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ROBUST PARAMETER ESTIMATION FOR THE
MARSHALL-OLKIN EXTENDED BURR XII DISTRIBUTION

YESIM GUNEY AND OLCAY ARSLAN

ABSTRACT. In this paper, we consider the parameter estimation of the Marshall
Olkin extended Burr XII (MOEBXII) distribution, which is a generalization
of the Burr XII distribution. For the estimation of the parameters in the
MOEBXII, maximum likelihood (ML) is available. However, this is not robust
estimator. In this paper we proposed a robust estimator based on M estima-
tion method to estimate the parameters of the MOEBXII distribution. We
perform a small simulation study to illustrate the performance of proposed
method. We also reanalyze two data sets to asses the capability of the robust
estimators over the ML and LS estimators.

1. INTRODUCTION

The Burr XII distribution [3] appears very often in practice when modelling
unimodal data. Several researchers have investigated various inference problems
using Burr distribution as it has been found useful in the study of actuarial science
[11], economics [15], life testing and reliability, [1], [16], [17], failure time modeling
[8] among others. The relationship between the Burr distribution and the various
other distributions, is summarized by [18] and [21].

In the literature, various methods have been used to generalize Burr XII distri-
bution. In addition Marshall and Olkin [14] introduced a method of adding a new
parameter into a family of distributions. The resulting distribution is known as
Marshall Olkin extended distribution. It is obtained as follows:

Let F(x) = 1 — F(x) denote the survival function of a continuous random
variable X. Then, the corresponding Marshall-Olkin (MO) extended distribution

has survival function defined by
Fla)= 2@ (L1)
1—a@F (x)
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where @ > 0 and @ = 1 — @. The new family contains the initial family as a
particular case, obtained when o = 1.

There have been various studies reported in the literature dealing with the para-
meter estimation methods for Burr XII distribution. ML estimation of parameters
for fitting Burr distribution to life test data has been studied by [22] and [23].
ML and maximum product of spacings (MPS) methods were compared by [19]. In
addition, estimation of parameters in the presence of outliers for a Burr XII dis-
tribution with LS, ML and MPS methods were compared by [9]. The minimum
variance linear unbiased estimators (MVLUE), the best linear invariant estimators
(BLIE) and the maximum likelihood estimators (MLE) based on n-selected gener-
alized order statistics are presented for the parameters of the Burr XII distribution
by [13]. An alternative robust estimation methods based on M estimators and op-
timal B-robust estimation method for the parameters of Burr XII distribution have
been proposed by [4] and [5], respectively. However, there is not much work for
MOEBKXII distribution. The parameters of MOEBXII distribution was estimated
by using ML estimation method by [2]. However, it is well established that in the
presence of outliers in the data, the traditional methods do not provide reliable
estimations. Therefore robust estimation methods can be used for the parameters
of the MOEBXII distribution if the data contains outliers.

In this paper, we propose a robust estimation procedures based on M-estimation
method to estimate the parameters of the MOEBXII distribution. This is done
by changing LS objective function with robust objective function and minimizing
it. We compare the performance of the method with the ML and LS estimation
methods by a simulation study and real data examples.

The rest of the paper is organized as follows; In section 2, we described the
MOEBXII distribution. The maximum likelihood estimator and least square esti-
mator are provided in sections 3. In section 4, simulation results are presented. In
Section 5, we reanalyze two data sets for illustrative purpose. Finally, conclusions
are given in section 6.

2. MARSHALL-OLKIN EXTENDED BURR XII DISTRIBUTION

A random variable X is said to have a Burr XII distribution with shape para-
meters ¢ > 0 and &k > 0 if its probability density function (pdf) is given by

x(c_l)

The cumulative density function (cdf) of X is given by

1
F(z; =1—-— . 2> 0. 2.2
(xch{;) (1+xc)k’$—0 ( )
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Substituting (2.2) in (1.1) we obtain a Marshall-Olkin Extended Burr XII distrib-
ution denoted by MOEBXII(«,c, k) with the following pdf and cdf

x(c—l) (1 + xc)—(k-‘rl)

fw;a,ck) = ack [1—(1—a)(1+ac)k>

> 0. (2.3)

1—(1+ac)7k

F(z;a,c k) = 17(1ia)(1+xc)7k,x20. (2.4)
where a,c¢ and k > 0 [2]. Note that the MOEBXII distribution is an extended
model to analyze more complex data and it generalizes some of the distributions. In
particular for « = 1 MOEBXII becomes Burr XII distribution with two parameters
cand k. And also, when ¢ = 1, the MOEBXII becomes the Marshall-Olkin extended
Lomax distribution. Clearly, MOEBXII distribution is more flexible than the Burr
XII distribution, because of the presence of the shape parameter. Figure 1 shows
the plots of pdf for MOEBXII distribution for some values of the parameters. For
more details, see [2].

1.5

1.0

0.5
|

FIGURE 1. Plot of pdf of the MOEBXII distribution. (I)aw = 1,¢ =
0.9,k =3, (Ia =0.5,¢c =09,k =3, ({I)a = 5,¢ = 3,k = 0.9,
V)a=3,c=3,k=3,(V)a=08,c=0.7,k=0.8
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3. ESTIMATION OF THE PARAMETERS OF MOEBXII DISTRIBUTION

In this study to estimate a, ¢ and k, we consider ML, LS and robust estimation
methods.

3.1. Maximum Likelihood Estimation of MOEBXII Distribution. Let z =
(1,22, ...,x,) be a random sample from MOEBXII(«,c, k). In order to estimate
the parameters of the MOEBXII distribution, the log-likelihood of the sample is
maximized with respect to the parameters. Log-likelihood function can be written
as

la,e k) = nlog(ack) + (¢ —1) Zlogwi —(k+1) Zlog (14 )
i=1

i=1
—2) log (1— (1 —a) (1 +2f)7") (3.1)
i=1
The associated nonlinear loglikelihood system for MLE’s is

a _n - (1+2¢)~F B
%0 a 2;1—(1—a)(1+x§)—k_0 (3:2)

o _ n " o " x¢log (z;)
dc c+;10g% (k+1); (14 x5)
“~ 2§(1 +28)~* D log (z;)
72k(17a)z AT )T =0 (3.3)
i=1
a  _ n - . " z¢log ()
% = % ;log(l—kxi) (k+1);7(1+x§)
oo (L) Flog(L+af)
21-a)) o) (a0 F 0. (3.4)

i=1

Notice that there are no explicit solutions to (3.2),(3.3) and (3.4). Hence, numerical
methods are applied to solve the required equations.

3.2. Least Squares Estimation Method of MOEBXII Distribution. In this
section we will discuss the least squares method for estimating «, ¢ and k. As for the
Burr XII distribution [4], LS estimation method can be used as an alternative to the
ML estimation method to estimate the parameters of the MOEBXII distribution.

The LS method is a combination of parametric (F) and non-parametric ﬁ)

distribution functions. The procedure attempts to minimize the following function



ROBUST PARAMETER ESTIMATION FOR MOEBXII 145

with respect to a, c and k&
Staek) = 3 (Fw)-F (@) (3.5)
LN 1—(1+a5)F  \°
Y (Fer - mgaaaT) - 69

i=1

Since the cdf of MOEBXII does not have a linear form according to the para-
meters, it will be difficult to minimize the equation (3.6). For this reason, we get
the linear form of F (z). To obtain the linear form of F (z), we use the following
transformation

1
log log (1—F(m)> = loglog (o — 1) — loglog () + log (k) + loglog(1 + ).

Instead of minimizing the squares of the difference between the F () and F (-), we
minimize the squares of the difference between the linear form of F (-) and the same
transformation of F ().
On the other hand, F (z) is unknown, we use ﬁX(i) (z) as follows

Fr, @) =""72 i=12,n (3.7)
where X ;) is the 4. order statistics of the random sample of the size n from MOE-
BXII distribution. Hence for the MOEBXII distribution, to obtain thee LS esti-
mates arg, ¢rg,and %LS of the parameters «, ¢ and k& we can define the following
objective function:

n

2
S(a,c, k) = Z (y(i) —loglog (e — 1) + loglog (o) — log (k) — loglog(1 + x?i)))
i=1

(3.8)
where ;) = log log <1131()) . The goal is to find «, ¢ and k that minimize the
T\
objective function. This requires us to find the values of «, ¢ and k such that
(y(,-) —loglog (o — 1) + loglog (o) — log (k) — loglog(1 + :cfl))) =0, (3.9)
=1

(2

n (y(i) — loglog (o — 1) + log log (o) — log (k) — log log(1 + wfz)))

% :v(ci) log(;ﬂ(i))
(1+w(ci) ) log(1+x(ci) )

ﬁ
Il
_

_ 1 ¢ 4
7 —loglog (a — 1) + loglog (o) — log k — - Zlog log(1 + z(;)) = 0. (3.11)
i=1
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3.3. Robust Estimation for the MOEBXII Distribution. We observe that,
as in the Burr XII distribution case, the score functions for ¢ and k are unbounded
function of z. This implies that the ML estimators for ¢ and k& may be affected
from outliers in data. It is also happens for the LS estimators as well since the
objective function for the LS method and the corresponding score functions are
unbounded function of z. This can be easily checked from the equation (3.3)-(3.4)
and (3.10)-(3.11). Therefore in the presence of outliers, instead of using ML or LS
estimation methods robust methods should be used to get estimators that are not
sensitive to the outliers.

In this paper we proposed a robust estimation method based on M estimation
method proposed by Huber [10]. In this method we will use a objective function,
say p as in used in robustness theory which is less decreasing than square function
or bounded to reduced the effect of outliers on the estimators. The method will
be carried out as follows. We will be minimize following objective function with
respect to the parameters of interest instead of minimizing of the objective function
given in equation (3.8) or maximizing the loglikelihood function given in equation
(3.1).

Q(ar, e, k) = p(yi —loglog (= 1) + loglog () — log (k) — loglog(1 + 7)) .
i=1
(3.12)
By taking the derivatives of the objective function @) with respect to the parameters

we obtain following equations

0Q(a,c, k) & < P (yi — loglog (@ — 1) + loglog (@) — log (k) — loglog(1 + 27))

dox Z (log(a 1) Ioguzoz)>

i=1

(3.13)
0Q(a, ¢, k) Z": p' (yi —loglog (o — 1) + loglog (a ( ) — : log (k) — loglog(1 + 7))
— z{ log(x;
dc i—1 (1+x“)log(1+x“)
(3.14)

0Q(a, ¢, k) _ Z <p’ (y; —loglog (a — 1) + loglog (o) — log (k) — loglog(1 + xf)))

ok k

n
i=1

(3.15)
There many p functions used in robust statistical analysis. However, since Huber’s
and Tukey’s p functions are widely used in literature we will use Huber’s and Tukey’s
p functions. This functions are

2

B T , lx] < by
p(l') - { 20, |Z‘| _ b% , |$‘ > by (316)

0.
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2

2

pla)=4 1~ (1_ (w/b2) ) o el <ty (3.17)
1 s |£U| > by

respectively. Here by and by are called the robustness tuning constants After re-

arranging the equations (3.13), (3.14) and (3.15) these estimates can also be ob-

tained by solving the nonlinear equations:

Zwiyi Zwi loglog(1 + %)
log k = = - = —loglog (o — 1) + loglog (a), (3.18)

n
D wi > wi
i=1 i=1

n ( w; (y; — loglog (o — 1) + loglog (a) — log (k) — loglog(1 + x5)) ) 0
7 log(z:) )
i=1 X gy loa(1+a7)
(3.19)

n n
Zw,-yi Zwi loglog(1 + z%)
==L - —log(k)  (3.20)

n n
>_wi >_wi
i=1 i=1
where w;’s are the weights. When the Huber’s p function is used, the weights will
be

log (log (a) log (o — 1))

by
i =min{ 1, :
Wi = { |(y; —loglog (aw — 1) + loglog (o) — log (k) — loglog(1 + z¢£))| }

(3.21)
If the Tukey’s p function is used, the weights will be
1— ((yi,—loglog(a—l)—&—loglog(a)—log(k)—log10g(1+xf)))2 2
Wi = bo
xI(|(y; — loglog (e — 1) 4+ loglog (o) — log (k) — loglog(1 + 5))| < b2)
(3.22)

4. SIMULATION STUDY

Generating data from the MOEBXII distribution. For the Burr distribu-
tion the data generating procedures are available in literature (e.g., random(’burr’,c,k)
code in Matlab). However for the MOEBXII distribution, we can not be able to see
any available data generating procedures. Therefore, before the simulation study
we will give a brief outline of the data generating scheme use in our simulation
study for the MOEBXII distribution.

We generate the data from the MOEBXII distribution by using Inverse Trans-
form Method. First we generate random numbers ui, ug, ..., u, from the uniform
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distribution on the interval (0,1). Then we find the inverse of cdf of the MOEBXII
distribution F~1 (+) for any given «, ¢ and k values and calculate the value F~* (u;)
fori=1,2,...,n.

Next, we provide a small simulation study to compare the performance of the
estimation methods given in section 3. We generate N=100 samples of size n
(n = 20, n = 40, and n = 100) from the MOEBXII distribution. We have taken
parameter values (o, c, k) = (3,1,1), (3,1,2), (3,2,1), (3,2,2), (3,3,3), (5,1,1),
(5,1,2), (5,2,1) and (5,2, 2).

To assess the performance of the methods, we calculated the bias and the RMSE
for the estimates of 6 = «, ¢ and k obtained from the simulated data sets

Bias (7) = +3° (3 -0). (@)

i=1

n

RMSE = (5) - %Z (@- 4))

. (4.2)

Robust estimations of the parameters are obtained with tuning constant b; = 3.5
for Huber’s p function and by = 1.345 for Tukey’s p function.

The results of our simulation study are presented in the Tables 1-6. In the
tables, we present the bias and RMSE for the estimators obtain from the methods
described in Section 3.

The results of our simulation study for the data sets without outliers are pre-
sented in the Tables 1-3. This results show that all estimation methods considered
in this paper perform well in estimating the parameters of the MOEBXII distribu-
tion when the data sets do not contain any outliers. However the robust estimator
based on Tukey’s p function generally outperforms others in terms of the bias and
RMSE. In addition, the average bias and RMSE of all the estimators of the para-
meters ¢ and k generally decrease as n increases.

Table 1 The Bias and RMSE (Parenthesis) for n = 20

Parameter o

ML LS Huber Tukey
(3,1,1) 0.2703 (0.2907) 0.3599 (0.4274) 0.3411 (0.4149) 0.2356 (0.3806)
(3,1,2) 0.1239 (0.1820) 0.1928 (0.5397) 0.1267 (0.2185) 0.0078 (0.1872)
(3,2,1) 0.5183 (0.5499) 0.2208 (0.6144) 0.5446 (0.5664) 0.5362 (0.5612)
(3,2,2) 0.1034 (0.2470) 0.2287 (0.2971) 0.0957 (0.2843) 0.0892 (0.2538)
(3,3,3) 0.3755 (1.1090) 0.1285 (0.3726) 0.1462 (0.1916) 0.0967 (0.1970)
(5,1,1) 0.0965 (0.3055) 0.3622 (0.3786) 0.0727 (0.2655) 0.0437 (0.2282)
(5,1,2) 0.3204 (0.6993) 0.1776 (0.1887) 0.1955 (0.1976) 0.1962 (0.1981)
(5,2,1) 0.4591 (0.6376) 0.2003 (0.4086) 0.2413 (0.4166) 0.2160 (0.4063)
(5,2,2) 0.1620 (0.1857) 0.4056 (0.8534) 0.1660 (0.1854) 0.1358 (0.2245)
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ML LS Huber Tukey
(3,1,1) 0.5789 0.5851 (0.5870) 0.5824 (0.5857) 0.2436 (0.3245)
(3,1,2) 0.5885 0.8937 (0.9443) 0.5913 (0.5934) 0.5821 (0.5891)
(3,2,1) 0.1333 0.0531 (0.3903) 0.1097 (0.3149) 0.1511 (0.3153)
(3,2,2) 0.2093 0.2346 (0.3390) 0.2071 (0.3297) 0.0310 (0.4851)
(3,3,3) 0.1599 0.1651 (0.3172) 0.1559 (0.1954) 0.1506 (0.1953)
(5,1,1) 0.6275 0.5779 (0.5891) 0.5948 (0.5958) 0.5833 (0.5909)
(5,1,2) 0.6766 0.5990 (0.5990) 0.5975 (0.5976) 0.5924 (0.5945)
(5,2,1) 0.3222 0.1843 (0.3417) 0.2328 (0.3456) 0.2003 (0.4086)
(5,2,2) 0.3137 0.2769 (0.3694) 0.2755 (0.3883) 0.2744 (0.3837)
Parameter k.
ML LS Huber Tukey

(3,1,1) 0.5785 0.4808 (0.5291) 0.5768 (0.5780) 0.3869 (0.4556)
(3,1,2) 0.1279 0.3546 (0.5322) 0.1682 (0.1813) 0.0695 (0.1335)
(3,2,1) 0.5843 0.5950 (0.5951) 0.5937 (0.5941) 0.3517 (0.4567)
(3,2,2) 0.1526 0.3803 (1.0688) 0.1392 (0.3096) 0.1222 (0.2978)
(3,3,3) 0.5488 0.1878 (0.3971) 0.1105 (0.2105) 0.0388 (0.2250)
(5,1,1) 0.3524 0.4922 (1.0249) 0.3981 (0.4235) 0.1626 (0.3129)
(5,1,2) 0.2053 0.1955 (0.1986) 0.1933 (0.1998) 0.1908 (0.1949)
(5,2,1) 0.4993 0.1628 (0.2043) 0.5051 (0.5200) 0.4935 (0.5164)
(5,2,2) 0.5043 0.2200 (0.5748) 0.1571 (0.2087) 0.1406 (0.2272)
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Table 2 The Bias and RMSE (Parenthesis) for n = 40

Parameter o

ML LS Huber Tukey
(3,1,1) 0.3787 (0.4215) 0.4084 (0.4373) 0.3134 (0.4223) 0.0038 (0.3636)
(3,1,2) 0.1859 (0.2659) 0.1996 (0.2629) 0.1547 (0.4467) 0.0543 (0.7690)
(3,2,1) 0.4862 (0.4918) 0.2783 (0.2840) 0.4365 (0.6060) 0.3921 (0.5403)
(3,2,2) 0.1259 (0.3692) 0.0921 (0.2560) 0.7029 (0.5622) 0.0751 (0.2333)
(3,3,3) 0.1303 (1.3301) 0.2127 (0.3781) 0.2281 (0.4004) 0.0077 (0.2743)
(5,1,1) 0.4041 (0.5928) 0.2336 (0.4158) 0.3505 (0.3610) 0.2873 (0.4083)
(5,1,2) 0.2633 (0.5182) 0.3413 (0.3626) 0.2618 (0.4991) 0.4320 (0.4531)
(5,2,1) 0.4017 (0.4121) 0.1647 (0.4358) 0.4194 (0.4307) 0.2258 (0.4345)
(5,2,2) 0.2049 (0.3830) 0.1414 (0.3478) 0.4065 (0.8821) 0.0230 (0.2731)
Parameter c.

ML LS Huber Tukey
(3,1,1) 0.2311 (0.3102) 0.4149 (0.5571) 0.4917 (0.4938) 0.4959 (0.4963)
(3,1,2) 0.2269 (0.2810) 0.4959 (0.4966) 0.3990 (0.3361) 0.2941 (0.4973)
(3,2,1) 0.0258 (0.3802) 0.0706 (0.3337) 0.0706 (0.3244) 0.0201 (0.2980)
(3,2,2) 0.1390 (0.3383) 0.1886 (0.3392) 0.0661 (0.448 ) 0.0259 (0.4815)
(3,3,3) 1.0137 (1.0836) 0.4633 (0.4712) 0.9990 (1.0880) 0.4329 (0.4646)
(5,1,1) 0.6905 (0.7355) 0.4969 (0.4973) 0.6500 (0.6931) 0.4017 (0.4121)
(5,1,2) 0.7259 (0.7683) 0.4041 (0.5928) 0.6964 (0.7622) 0.1573 (0.3372)
(5,2,1) 0.3261 (0.4219) 0.1493 (0.3335) 0.3581 (0.4144) 0.0964 (0.3111)
(5,2,2) 0.3466 (0.4326) 0.3076 (0.4397) 0.2061 (0.3551) 0.1573 (0.3372)
Parameter k.

ML LS Huber Tukey
(3,1,1) 0.3658 (0.5287) 0.4905 (0.4908) 0.4883 (0.4891) 0.0275 (0.2457)
(3,1,2) 0.3934 (0.4905) 0.0275 (0.2457) 0.3731 (0.5183) 0.0037 (0.2295)
(3,2,1) 0.4956 (0.4970) 0.4894 (0.4913) 0.4981 (0.4983) 0.2336 (0.4158)
(3,2,2) 0.3340 (0.7965) 0.1092 (0.2957) 0.4097 (0.9214) 0.1069 (0.2704)
(3,3,3) 0.6937 (0.9322) 0.2630 (0.3787) 0.7339 (0.9491) 0.2061 (0.3796)
(5,1,1) 0.3255 (0.3471) 0.3274 (0.3567) 0.3466 (0.4326) 0.1647 (0.4358)
(5,1,2) 0.6905 (0.7355) 0.4834 (0.4858) 0.4969 (0.4973) 0.2463 (0.7562)
(5,2,1) 0.6937 (0.9322) 0.4312 (0.4451) 0.4480 (0.4588) 0.2630 (0.3787)
(5,2,2) 0.8649 (1.0009) 0.3702 (0.4095) 0.3261 (0.4219) 0.1069 (0.2704)




ROBUST PARAMETER ESTIMATION FOR MOEBXII 151

Table 3 The Bias and RMSE (Parenthesis) for n = 100

Parameter o

ML LS Huber Tukey
(3,1,1) 0.0597 (0.1429) 0.0835 (0.1021) 0.0721 (0.1037) 0.0115 (0.1037)
(3,1,2) 0.1491 (0.2890) 0.2981 (0.3841) 0.0785 (0.3016) 0.0332 (0.1245)
(3,2,1) 0.0180 (0.1225) 0.1465 (0.5922) 0.1798 (0.1927) 0.1968 (0.1981)
(3,2,2) 0.0517 (0.2840) 0.0887 (0.2847) 0.0376 (0.1207) 0.0257 (0.3115)
(3,3,3) 0.0926 (0.4129) 0.1635 (0.3879) 0.0513 (0.1556) 0.0056 (0.4082)
(5,1,1) 0.0222 (0.1335) 0.0316 (0.1361) 0.0941 (0.1611) 0.0142 (0.1323)
(5,1,2) 0.0459 (0.1172) 0.0364 (0.1514) 0.0507 (0.1162) 0.0178 (0.1341)
(5,2,1) 0.1982 (0.1983) 0.1615 (0.4114) 0.2118 (0.3724) 0.2113 (0.3707)
(5,2,2) 0.1486 (0.3654) 0.2067 (0.3864) 0.1867 (0.3723) 0.0929 (0.1024)
Parameter ¢

ML LS Huber Tukey
(3,1,1) 0.0385 (0.1419) 0.0842 (0.5175) 0.1946 (0.1970) 0.0094 (0.1324)
(3,1,2) 0.4973 (0.4977) 0.4986 (0.4988) 0.4974 (0.4978) 0.1995 (0.1996)
(3,2,1) 0.1797 (0.3181) 0.1242 (0.2960) 0.0992 (0.2954) 0.0005 (0.3589)
(3,2,2) 0.1962 (0.3680) 0.2169 (0.3439) 0.1979 (0.3686) 0.0262 (0.1352)
(3,3,3) 0.3345 (0.4441) 0.3354 (0.4510) 0.3430 (0.4567) 0.0949 (0.1011)
(5,1,1) 0.0932 (0.1025) 0.0957 (0.1010) 0.0978 (0.1625) 0.0143 (0.1275)
(5,1,2) 0.1264 (0.1750) 0.1594 (0.1857) 0.1570 (0.1861) 0.1075 (0.0459)
(5,2,1) 0.2646 (0.3608) 0.1864 (0.3436) 0.2230 (0.3498) 0.1197 (0.3876)
(5,2,2) 0.1363 (0.3576) 0.1601 (0.3279) 0.1597 (0.3565) 0.0270 (0.1173)
Parameter k

ML LS Huber Tukey
(3,1,1) 0.0864 (0.1024) 0.0831 (0.1013) 0.0913 (0.1539) 0.0562 (0.0975)
(3,1,2) 0.1844 (0.3232) 0.1977 (0.1982) 0.1170 (0.3341) 0.0257 (0.2820)
(3,2,1) 0.0501 (0.1433) 0.2524 (0.7771) 0.0529 (0.1413) 0.0509 (0.1416)
(3,2,2) 0.0859 (0.3318) 0.1380 (0.1779) 0.0259 (0.3263) 0.0814 (0.3295)
(3,3,3) 0.1643 (0.3750) 0.2457 (0.3703) 0.1148 (0.3868) 0.0753 (0.1087)
(5,1,1) 0.1767 (0.1866) 0.1791 (0.1873) 0.1597 (0.1814) 0.1088 (0.0423)
(5,1,2) 0.3285 (0.4698) 0.1405 (0.1637) 0.1767 (0.1866) 0.1597 (0.1814)
(5,2,1) 0.4746 (0.9614) 0.4583 (0.4710) 0.3553 (0.4097) 0.1172 (0.1600)
(5,2,2) 0.3160 (0.4152) 0.3311 (0.4163) 0.3117 (0.4193) 0.1878 (0.1942)

Table 4-6 list the bias and RMSE for the data sets with outliers. For the sample
size n = 20, there is one outlier, for the sample sizes n = 40 and n = 100, there are
two and four outliers, respectively. The outliers are taken 100 xlargest observation.
From Tables 4-6, we observe that outliers induce a large influence on the bias and
RMSE of the ML and LS estimators. In particular the ML and LS estimators
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compared to the robust estimators are drastically effected from the outliers when
the number of outliers is four.

The simulation results in Tables 4-6 clearly indicates that the robust estimator
based on Tukey’s p function has the smallest bias in all cases and smallest RMSE in
most of the cases with outliers. In addition, the robust estimator based on Huber’s
p function outperforms LS and ML estimator in terms of bias and RMSE when
the data set contains outlier. For example it can be seen from Tables 4-6 that the
largest difference of bias for parameter ¢ arises in Table 4 for the cases (3,2,2) and
(5,2,2) and for the parameter k the same happens for the cases (5,1,2) and (5,2,1).
Similarly we can observe superiority of the robust estimators in terms of bias and
RMSE in Tables 5-6.

Finally in Table 6 we observe that when the number of outliers increases, the
LS and the ML estimators dramatically worsen compared to the robust estimators.
It can be seen that bias and the RMSE values are very large for the LS and ML
estimators.

Table 4 The Bias and RMSE (Parenthesis) for n = 20 with one outlier

Parameter o

ML LS Huber Tukey

-0.8720 (0.8857) 0.1889 (0.1939) -0.0467 (0.4116) 0.0399 (0.1566)
-0.8637 (0.9271) -0.8936 (0.9683) -0.1737 (0.1887) 0.0103 (0.4528)
-0.8621 (0.9096) 0.1848 (0.1911)  0.1845 (0.2419)  0.1663 (0.1856)
-0.7024 (1.7847) -0.7262 (0.7852) -0.0939 (0.1828) 0.0376 (0.2696)
0.4533 (0.9336)  -0.3358 ( ) -0.1379 (0.1944) -0.1262 (0.1953)
-0.9716 (0.9736) -0.5881 (0.7478) -0.0861 (0.1790) 0.0148 (0.1702)
0.8130 (0.8402)  -0.7250 (0.7646) 0.0324 (0.5353) -0.0025 (0.1813)

( )

( )

0.6387

0.9896 (1.0093) -0.1615 (0.3716) 0.1293 (0.1579) 0.0768 (0.1479)
-0.1725 (0.1992) 0.0688 (0.5022)

e N N N N
Ot O O O W W W W Ww
N = W N ==
N~ N~ W~ N

S

-0.9334 (0.9401) -0.4343 (0.7769

Parameter ¢

ML LS Huber Tukey

0.4250 (0.5100)  0.8450 (0.8713) 0.1939 (0.1961)  0.1930 (0.1963)
0.4187 (0.5125)  0.8329 (0.8595)  0.1986 (0.1988)  0.1976 (0.1981)
-0.6027 (0.6895) 0.1951 (0.1966)  -0.0545 (0.0575) 0.0190 (0.0200)
-0.6474 (0.7040) -1.2856 (1.7346) 0.0821 (0.2429)  -0.0689 (0.0713)
-0.9999 (0.9999) -0.7101 (0.8230) -0.1903 (0.1966) -0.0928 (0.1877)
0.6388 (0.6456)  0.8683 (0.8889)  0.0414 (0.2640) -0.0080 (0.0714)
0.5336 (0.6383)  -0.6467 (0.7541) 0.1995 (0.1996)  0.1617 (0.1958)
-0.8357 (0.8441)  0.2568 (0.2670)  0.1131 (0.5104)  0.0395 (0.4005)
1.6584 (1.6625)  -0.5162 (0.5476) -0.4642 (0.4703) -0.1641 (0.2074)

e N R N D N
Ot O O O QW W W W Ww
N = WNN =
N~ N~ W~ N

e
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Parameter k

ML

LS

Huber

Tukey

(3,1,1) 0.4511 (0.5099)
(3,1,2) -0.5508 (0.6172)
(3,2,1) 0.4795 (0.5475)
(3,2,2) -0.3657 (0.4728)
(3,3,3) -0.9983 (0.9983)
(5,1,1) 0.4275 (0.4415)
(5,1,2) 1.1828 (1.3903)
(5,2,1) -0.7448 (0.7760)
(5,2,2) -0.8840 (0.9824)

0.7417 (0.7630)
0.2754 (0.2825)
0.5920 (0.6455)
-0.3149 (0.4629)
-0.1501 (0.6614)
0.8678 (0.8734)
0.2941 (0.3833)
1.1564 (1.1823)
0.3214 (0.4134)

0.1979 (0.1981)
-0.4002 (0.4035)
0.1653 (0.1911)
0.1476 (0.2398)
-0.1480 (0.1900)
0.3440 (0.4601)
0.1354 (0.1590)
-0.5800 (0.5275)
0.1406 (0.1705)

0.0301 (0.1697)
-0.1672 (0.5026
-0.0312 (0.4778
-0.0444 (0.0898
-0.1294 (0.1969
0.0070 (0.0097)
-0.0880 (0.1827)
0.0758 (0.4103)
0.1053 (0.1702)

—_

Table 5 The Bias and RMSE (Parenthesis) for n = 40 with two outliers

Parameter o

ML

LS

Huber

Tukey

-0.8720 (0.8857)
-0.8637 (0.9271)
-0.8621 (0.9096)
1.1558 (1.3132)
0.4533 (0.9336)
1.2561 (1.2758)
-0.9467 (0.9541)
-1.4959 (1.4992)
1.1825 (1.2136)

N N AN N N S N S
QU O O O Q0 W W W W
NN~ = W NN~ =
NN~ N~ W~ N
~— N

0.8450 (0.8713)
-0.7101 (0.8230)
0.2845 (0.4419)
0.8130 (0.8402)
-0.3358 (0.6387)
1.1057 (1.1161)
1.2686 (1.2866)
1.2676 (1.2897)
-2.7170 (2.7186)

0.1889 (0.1939)
-0.1936 (0.1968)
0.1848 (0.1911)
-0.0939 (0.1828)
-0.1379 (0.1944)
0.0688 (0.5022)
0.1995 (0.1996)
0.1293 (0.1579)
0.0539 (0.1066)

0.0399 (0.1566)
-0.1737 (0.1887)
0.1663 (0.1856)
-0.1617 (0.1938)
-0.1262 (0.1953)
-0.0861 (0.1790)
0.1617 (0.1958)
0.0768 (0.1479)
0.1976 (0.3438)

Parameter ¢

ML LS Huber Tukey
(3,1,1) 0.4250 (0.5100) 0.7417 (0.7680) 0.1939 (0.1961) 0.1930 (0.1963)
(3,1,2) 0.4187 (0.5125) 0.8683 (0.8889) 0.1986 (0.1988) 0.1976 (0.1981)
(3,2,1) -0.6027 (0.6895) 0.5920 (0.6455) 0.0376 (0.2696) 0.0324 (0.5353)
(3,2,2) -0.6474 (0.7040) -0.7250 (0.7646) 0.0450 (0.4822) 0.0148 (0.1702)
(3,3,3) -0.9999 (0.9999) -0.7448 (0.7760) -0.0928 (0.1877) -0.1903 (0.1966)
(5,1,1) -0.5716 (0.5736) 0.5824 (0.6063) 0.1999 (0.1999) 0.0395 (0.4005)
(5,1,2) -0.4312 (0.4346) -0.4775 (0.4997) -0.1725 (0.1992) -0.0025 (0.1813)
(5,2,1) -0.8357 (0.8441) 0.8007 (0.8093) -0.1306 (0.6490) 0.0218 (0.0226)
(5,2,2) -0.9334 (0.9401) 0.2990 (0.3033) 0.1131 (0.5104) 0.0326 (0.1214)
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Parameter k

ML LS Huber Tukey

0.4511 (0.5099) 0.8329 (0.8595) 0.1979 (0.1981)  0.0301 (0.1697)
-0.5508 (0.6172) -0.1672 (0.5026) -0.0312 (0.4778) 0.0103 (0.4528)
0.4795 (0.5475)  -0.5881 (0.7478) 0.1951 (0.1966)  0.1653 (0.1911)
-0.3657 (0.4728) -0.3149 (0.4629) 0.2941 (0.3833)  -0.1501 (0.6614)
-0.9983 (0.9983) 0.8211 (0.8301)  -0.1480 (0.1900) -0.1294 (0.1969)
0.9388 (0.9456) -0.7595 (0.7975) 0.1354 (0.1590) -0.0880 (0.1827)
0.9336 (0.9383)  0.3214 (0.4134)  0.1406 (0.1705)  0.1053 (0.1702)
0.2870 (0.3752)  -0.3589 (0.3638) -0.1189 (0.6799) -0.0262 (0.1368)
0.3440 ( ) 0.7412 (0.7497)  -0.0560 (0.0581) 0.0363 (0.0383)

NN AN N N SN N S
CU Ot Ot O W0 W W W W
NN = W N =
N~ N~ W~
S N e N N N N N

0.4601
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Table 6 The Bias and RMSE (Parenthesis) for n = 100 with four outliers

Parameter o

ML LS Huber Tukey
(3,1,1) 0.7900 (0.8791) 0.2435 (0.2490) 0.1382 (0.1505)  0.0358 (0.2485)
(3,1,2) 0.8968 (0.9036) 0.8227 (0.8334) -0.3528 (0.3592) 0.2308 (0.2401)
(3,2,1) 0.8221 (0.8448) 0.3423 (0.5849) 0.2498 (0.2549) 0.1626 (0.1685)
(3,2,2) 0.4911 (0.4965) 0.8581 (0.8714) 0.2080 (0.2207) 0.1124 (0.2244)
(3,3,3) 0.3057 (0.3102) 0.9621 (0.9791) 0.2184 (0.3691) 0.0638 (0.1133)
(5,1,1) 1.1084 (1.1178) 1.3824 (1.4463) 0.0219 (0.0227) 0.0066 (0.0128)
(5,1,2) 0.7998 (0.9205) 0.5392 (0.6319) -0.4114 (0.4148) 0.0862 (0.0865)
(5,2,1) 1.1389 (1.8608)  1.2747 (1.2935) 0.2454 (1.1181)  0.1201 (0.1637)
(5,2,2) -1.3619 (1.7776) 1.1672 (1.2235) 0.0658 (0.0677)  0.0930 (0.0938)
Parameter c.

ML LS Huber Tukey
(3,1,1) 0.7809 (0.7833) 0.8679 (0.8724) 0.0607 (0.0894) -0.0138 (0.1207)
(3,1,2) 0.7901 (0.7911) 0.5867 (0.6052) 0.2806 (0.3403) 0.1063 (0.2110)
(3,2,1) 0.5419 (0.7389) 0.3041 (0.3601) 0.0929 (0.1971) 0.0678 (0.2110)
(3,2,2) 0.4285 (0.4522) 0.5794 (0.6902) 0.1652 (0.2198) 0.0790 (0.1963)
(3,3,3) 0.9075 (0.9379) 0.9224 (0.9363) 0.1497 (0.2743) 0.0042 (0.0077)
(5,1,1) 0.4965 (0.4977) 0.2558 (0.2861) 0.2028 (0.2714) 0.0881 (0.0902)
(5,1,2) 0.8489 (1.2422) 0.7832 (0.7851) 0.3018 (0.3221) 0.0703 (0.1476)
(5,2,1) 0.7857 (0.9828) 0.4994 (0.4994) 0.4203 (0.4351) 0.1879 (0.4997)
(5,2,2) 0.4969 (0.4972) 0.9050 (0.9874) 0.1310 (0.2423) 0.0905 (0.2533)
Parameter k

ML LS Huber Tukey
(3,1,1) -0.6921 (0.7195) 0.7463 (0.7487) 0.6352 (0.6455) 0.0581 (0.1203)
(3,1,2) -0.5644 (0.5910) 0.3400 (0.3718) 0.2710 (0.2796) 0.1336 (0.1693)
(3,2,1) 0.7565 (0.7653) 0.7244 (0.7316) 0.6246 (0.6361) 0.3896 (0.4025)
(3,2,2) 0.6129 (0.6151) 0.4793 (0.6053) 0.4256 (0.4369) 0.3153 (0.3249)
(3,3,3) 0.5887 (0.9686) 0.8370 (0.8502) 0.2330 (0.3735) 0.4510 (0.4533)
(5,1,1) 0.8774 (0.9798) 0.7986 (0.7986) 0.3030 (0.3253)  0.0976 (0.1495)
(5,1,2) 0.6951 (1.3824) 0.9917 (1.0100) 0.6741 (0.6818) 0.0160 (0.0172)
(5,2,1) 0.3103 (0.3320) 0.4815 (0.5001) -0.0624 (0.0657) 0.0412 (0.2582)
(5,2,2) 0.5932 (0.6090) 1.1397 (1.3610) 0.0588 (0.3338) -0.0651 (0.0676)

To sum up when there are potential outliers in the data the robust methods
should be used to estimate the parameters of the MOEBXII distribution instead of

using ML estimators.

5. REAL DATA EXAMPLES

In this section, we consider two real life data sets to illustrate the proposed
methods and verify how our estimators work in practice. The first one is presented
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in [12] and related to the failure times of 20 mechanical components. The second
data set is electrical insulating described in [12] in which the length of time until
breakdown.

5.1. Failure Time Data Set. Failure time data set has been considered by [4] to
illustrate the performance of the proposed robust estimators for the parameters of
the Burr XII distribution and by [5] to illustrate the proposed Optimal B-robust
estimators for the parameters of the Burr XII distribution. The data set has been
also used by [20] to illustrate the potential of the Burr XII power series distribu-
tions. The data set contains the failure times of 20 mechanical components. The
parameter estimations obtained from the ML, LS and proposed robust estimation
methods are given in Table 7.

Table 7 Parameter Estimations for the Failure Time Data Set
a c k
ML  1.3060 1.7359 32.9140
LS 3.0968 2.1149 96.3755
Huber 2.6637 2.0053 108.6202
Tukey 2.4360 2.0651 152.436

The fitted pdfs and histogram of the failure time data set are given in Figure 2.

From Figure 2, we can observe that the data set contains a potential outlier. It
has also been observed from Figure 2 that the ML and LS estimators are heavily
distorted by this single outlier. However, the robust estimators do not seem very
affected by the outliers. In particularly, the robust estimator based on Tukey’s p
function provides better fit than the others in terms of modeling the data. We can
observe that the fitted density obtained from Tukey seems summarizing data more
accurant than the others. On the other hand, clearly the fitted density obtained
from ML is affected by the outliers and it is not provided a good fit to the data. It is
not catching the pick of the data. It may be said that ML method is underestimating
the parameters. The fitted density obtained from the robust estimator based on
Huber’s p function is also seem better than that of ML and LS fits. In summary,
the performance of the robust methods in terms of the fitting density to the data
seems quite satisfactory.

5.2. Electrical Insulating Data Set. The electrical insulating data set has been
already considered by [2] to illustrate the MOEBXII distribution. The data set
is consist of electrical insulating described in [12] in which the lenght of the time
until breakdown recorded. The data set is analyzed at 34 kilovolts with sample
size n = 19 in this application. The ML estimation method is used to estimate the
parameters of this distribution and the results are found as (4,0.9,1.002) in the
paper by Al-Saiari et al. [2].
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F1GURE 2. Histogram of the Failure Time Data Set and fitted densities

Alternative to the ML estimator we use the LS and the robust estimation meth-
ods proposed in this paper. We also recompute the ML estimate. The results are
given in Table 8. Note that the ML estimator is very close to the estimate they
have given. The other estimates are also close to the ML estimate. Note that to
obtain LS and robust estimates we use the ML estimates given by [2] as the initial
estimate for the algorithm.

Table 8 Parameter Estimations for the Electrical Insulating Data Set
with the initial values (g, co, ko) =(4,0.9,1)

a c k

ML 4.003 0.91 1.0032

LS 6.865 0.6434 1.029

Huber 5.217 0.82 1.004

Tukey 5.924 0.932 1.432

Figure 3 shows the histogram of the electrical insulating data set and fitted pdfs
obtained form ML, LS, Huber and Tukey according to Table 8.

From Figure 3, we can observe that all estimations of the parameters are closer
to each other. However, the LS estimator seems to be more effected by the potential
outlier than ML and robust estimators. But the difference of between the estimates
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F1GURE 3. Histogram of the Electrical Insulating Data Set and
fitted densities ((«o, co, ko)=(4,1,1))

is not satisfactory enough to claim the superiority of the methods. To gain same
more details about the data, we further use the kernel density estimation to see
the overall fit to the data. We observe that the fitted densities instead of having
L-shaped densities we may have unimodal skewed density. Therefore we taken
different initial values for the algorithm such as («, o, ko) = (20,1,1) and end it
up with the different estimates for the parameters given in Table 9.

Table 9 Parameter Estimations for the Electrical Insulating Data Set
with the initial values (o, co, ko) =(20,1,1)
a c k
ML 6.002 0.8364 1.4726
LS 51.184 1.19 0.8721
Huber 27.016 1.8721 0.8043
Tukey 23.043 1.8439 0.8727

The histogram of the electrical insulating data set and fitted pdfs obtained form
ML, LS, Huber and Tukey according to Table 9 are given in Figure 4.

Now, we can clearly observe that the LS estimator underfit the data. It can be
seen that the fitted pdf obtain from ML estimator is still L-shaped. In such cases,
it might be expected that the frequencies of the smaller values would be quite large,
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F1GURE 4. Histogram of the Electrical Insulating Data Set and
fitted densities ((av, co, ko)=(20,1,1))

and the frequencies of the larger values would be quite small. Therefore, the fitted
density obtained from ML is not provided a good fit to the data. The fitted density
obtained from the robust estimator based on Huber’s function is seem better than
that of ML and LS fits. Tukey would be preferable to fit this data set among others
as in Failure Time Data Set example since it catch the pick better than the others.

6. CONCLUSION

In this study, alternative robust estimation methods based on M estimator have
been proposed to obtain estimators for the parameters of the MOEBXII distribu-
tion. We have compared the performance of these methods through a simulation
study and real data examples. It is concluded that all the methods considered show
identical performance for estimating the parameters of the MOEBXII distribution
unless the data set contain outlier. However, the robust estimation methods per-
form better for the data sets with outlier than ML and LS estimation methods.
From both simulation study and real data examples, the effect of outliers on the
LS and ML estimates is fairly obvious. Therefore to eliminate the outliers’ effects,
robust methods can be preferable. There are other robust estimation methods such
as Optimal-B robust estimation that can be used to estimate the parameter of the
MOEBXII distribution. This will be future work.
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