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COMMON FIXED POINT RESULTS FOR A BANACH
OPERATOR PAIR IN CAT(0) SPACES WITH APPLICATIONS

SAFEER HUSSAIN KHAN AND MUJAHID ABBAS

Abstract. In this paper, suffi cient conditions for the existence of a common
fixed point for a Banach operator pair of mappings satisfying generalized con-
tractive conditions in the frame work of CAT(0) spaces are obtained. As an
application, related results on best approximation are derived. Our results
generalize various known results in contemporary literature.

1. Introduction and Preliminaries

Metric fixed point theory is a branch of fixed point theory which finds its primary
applications in functional analysis. The interplay between the geometry of Banach
spaces and fixed point theory has been very strong and fruitful. In particular,
geometric conditions on mappings and/or underlying spaces play a crucial role in
metric fixed point problems. Although it has a purely metric flavor, it is also a major
branch of nonlinear functional analysis with close ties to Banach space geometry, see
for example [11, 12] and references mentioned therein. Several results concerning
the existence and approximation of a fixed point of a mapping rely on convexity
hypotheses and geometric properties of the Banach spaces. Gromov [13] introduced
the notion of CAT(0) spaces. For application of these spaces in various branches of
mathematics and for a vigorous discussion on these spaces, we refer to Bridson and
Haefliger [4] and Burago-Burago-Ivanov [6]. The results obtained in this direction
were the starting point for a new mathematical field: the application of geometric
theory of Banach spaces to fixed point theory. Applying fixed point theorems, useful
results have been established in approximation theory. Meinardus [22] was the first
to employ fixed point theorem to prove the existence of an invariant approximation
in Banach spaces. Subsequently, several interesting and valuable results appeared
in the literature of approximation theory ( [2] and [25] ). Recently, Chen and Li
[7] introduced the class of Banach operator pairs as a new class of noncommuting
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maps. For some more study, see for example [1, 27, 28]. In this paper, common
fixed points for Banach operator pair of mappings which are more general than
Cq-commuting mappings, are obtained in the setting of a CAT(0) spaces. As an
application, invariant approximation results for these mappings are also derived.

2. PRELIMINARIES

First we recall some basics.
Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more
briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X
such that c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In
particular, c is an isometry and d(x, y) = l. The image of c is called a geodesic
(or metric) segment joining x and y. When it is unique this geodesic segment is
denoted by [x, y]. The space (X, d) is said to be a geodesic space if every two points
of X are joined by a geodesic, and X is said to be uniquely geodesic if there is
exactly one geodesic joining x and y for each x, y ∈ X. A subset Y ⊆ X is said
to be convex if Y includes every geodesic segment joining any two of its points. A
geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists of three
points x1, x2, x3 in X (the vertices of 4) and a geodesic segment between each
pair of vertices (the edges of 4 ). A comparison triangle for the geodesic triangle
4(x1, x2, x3) in (X, d) is a triangle 4(x1, x2, x3) := 4(x̄1, x̄2, x̄3) in the Euclidean
plane E2 such that dE2(x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}. A geodesic space is
said to be a CAT(0) space if all geodesic triangles of appropriate size satisfy the
following comparison axiom.
CAT(0) : Let 4 be a geodesic triangle in X and let 4 be a comparison triangle
for 4. Then 4 is said to satisfy the CAT(0) inequality if for all x, y ∈ 4 and all
comparison points x̄, ȳ ∈ 4 , d(x, y) ≤ dE2(x̄, ȳ).If x, y1, y2 are points in a CAT(0)
space and if y0 is the midpoint of the segment [y1, y2], then the CAT(0) inequality
implies

d(x, y0)
2 ≤ 1

2
d(x, y1)

2 +
1

2
d(x, y2)

2 − 1

4
d(y1, y2)

2 (CN)

This is the (CN) inequality of Bruhat and Tits [5]. In fact (cf. [4, p. 163]), a
geodesic space is a CAT(0) space if and only if it satisfies the (CN) inequality.
A metric space X is called a CAT(0) space [13] if it is geodesically connected and
if every geodesic triangle in X is at least as "thin" as its comparison triangle in
Euclidean plane. The complex Hilbert ball with a hyperbolic metric is a CAT(0)
space, see [11, 23].
Following are some elementary facts about CAT(0) spaces, see Dhompongsa and
Panyanak [9].
Lemma 2.1. Let (X, d) be a CAT(0) space. Then

(i): (X, d) is uniquely geodesic (see [4, pp.160]).
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(ii): Let p, x, y be points of X, let α ∈ [0, 1], and let m1 and m2 denote,
respectively, the points of [p, x] and [p, y] satisfying d(p,m1) = αd(p, x) and
d(p,m2) = αd(p, y). Then d(m1,m2) ≤ αd(x, y) (see [19, Lemma 3]).

(iii): Let x, y ∈ X,x 6= y and z, w ∈ [x, y] such that d(x, z) = d(x,w). Then
z = w.

(iv): Let x, y ∈ X. For each t ∈ [0, 1], there exists a unique point z ∈ [x, y]
such that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y). (1.1)

For convenience, from now on we will use the notation (1− t)x⊕ ty for the unique
point z satisfying (1.1).
Lemma 2.2. ([9]) Let X be a CAT(0) space. Then

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z)

for all x, y, z ∈ X and t ∈ [0, 1].
Let us recall the definitions and related concepts about 4− convergence. Let {xn}
be a bounded sequence in a CAT(0) space X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn} = inf{r(x, {xn} : x ∈ X}
and the asymptotic center A ({xn}) of {xn} is the set

A ({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.
It is known (see, e.g. [8], Proposition 7) that in a CAT(0) space, A ({xn}) consists
of exactly one point.
A sequence {xn} in X is said to4− converge to x ∈ X if x is the unique asymptotic
center of {un} for every subsequence {un} of {xn}. In this case we write 4− limn

xn = x and call x the 4− limit of {xn}, see [20, 21].
A self mapping T on CAT(0) space X is said to be 4− continuous at x ∈ X if for
any sequence {xn} in X with 4− limn xn = x, we have 4− limn Txn = Tx.
A subset K of X is said to be 4− closed if any sequence {xn} in K with 4− limn

xn = x implies that x ∈ K. A subset K of X is said to be 4− compact if for any
sequence {xn} in K, there exists a subsequence {xm} of {xn} such that 4− limm

xm = x ∈ K.
The following lemma can be found, for example, in [9].

Lemma 2.3. Every bounded sequence in a CAT(0) space X has a4− convergent
subsequence.

(ii) If C is a closed convex subset of a CAT(0) space X and if {xn} is a bounded
sequence in C, then the asymptotic center of {xn} is in C.
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Let X be a CAT(0) space. A subset Y ⊆ X is said to be convex if Y includes every
geodesic segment joining any two of its points. A set Y is said to be q- starshaped
if there exists q in Y such that Y includes every geodesic segment joining any of its
point with q. Obviously q- starshaped subsets of X contain all convex subsets of
X as a proper subclass.
For the sake of convenience, we gather some basic definitions and set out the

terminology needed in the sequel.
Definition 2.4. Let T, S : X → X. A point x ∈ X is called:
(1) a fixed point of T if Tx = x;
(2) a coincidence point of the pair {T, S} if Tx = Sx;
(3) a common fixed point of the pair {T, S} if x = Tx = Sx.
F (T ), C(T, S) and F (T, S) denote the set of all fixed points of T, the set of all
coincidence points of the pair {T, S}, and the set of all common fixed points of the
pair {T, S}, respectively.
Let Y be a q-starshaped subset of a CAT(0) space X and T, S : Y → Y. Put,

Y T (x)q = {yλ : yλ = (1− λ)q ⊕ λTx and λ ∈ [0, 1]}.

Now, for each x in X, d(S(x), Y
T (x)
q ) = inf

λ∈[0,1]
d(S(x), yλ). Moreover if for u ∈ X,

x ∈ Y, Y xu ∩ Y is nonempty then x ∈ ∂Y (boundary of Y ).
Definition 2.5. A self mapping T on a CAT(0) space X is said to satisfy a
property (I), if for λ ∈ [0, 1],we have T ((1− λ)x⊕ λy) = (1− λ)Tx⊕ λTy.
Definition 2.6. Let X be a CAT(0) space and Y a q-starshaped subset of X, S
and T be self mappings on X and q ∈ F (S), then T is said to be:

(1) an S-contraction if there exists k ∈ (0, 1) such that d(Tx, Ty) ≤ kd(Sx, Sy);
(2) an asymptotically S-nonexpansive if there exists a sequence {kn}, kn ≥ 1,

with lim
n→∞

kn = 1 such that d(Tn(x), Tn(y)) ≤ knd(Sx, Sy) for each x, y in

Y and each n ∈ N. If kn = 1, for all n ∈ N, then T is known as an S−
nonexpansive mapping. If S = I (identity map), then T is asymptotically
nonexpansive mapping;

(3) R-weakly commuting if there exists a real numberR > 0 such that d(TSx, STx) ≤
Rd(Tx, Sx) for all x in Y ;

(4) R-subweakly commuting if there exists a real number R > 0 such that
d(TSx, STx) ≤ Rd(Sx, Y

T (x)
q ) for all x ∈ Y ;

(5) Cq-commuting if STx = TSx for all x ∈ Cq(S, T ), where Cq(S, T ) =
∪{C(S, Tk) : 0 ≤ k ≤ 1} and Tkx = (1− k)q ⊕ kTx.

Definition 2.7. Let X be a metric space and K be any closed subset of X. If
there exists a y0 ∈ K such that d(x, y0) = d(x,K) = infy∈K d(x, y), then y0 is
called a best approximation to x out of K. We denote by PK(x), the set of all best
approximations to x out of K.
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A self mapping T on a CAT(0) spaceX is said to be uniformly asymptotically regular
on E if for each ε > 0, there exists a positive integer N such that d(Tnx, Tn+1x) < ε
for all n ≥ N and for all x in E.
The ordered pair (T, I) of two self maps of a metric space (X, d) is called a Banach
operator pair if the set F (I) is T - invariant, namely T (F (I)) ⊆ F (I). Obviously, any
commuting pair (T, I) is a Banach operator pair but not conversely in general, see
[7]. If (T, I) is a Banach operator pair then (I, T ) need not be a Banach operator
pair (cf. Example 1 [7]). If the self-maps T and I of X satisfy d(fTx, Tx) ≤
kd(fx, x) for all x ∈ X and k ≥ 0, then (T, f) is a Banach operator pair.

3. COMMON FIXED POINT RESULTS

In this section, the existence of common fixed points of Banach operator pair of
mappings is established in a CAT(0) space. The following result is a consequence
of ([16], Theorem 2.1).
Theorem 3.1. LetK be a subset of a metric space (X, d), and f and T be weakly
compatible selfmaps of K. Assume that clT (K) ⊂ f(K), clT (K) is complete, and
T and f satisfy for all x, y ∈ K and 0 ≤ h < 1,

d(Tx, Ty) ≤ hmax {d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx)} .

Then K ∩ F (f) ∩ F (T ) is singleton.
The following result extends and improves Lemma 3.1 of [7] and Theorem 1 in [18].
Lemma 3.2. Let K be a nonempty subset of a metric space (X, d), and (T, f)
be a Banach operator pair on K. Assume that clT (K) is complete, and T and f
satisfy for all x, y ∈ K and 0 ≤ h < 1,

d(Tx, Ty) ≤ hmax {d(fx, fy), d(Tx, fx), d(Ty, fy), d(Tx, fy), d(Ty, fx)} . (3.1)

If f is continuous and F (f) is nonempty, then there exists a unique common fixed
point of T and f .
Proof. By our assumptions, T (F (f)) ⊆ F (f) and F (f) is nonempty and closed.
Moreover, cl(T (F (f))) being subset of cl(T (K)) is complete. Further, for all x, y ∈
F (f), we have by inequality (3.1),

d(Tx, Ty) ≤ hmax{d(fx, fy), d(fx, Tx), d(fy, Ty), d(fy, Tx), d(fx, Ty)}
= hmax{d(x, y), d(x, Tx), d(y, Ty), d(y, Tx), d(x, Ty)}.

Hence T is a generalized contraction on F (f) and cl(T (F (f))) ⊆ cl(F (f)) = F (f).
By Theorem 3.1, T has a unique fixed point z in F (f) and consequently F (f)∩F (T )
is singleton.
The following result presents an analogue of Lemma 3.3 [3] for Banach operator
pair without imposing the condition that f satisfies property I.
Lemma 3.3. Let f and T be self-maps on a nonempty q-starshaped subset K
of a CAT(0) space X. Assume that f is continuous and F (f) is q-starshaped with
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q ∈ F (f), (T, f) is a Banach operator pair on K and satisfy for each n ≥ 1

d(Tnx, Tny) ≤ knmax
{
d(fx, fy), dist(fx, Y T

nx
q ), dist(fy, Y T

ny
q ),

dist(fx, Y T
ny

q , dist(fy, Y T
nx

q )

}
(3.2)

for all x, y ∈ K, where {kn} is a sequence of real numbers with kn ≥ 1 and
lim
n→∞

kn = 1. For each n ≥ 1, define a mapping Tn on K by

Tnx = (1− µn)q ⊕ µnTnx,

where µn =
λn
kn

and {λn} is a sequence of numbers in (0, 1) such that lim
n→∞

λn = 1.

Then for each n ≥ 1, Tn and f have exactly one common fixed point xn in K such
that fxn = xn = (1− µn)q ⊕ µnTnxn provided cl(Tn(K)) is complete for each n.
Proof. By definition,

Tnx = (1− µn)q ⊕ µnTnx.
As (T, f) is a Banach operator pair, for each n ≥ 1, Tn(F (f)) ⊆ F (f) and F (f)
is nonempty and closed. Since F (f) is q-starshaped and Tnx ∈ F (f), for each x ∈
F (f), Tnx = (1− µn)q ⊕ µnTnx ∈ F (f). Thus (Tn, f) is Banach operator pair for
each n. Since Tnx ∈ [q, Tnx] and Tny ∈ [q, Tny] such that d(Tnx, q) = µnd(q, Tnx)
and d(Tny, q) = µnd(q, Tny), therefore by (3.2),

d(Tnx, Tny) = d((1− µn)q ⊕ µnTnx, (1− µn)q ⊕ µnTny)

≤ µnd(Tnx, Tny)

≤ λnmax{d(fx, fy), dist(fx, Y T
nx

q ), dist(fy, Y T
ny

q ),

dist(fx, Y T
ny

q , dist(fy, Y T
nx

q )}
≤ λnmax{d(fx, fy), d(fx, Tnx), d(fy, Tny),

d(fx, Tny), d(fy, Tnx)}

for each x, y ∈ K. By Lemma 3.2, for each n ≥ 1, there exists a unique xn ∈ K
such that xn = fxn = Tnxn. Thus for each n ≥ 1, K ∩ F (Tn) ∩ F (f) 6= φ.
The following result extends the recent results due to Chen and Li ([7], Theorems
3.2-3.3) to asymptotically f -nonexpansive maps.
Theorem 3.4. Let f and T be self-maps on a q-starshaped subset K of a
CAT(0) space X. Assume that (T, f) is Banach operator pair on K, F (f) is q-
starshaped with q ∈ F (f), f is continuous, T is uniformly asymptotically regular
and asymptotically f -nonexpansive. Then F (T ) ∩ F (f) 6= φ, provided cl(T (K)) is
compact and T is continuous or f is ∆−continuous and T (K) is ∆− compact and
complete.
Proof. Notice that compactness of cl(T (K)) implies that clTn(K) is compact
and thus complete. From Lemma 3.3, for each n ≥ 1, there exists xn ∈ K such
that xn = fxn = (1 − µn)q ⊕ µnT

nx. As T (K) is bounded, so d(xn, T
nxn) =

d((1− µn)q ⊕ µnTnx, Tnxn)) ≤ (1− µn)d(Tnxn, q)→ 0 as n→∞. Since (T, f) is
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Banach operator pair and fxn = xn, so fTnxn = Tnfxn = Tnxn and thus we get

d(xn, Txn) = d(xn, T
nxn) + d(Tnxn, T

n+1xn) + d(Tn+1xn, Txn)

≤ d(xn, T
nxn) + d(Tnxn, T

n+1xn) + k1d(fTnxn, fxn)

= d(xn, T
nxn) + d(Tnxn, T

n+1xn) + k1d(Tnxn, xn).

Further, T is uniformly asymptotically regular, therefore we have

d(xn, Txn) ≤ d(xn, T
nxn) + d(Tnxn, T

n+1xn) + k1d(Tnxn, xn)→ 0,

as n → ∞. Now the compactness of cl(Tn(K)) further implies that there exists
a subsequence {xk} of {xn} such that xk → y ∈ K as k → ∞. Now d(y, Ty) ≤
d(Ty, Txk)+d(Txk, xk)+d(xk, y) and continuity of T and the fact d(xk, Txk)→ 0,
gives that y ∈ F (T ). Also by the continuity of f , we have y ∈ F (T ) ∩ F (f). Thus
F (T ) ∩ F (f) 6= φ.
The ∆-compactness and completeness of T (K) implies that Tn(K) is ∆− com-

pact and complete. From Lemma 3.3, for each n ≥ 1, there exists xn ∈ K such that
xn = fxn = (1− µn)q ⊕ µnTnxn. The analysis in (i), implies that d(xn, Txn)→ 0
as n→∞. The ∆−compactness of T (K) implies that there is a subsequence {xm}
of {xn} ∆−converging to y ∈ K as m → ∞. ∆− continuity of f implies that
fy = y. Now we show that y = Ty. Suppose that y 6= Ty, then by uniqueness of
asymptotic centers we have

lim sup
m→∞

d(xm, y) < lim sup
m→∞

d(xm, T y)

≤ lim sup
m→∞

d(xm, Txm) + lim sup
m→∞

d(Txm, Ty)

= lim sup
m→∞

d(Txm, T y) ≤ lim sup
m→∞

(kmd(fxm, fy))

= lim sup
m→∞

d(xm, y),

which is a contradiction. Thus fy = Ty = y and hence F (T ) ∩ F (I) 6= φ.
Corollary 3.5 Let f and T be self-maps on a q-starshaped subset K of a CAT(0)
space X. Assume that (T, f) is Banach operator pair on K, F (f) is q-starshaped
with q ∈ F (f), f is continuous and T is f -nonexpansive. Then F (T ) ∩ F (f) 6= φ,
provided cl(T (K)) is compact.
Corollary 3.6 Let f and T be self-maps on a q-starshaped subset K of a CAT(0)
space X. Assume that (T, f) is commuting pair on K, F (f) is q-starshaped with
q ∈ F (f), f is continuous and T is f -nonexpansive. Then F (T ) ∩ F (f) 6= φ,
provided cl(T (K)) is compact.
Definition 3.7. Let X be a metric space and K be a closed subset of X. If there
exists a y0 ∈ K such that d(x, y0) = d(x,K) = inf{d(x, y) : y ∈ K}, then y0 is
called a best approximation to x out of K. We denote by PK(x), the set of all best
approximations to x out of K.
Remark 3.8. Let K be a closed convex subset of a CAT(0) space. As (1−λ)u⊕
λv ∈ K for u, v ∈ K, λ ∈ [0, 1], note that (1 − λ)u ⊕ λv ∈ PK(x). Hence PK(x)
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is a convex subset of X. Also, PK(x) is a closed subset of X. Moreover, it can be
shown that PK(x) ⊂ ∂K, where ∂K stands for the boundary of K.
Now we obtain results on best approximation as a fixed point of Banach operator
pair of mappings in a CAT(0) space.
Theorem 3.9. Let K be a subset of a CAT(0) space X and f, T : X → X
be mappings such that u ∈ F (f) ∩ F (T ) for some u ∈ X and T (∂K ∩ K) ⊆ K.
Suppose that PK(u) is nonempty and q-starshaped, f is continuous on PK(u),
d(Tx, Tu) ≤ d(fx, fu) for each x ∈ PK(u) and f(PK(u)) ⊆ PK(u). If (T, f) is a
Banach operator pair on PK(u), F (f) is nonempty and q-starshaped for q ∈ F (f),
T is uniformly asymptotically regular and asymptotically f -nonexpansive then
PK(u) ∩ F (f) ∩ F (T ) 6= φ, provided T is continuous and cl(T (PK(u))) is com-
pact or f is ∆−continuous on PK(u) and T (PK(u)) is ∆− compact and complete.
Proof. Let x ∈ PK(u). Then for any h ∈ (0, 1), d((1 − h)u ⊕ hx, x) ≤ (1 −
h)d(x, u) < dist(u,K). It follows that {(1 − h)u ⊕ hx : 0 < h < 1} and the set
K are disjoint. Thus x is not in the interior of K and so x ∈ ∂K ∩ K. Since
T (∂K ∩K) ⊆ K, Tx must be in K. Also fx ∈ PK(u), u ∈ F (f) ∩ F (T ) and f and
T satisfy d(Tx, Tu) ≤ d(fx, fu), thus we have

d(Tx, u) = d(Tx, Tu) ≤ d(fx, fu)

= d(fx, u) = dist(u,K).

It further implies that Tx ∈ PK(u). Therefore T is a self map of PK(u). The result
now follows from Theorem 3.4.
The above result extends Theorem 3.2 of [2], Theorems 4.1-4.2 of [7], Theorem 7 of
[15], Theorem 3 of [24], the corresponding results of [17], [18], [25], and[26].
Remarks 3.10.

(1) Theorem 3.4 extends and improves Theorems 1 and 2 of Dotson [10], The-
orem 2.2 of Al-Thagafi [2], Theorem 4 of Habiniak [14] and Theorem 1 of
Khan and Khan [18].

(2) Theorem 3.7 extends and improves Theorem 3.4 of Beg et al [3] to CAT(0)
spaces.
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