence for $0<x \leq y$, we have

$$
\frac{\left[\Gamma_{p, k}(y+k) \zeta_{p, k}(y+k)\right]^{\alpha}}{\Gamma_{p, k}(\alpha y+k) \zeta_{p, k}(\alpha y+k)} \leq \frac{\left[\Gamma_{p, k}(x+k) \zeta_{p, k}(x+k)\right]^{\alpha}}{\Gamma_{p, k}(\alpha x+k) \zeta_{p, k}(\alpha x+k)}
$$

Then by the right hand side of (3.7), we obtain

$$
\frac{\left[\Gamma_{p, k}(y+k) \zeta_{p, k}(y+k)\right]^{\alpha}}{\Gamma_{p, k}(\alpha y+k) \zeta_{p, k}(\alpha y+k)} \leq \frac{\left[\zeta_{p, k}(x+k)\right]^{\alpha}}{\zeta_{p, k}(\alpha x+k)}
$$

concluding the proof.

References

[1] S. S. Dragomir, R. P. Agarwal and N. S. Barnett, Inequalities for Beta and Gamma Functions via Some Classical and New Integral Inequalities, Journal of Inequalities and Applications, 5 (2000), 103-165.
[2] B. N. Guo and F. Qi, Sharp bounds for harmonic numbers, Applied Mathematics and Computation, 218(3)(2011), 991-995.
[3] J. D. Kečkić and P. M. Vasić, Some inequalities for the Gamma function, Publ. Inst. Math. Beograd N. S., 11(1971), 107-114.
[4] C. G. Kokologiannaki and V. Krasniqi, Some properties of the k-Gamma function, Le Matematiche, LXVIII (2013), Fasc. I, 13-22.
[5] V. Krasniqi, T. Mansour and A. Sh. Shabani, Some Monotonicity Properties and Inequalities for Γ and ζ Functions, Mathematical Communications, 15(2)(2010), 365-376.
[6] V. Krasniqi and A. S. Shabani, Convexity Properties and Inequalities for a Generalized Gamma Function, Applied Mathematics E-Notes, 10(2010), 27-35.
[7] A. Laforgia and P. Natalini, Turan type inequalities for some special functions, J. Ineq. Pure Appl. Math., 7(1)(2006), Art. 22, 1-5.
[8] F. Merovci, Turan type inequalities for p-Polygamma functions, Le Matematiche, LXVIII (2013), Fasc. II, 99-106.
[9] K. Nantomah, Some inequalities bounding certain ratios of the (p, k)-Gamma function, New Trends in Mathematical Sciences, 4(4)(2016), 329-336.
[10] K. Nantomah. E. Prempeh and S. B. Twum, On a (p, k)-analogue of the Gamma function and some associated Inequalities, Moroccan Journal of Pure and Applied Analysis, 2(2)(2016), 79-90.
[11] E. Neuman, Inequalities involving a logarithmically convex function and their applications to special functions, J. Inequal. Pure Appl. Math., 7(1)(2006) Art. 16.
[12] C. P. Nilculescu, Convexity according to the geometric mean, Mathematical Inequalities and Applications, 3(2)(2000), 155-167.
[13] C. Niculescu and L. E. Persson, Convex Functions and their Applications, A Contemporary Approach, CMS Books in Mathematics, Vol. 23, Springer-Verlag, New York, 2006.
[14] J. Sandor, Selected Chapters of Geometry, Analysis and Number Theory, RGMIA Monographs, Victoria University, 2005.
[15] Xiao-Ming Zhang, Tie-Quan Xu and Ling-bo Situ, Geometric convexity of a function involving Gamma function and application to inequality theory, J. Inequal. Pure Appl. Math., 8(1)(2007), Art. 17.

Current address: Kwara Nantomah: Department of Mathematics, Faculty of Mathematical Sciences, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana.

E-mail address: mykwarasoft@yahoo.com, knantomah@uds.edu.gh

[^0]: Received by the editors: August 16, 2016; Accepted: January 20, 2017.
 2010 Mathematics Subject Classification. Primary: 33B15, Secondary: 33E50, 26 A51.
 Key words and phrases. (p, k)-Gamma function, convex functions, Bohr-Mollerup theorem, (p, k)-Riemann zeta function, inequality.
 (C)2017 Ankara University

 Communications de la Faculté des Sciences de l'Université d'Ankara. Séries A1. Mathematics and Statistics.

