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SOME RESULTS ON THE COMPARATIVE GROWTH ANALYSIS
OF ENTIRE FUNCTIONS UNDER THE TREATMENT OF

THEIR MAXIMUM TERMS AND GENERALIZED RELATIVE
L∗-ORDERS

SANJIB KUMAR DATTA AND TANMAY BISWAS

Abstract. In this paper we estimate some comparative growth properties of
composition of entire functions in terms of their maximum terms on the basis
of their generalized relative L∗ order (respectively generalized relative L∗ lower
order ) with respect to another entire function.

1. Introduction, Definitions and Notations

The value distribution theory deals with various aspects of the behavior of
entire functions one of which is the study of comparative growth properties. For
any entire function f defined in the open complex plane C, Mf (r), a function of r
is defined as follows:

Mf (r) = max
|z|=r
|f (z) | .

If f is non-constant thenMf (r) is strictly increasing and continuous and its
inverse M−1f (r) : (|f (0)| ,∞)→ (0,∞) exists and is such that lim

s→∞
M−1f (s) =∞.

An entire function f has an everywhere convergent power series expansion
as

f = a0 + a1z + a2z
2 + · · ·+ anzn + · · ·

The maximum term µf (r) of f can be defined in the following way:

µf (r) = max
n≥0

(|an|rn) .

In fact µf (r) is much weaker than Mf (r) in some sense. For another entire

function g, µg (r) is also defined and the ratio
µf (r)

µg(r)
as r →∞ is called the growth

of f with respect to g interms of their maximum term.
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Bernal [1] introduced the definition of relative order of f with respect to g,
denoted by ρg (f) as follows:

ρg (f) = inf {µ > 0 :Mf (r) < Mg (r
µ) for all r > r0 (µ) > 0}

= lim sup
r→∞

logM−1g Mf (r)

log r
.

Similarly, one can define the relative lower order of f with respect to g denoted
by λg (f) as follows :

λg (f) = lim inf
r→∞

logM−1g Mf (r)

log r
.

If we consider g (z) = exp z, the above definition coincides with the classical
definition { cf. [12] } of order ( lower order) of an entire function f which is as
follows:

Definition 1. The order ρf and the lower order λf of an entire function f are
defined as

ρf = lim sup
r→∞

log[2]Mf (r)

log r
and λf = lim inf

r→∞

log[2]Mf (r)

log r
,

where

log[k] x = log
(
log[k−1] x

)
, k = 1, 2, 3, ...and log[0] x = x .

Using the inequalities µf (r) ≤ Mf (r) ≤ R
R−rµf (R) {cf. [11]} , for 0 ≤ r < R

one may give an alternative definition of the order ρf and the lower order λf of an
entire function f in the following manner:

ρf = lim sup
r→∞

log[2] µf (r)

log r
and λf = lim inf

r→∞

log[2] µf (r)

log r
.

Lahiri and Banerjee [7] gave a more generalized concept of relative order in
the following way:

Definition 2. [7] If k ≥ 1 is a positive integer, then the k- th generalized relative
order of f with respect to g, denoted by ρ[k]g (f) is defined by

ρ[k]g (f) = inf
{
µ > 0 :Mf (r) < Mg

(
exp[k−1] rµ

)
for all r > r0 (µ) > 0

}
= lim sup

r→∞

log[k]M−1g Mf (r)

log r
.

Clearly ρ1g (f) = ρg (f) and ρ
1
exp z (f) = ρf .
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Likewise one can define the generalized relative lower order of f with respect to
g denoted by λ[k]g (f) as

λ[k]g (f) = lim inf
r→∞

log[k]M−1g Mf (r)

log r
.

Now let L ≡ L (r) be a positive continuous function increasing slowly i.e.,
L (ar) ∼ L (r) as r →∞ for every positive constant a. Singh and Barker [8] defined
it in the following way:

Definition 3. [8] A positive continuous function L (r) is called a slowly changing
function if for ε (> 0) ,

1

kε
≤ L (kr)

L (r)
≤ kε for r ≥ r (ε) and

uniformly for k (≥ 1) .

Somasundaram and Thamizharasi [9] introduced the notions of L-order for
entire function where L ≡ L (r) is a positive continuous function increasing slowly
i.e.,L (ar) ∼ L (r) as r → ∞ for every positive constant ‘a’. The more generalised
concept for L-order for entire function is L∗-order and its definition is as follows:

Definition 4. [9] The L∗-order ρL
∗

f and the L∗-lower order λL
∗

f of an entire func-
tion f are defined as

ρL
∗

f = lim sup
r→∞

log[2]Mf (r)

log
[
reL(r)

] and λL∗f = lim inf
r→∞

log[2]Mf (r)

log
[
reL(r)

] .

In view of the inequalities µf (r) ≤ Mf (r) ≤ R
R−rµf (R) {cf. [11]} , for 0 ≤ r < R

one may verify that

ρL
∗

f = lim sup
r→∞

log[2] µf (r)

log
[
reL(r)

] and λL∗f = lim inf
r→∞

log[2] µf (r)

log
[
reL(r)

] .
In the line of Somasundaram and Thamizharasi [9] and Bernal [1], Datta

and Biswas [2] gave the definition of relative L∗-order of an entire function in the
following way:

Definition 5. [2] The relative L∗-order of an entire function f with respect to
another entire function g , denoted by ρL

∗

g (f) in the following way

ρL
∗

g (f) = inf
{
µ > 0 :Mf (r) < Mg

{
reL(r)

}µ
for all r > r0 (µ) > 0

}
= lim sup

r→∞

logM−1g Mf (r)

log
[
reL(r)

] .
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Similarly, one can define the relative L∗-lower order of f with respect to g denoted
by λL

∗

g (f) as follows :

λL
∗

g (f) = lim inf
r→∞

logM−1g Mf (r)

log
[
reL(r)

] .

In the case of relative L∗-order (relative L∗-lower order) , it therefore seems
reasonable to define suitably an alternative definition of relative L∗-order (relative
L∗-lower order) of entire function in terms of its maximum terms. Datta , Biswas
and Ali [4] also introduced such definition in the following way:

Definition 6. [4] The relative order ρL
∗

g (f) and the relative lower order λg (f) of
an entire function f with respect to another entire function g are defined as

ρL
∗

g (f) = lim sup
r→∞

logµ−1g µf (r)

log
[
reL(r)

] and λL
∗

g (f) = lim inf
r→∞

logµ−1g µf (r)

log
[
reL(r)

] .

Similarly in the line of Lahiri and Banerjee [7], Biswas and Ali [4] one can
define the generalized relative L∗-order and generalized relative L∗-lower order of
an entire function in the following way :

Definition 7. Let k be an integer ≥ 1. The generalized relative L∗-order and
generalized relative L∗- lower order of an entire function f with respect to another
entire function g , denoted respectively by ρ[k]L

∗

g (f) and λ[k]L
∗

g (f) are defined in
the following way

ρ[k]L
∗

g (f) = lim sup
r→∞

log[k] µ−1g µf (r)

log
[
reL(r)

] and λ[k]L
∗

g (f) = lim inf
r→∞

log[k] µ−1g µf (r)

log
[
reL(r)

] .

In this paper we will establish some results related to the growth rates
of composite entire functions in terms of their maximum terms on the basis of
generalized relative L∗-order (generalized relative L∗-lower order ). Also we extend
some results of Datta et al. {[5], [6]}. We do not explain the standard definitions
and notations in the theory of entire functions since those are available in [13].

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1. [10] Let f and g be any two entire functions. Then for every α > 1
and 0 < r < R,

µf◦g (r) ≤
α

α− 1µf
(

αR

R− rµg (R)
)
.

Lemma 2. [10] If f and g are any two entire functions with g (0) = 0. Then for
all suffi ciently large values of r,

µf◦g(r) ≥
1

2
µf

(
1

8
µg

(r
4

)
− |g (0)|

)
.
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Lemma 3. [3] If f be an entire function and α > 1, 0 < β < α, then for all
suffi ciently large r,

µf (αr) ≥ βµf (r) .

3. Theorems

In this section we present the main results of the paper.

Theorem 1. Let f , g and h be any three entire functions such that

(i) lim sup
r→∞

log[k] µ−1h
(
µg(r)

)(
log reL(r)

)α = A, a real number > 0,

(ii) lim inf
r→∞

log[k] µ−1h
(
µf (r)

)(
log[k] µ−1h (r)

)β+1 = B, a real number > 0

and g (0) = 0 for any pair of α, β satisfying 0 < α < 1, β > 0 and α (β + 1) > 1.
Then

ρ
[k]L∗

h (f ◦ g) =∞ ,

where k = 2, 3, 4 · · · ·

Proof. From (i) , we get for a sequence of values of r tending to infinity that

log[k] µ−1h
(
µg(r)

)
≥ (A− ε)

(
log reL(r)

)α
(1)

and from (ii) , it follows for all suffi ciently large values of r that

log[k] µ−1h
(
µf (r)

)
≥ (B − ε)

(
log[k] µ−1h (r)

)β+1
.

As µg (r) is continuous, increasing and unbounded function of r, we obtain from
above for all suffi ciently large values of r that

log[k] µ−1h
(
µf (µg (r))

)
≥ (B − ε)

(
log[k] µ−1h

(
µg (r)

))β+1
. (2)
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Since µ−1h (r) is an increasing function of r, we have from Lemma 2, Lemma 3,
equations (1) and (2) for a sequence of values of r tending to infinity that

log[k] µ−1h µf◦g(r) ≥ log[k] µ−1h

{
µf

(
1

24
µg

(r
2

))}
i.e., log[k] µ−1h µf◦g(r) ≥ log[k] µ−1h

{
µf

(
µg

( r

100

))}
i.e., log[k] µ−1h µf◦g(r) ≥ (B − ε)

(
log[k] µ−1h

(
µg

( r

100

)))β+1
i.e., log[k] µ−1h µf◦g(r) ≥ (B − ε)

[
(A− ε)

(
log
( r

100

)
eL(

r
100 )
)α]β+1

i.e., log[k] µ−1h µf◦g(r) ≥ (B − ε) (A− ε)β+1
(
log
( r

100

)
eL(

r
100 )
)α(β+1)

i.e.,
log[k] µ−1h µf◦g(r)

log
[
reL(r)

] ≥
(B − ε) (A− ε)β+1

[
log
(
r
100

)
eL(

r
100 )
]α(β+1)

log
[
reL(r)

]
i.e., lim sup

r→∞

log[k] µ−1h µf◦g(r)

log
[
reL(r)

]
≥ lim inf

r→∞

(B − ε) (A− ε)β+1
[
log reL(r) +O(1)

]α(β+1)
log
[
reL(r)

] .

As ε (> 0) is arbitrary and α (β + 1) > 1, it follows from above that

ρ
[k]L∗

h (f ◦ g) =∞ .

Thus the theorem follows. �

In the line of Theorem 1, one may state the following two theorems without
their proofs :

Theorem 2. Let f , g and h be any three entire functions such that

lim inf
r→∞

log[k] µ−1h
(
µg(r)

)(
log reL(r)

)α = A, a real number > 0,

lim sup
r→∞

log[k] µ−1h
(
µf (r)

)(
log[k] µ−1h (r)

)β+1 = B, a real number > 0,

and g (0) = 0 for any pair of α, β satisfying 0 < α < 1, β > 0 and α (β + 1) > 1.
Then

ρ
[k]L∗

h (f ◦ g) =∞,
where k = 2, 3, 4 · · · ·
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Theorem 3. Let f , g and h be any three entire functions such that

lim inf
r→∞

log[k] µ−1h
(
µg(r)

)(
log reL(r)

)α = A, a real number > 0,

lim inf
r→∞

log[k] µ−1h
(
µf (r)

)(
log[k] µ−1h (r)

)β+1 = B, a real number > 0,

and g (0) = 0 for any pair of α, β satisfying 0 < α < 1, β > 0 and α (β + 1) > 1.
Then

λ
[k]L∗

h (f ◦ g) =∞,
where k = 2, 3, 4 · · · ·

Theorem 4. Let f , g and h be any three entire functions such that

(i) lim sup
r→∞

log[k] µ−1h
(
µg(r)

)(
log[2] r

)α = A, a real number > 0,

(ii) lim inf
r→∞

log

[
log[k] µ−1h (µf (r))
log[k] µ−1h (r)

]
[
log[k] µ−1h (r)

]β = B, a real number > 0

and g (0) = 0 for any pair of α, β satisfying α > 1, 0 < β < 1 and αβ > 1. Then

ρ
[k]L∗

h (f ◦ g) =∞,

where k = 2, 3, 4 · · · ·

Proof. From (i) , we get for a sequence of values of r tending to infinity that

log[k] µ−1h
(
µg(r)

)
≥ (A− ε)

(
log[2] r

)α
(3)

and from (ii) , we obtain for all suffi ciently large values of r that

log

[
log[k] µ−1h

(
µf (r)

)
log[k] µ−1h (r)

]
≥ (B − ε)

[
log[k] µ−1h (r)

]β
i.e.,

log[k] µ−1h
(
µf (r)

)
log[k] µ−1h (r)

≥ exp

[
(B − ε)

[
log[k] µ−1h (r)

]β]
.

As µg (r) is continuous, increasing and unbounded function of r, we have from
above for all suffi ciently large values of r that

log[k] µ−1h
(
µf (µg (r))

)
log[k] µ−1h

(
µg (r)

) ≥ exp
[
(B − ε)

[
log[k] µ−1h

(
µg (r)

)]β]
. (4)
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Further µ−1h (r) is increasing function of r, it follows from Lemma 2, Lemma 3,
equations (3) and (4) for a sequence of values of r tending to infinity that

log[k] µ−1h µf◦g(r)

log
[
reL(r)

] ≥
log[k] µ−1h

{
µf
(
1
24µg

(
r
4

))}
log
[
reL(r)

]

i.e.,
log[k] µ−1h µf◦g(r)

log
[
reL(r)

] ≥
log[k] µ−1h

{
µf
(
µg
(
r
100

))}
log
[
reL(r)

]

i.e.,
log[k] µ−1h µf◦g(r)

log
[
reL(r)

]
≥

log[k] µ−1h
{
µf
(
µg
(
r
100

))}
log[k] µ−1h

(
µg
(
r
100

)) ·
log[k] µ−1h

(
µg
(
r
100

))
log
[
reL(r)

]

i.e.,
log[k] µ−1h µf◦g(r)

log
[
reL(r)

]
≥ exp

[
(B − ε)

[
log[k] µ−1h

(
µg

( r

100

))]β]
·
(A− ε)

(
log[2]

(
r
100

))α
log
[
reL(r)

]
i.e.,

log[k] µ−1h µf◦g(r)

log
[
reL(r)

]
≥ exp

[
(B − ε) (A− ε)β

(
log[2]

( r

100

))αβ]
·
(A− ε)

(
log[2]

(
r
100

))α
log
[
reL(r)

]

i.e.,
log[k] µ−1h µf◦g(r)

log
[
reL(r)

]
≥ exp

[
(B − ε) (A− ε)β

(
log[2]

( r

100

))αβ−1
log[2]

( r

100

)]
·
(A− ε)

(
log[2]

(
r
100

))α
log
[
reL(r)

]
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i.e.,
log[k] µ−1h µf◦g(r)

log
[
reL(r)

]
≥

(
log
( r

100

))(B−ε)(A−ε)β(log[2]( r
100 ))

αβ−1

·
(A− ε)

(
log[2]

(
r
100

))α
log
[
reL(r)

]
i.e., lim sup

r→∞

log[k] µ−1h µf◦g(r)

log
[
reL(r)

]
≥ lim inf

r→∞

(
log
( r

100

))(B−ε)(A−ε)β(log[2]( r
100 ))

αβ−1

·
(A− ε)

(
log[2]

(
r
100

))α
log
[
reL(r)

] .

Since ε (> 0) is arbitrary and α > 1, αβ > 1, the theorem follows from above. �

In the line of Theorem 4, one may also state the following two theorems
without their proofs :

Theorem 5. Let f , g and h be any three entire functions such that

lim inf
r→∞

log[k] µ−1h
(
µg(r)

)(
log[2] r

)α = A, a real number > 0,

lim sup
r→∞

log

[
log[k] µ−1h (µf (r))
log[k] µ−1h (r)

]
[
log[k] µ−1h (r)

]β = B, a real number > 0

and g (0) = 0 for any pair of α, β with α > 1, 0 < β < 1 and αβ > 1. Then

ρ
[k]L∗

h (f ◦ g) =∞,
where k = 2, 3, 4 · · · ·

Theorem 6. Let f , g and h be any three entire functions such that

lim inf
r→∞

log[k] µ−1h
(
µg(r)

)(
log[2] r

)α = A, a real number > 0,

lim inf
r→∞

log

[
log[k] µ−1h (µf (r))
log[k] µ−1h (r)

]
[
log[k] µ−1h (r)

]β = B, a real number > 0

and g (0) = 0 for any pair of α, β satisfying α > 1, 0 < β < 1 and αβ > 1. Then

λ
[k]L∗

h (f ◦ g) =∞,
where k = 2, 3, 4 · · · ·
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Theorem 7. Let f , g and h be any three entire functions such that 0 < λ
[k]L∗

h (g) ≤
ρ
[k]L∗

h (g) <∞ where k = 2, 3, 4 · · · ·, g (0) = 0 and

lim sup
r→∞

log[k] µ−1h
(
µf (r)

)
log[k] µ−1h (r)

= A, a real number <∞.

Then

λ
[k]L∗

h (f ◦ g) ≤ A · λ[k]L
∗

h (g) and ρ[k]L
∗

h (f ◦ g) ≤ A · ρ[k]L
∗

h (g) .

Proof. Since µ−1h (r) is an increasing function of r, it follows from Lemma 1 for all
suffi ciently large values of r that

log[k] µ−1h µf◦g(r)

log
[
reL(r)

] ≤
log[k] µ−1h

{
µf
(
µg (26r)

)}
log
[
reL(r)

]
i.e.,

log[k] µ−1h µf◦g(r)

log
[
reL(r)

]
≤

log[k] µ−1h
{
µf
(
µg (26r)

)}
log[k] µ−1h

(
µg (26r)

) ·
log[k] µ−1h

(
µg (26r)

)
log
[
reL(r)

] (5)

i.e., lim inf
r→∞

log[k] µ−1h µf◦g(r)

log
[
reL(r)

]
≤ lim inf

r→∞

[
log[k] µ−1h

{
µf
(
µg (26r)

)}
log[k] µ−1h

(
µg (26r)

) ·
log[k] µ−1h

(
µg (26r)

)
log
[
reL(r)

] ]

i.e., lim inf
r→∞

log[k] µ−1h µf◦g(r)

log
[
reL(r)

]
≤ lim sup

r→∞

log[k] µ−1h
{
µf
(
µg (26r)

)}
log[k] µ−1h

(
µg (26r)

) · lim inf
r→∞

log[k] µ−1h
(
µg (26r)

)
log
[
reL(r)

]
i.e., λ

[k]L∗

h (f ◦ g) ≤ A · λ[k]L
∗

h (g) . (6)

Also from (5) , we obtain for all suffi ciently large values of r that

lim sup
r→∞

log[k] µ−1h µf◦g(r)

log
[
reL(r)

]
≤ lim sup

r→∞

[
log[k] µ−1h

{
µf
(
µg (26r)

)}
log[k] µ−1h

(
µg (26r)

) ·
log[k] µ−1h

(
µg (26r)

)
log
[
reL(r)

] ]
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i.e., lim sup
r→∞

log[k] µ−1h µf◦g(r)

log
[
reL(r)

]
≤ lim sup

r→∞

log[k] µ−1h
{
µf
(
µg (26r)

)}
log[k] µ−1h

(
µg (26r)

) · lim sup
r→∞

log[k] µ−1h
(
µg (26r)

)
log
[
reL(r)

]
i.e., ρ

[k]L∗

h (fog) ≤ A · ρ[k]L
∗

h (g) . (7)

Therefore the theorem follows from (6) and (7) . �

Theorem 8. Let f , g and h be any three entire functions such that 0 < λ
[k]L∗

h (g) <
∞ where k = 2, 3, 4 · · · ·, g (0) = 0 and

lim sup
r→∞

log[k] µ−1h
(
µf (r)

)
log[k] µ−1h (r)

= A, a real number <∞.

Then
ρ
[k]L∗

h (f ◦ g) ≥ B · λ[k]L
∗

h (g) .

Proof. Since µ−1h (r) is an increasing function of r, it follows from Lemma 2 for all
suffi ciently large values of r that

log[k] µ−1h µf◦g(r)

log
[
reL(r)

] ≥
log[k] µ−1h

{
µf
(
µg
(
r
100

))}
log
[
reL(r)

]
i.e.,

log[k] µ−1h µf◦g(r)

log
[
reL(r)

]
≥

log[k] µ−1h
{
µf
(
µg
(
r
100

))}
log[k] µ−1h

(
µMg

(
r
100

)) ·
log[k] µ−1h

(
µMg

(
r
100

))
log
[
reL(r)

]
i.e., lim sup

r→∞

log[k] µ−1h µf◦g(r)

log
[
reL(r)

]
≥ lim sup

r→∞

[
log[k] µ−1h

{
µf
(
µg
(
r
100

))}
log[k] µ−1h

(
µMg

(
r
100

)) ·
log[k] µ−1h

(
µMg

(
r
100

))
log
[
reL(r)

] ]

i.e., lim sup
r→∞

log[k] µ−1h µf◦g(r)

log
[
reL(r)

]
≥ lim sup

r→∞

log[k] µ−1h
{
µf
(
µg
(
r
100

))}
log[k] µ−1h

(
µMg

(
r
100

)) · lim inf
r→∞

log[k] µ−1h
(
µMg

(
r
100

))
log
[
reL(r)

]
i.e., ρ

[k]L∗

h (f ◦ g) ≥ B · λ[k]L
∗

h (g) .

Thus the theorem follows. �
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Theorem 9. Let f , g and h be any three entire functions such that 0 < λ
[k]L∗

h (g) ≤
ρ
[k]L∗

h (g) <∞ where k = 2, 3, 4 · · · ·, g (0) = 0 and

lim inf
r→∞

log[k] µ−1h
(
µf (r)

)
log[k] µ−1h (r)

= B, a real number <∞.

Then
λ
[k]L∗

h (f ◦ g) ≤ B · ρ[k]L
∗

h (g) .

Theorem 10. Let f , g and h be any three entire functions such that 0 < ρ
[k]L∗

h (g) <
∞ where k = 2, 3, 4 · · · ·, g (0) = 0 and

lim sup
r→∞

log[k] µ−1h
(
µf (r)

)
log[k] µ−1h (r)

= A, a real number <∞.

Then
ρ
[k]L∗

h (f ◦ g) ≥ A · ρ[k]L
∗

h (g) .

The proof of Theorem 9 and Theorem 10 are omitted because those can be
carried out in the line of Theorem 7 and Theorem 8, respectively.
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