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A DISCRETE TIME MODEL FOR EPIDEMIC SPREAD:
TRAVELING WAVES AND SPREADING SPEEDS

OZGUR AYDOGMUS

Abstract. In this paper, we aim to study spread of an epidemic in a spatially
stratified population with non-overlapping generations. We consider mean field
equation of an endemic chain-binomial process and allow individuals to dis-
perse in the spatial habitat. To be able to model the spatial movement, we used
an averaging kernel. The existence of traveling waves for traveling wave speeds
greater than a certain minimum is proved. In addition, an explicit formula for
the critical wave speed is given in terms of the moment generating function of
the dispersal kernel and the basic reproductive ratio of the infectives.

1. Introduction

Mollison [14] modeled infectious disease spread by using a nonlocal contact model
and this study triggered many other studies concerning the invasion of a new ter-
ritory by intruder species. Mollison’s model does not allow individuals to disperse.
Medlock and Kot [13] compared the nonlocal contact model and distributed infec-
tives model. Both of these approaches assume that the dynamics of the populations
under consideration are governed by continuous time processes.
On the other hand, discrete time models have also been used to model dynamics

of epidemic processes [1, 2]. One of the most popular processes is the chain-binomial
models(see for example [7, 11].) Chain binomial processes assume that the popu-
lation has non-overlapping generations. Recently extinction time of a generalized
endemic model with no immunity against the disease is studied using its mean field
dynamics [5]. The mean field equation of the model, not surprisingly, is a difference
equation.
Ecological difference equations with dispersal have been studied by Kot [9] in

terms of traveling waves. Traveling waves in ecological processes are used to study
invasion of a new habitat by an intruder species. Similarly in continuous time epi-
demiological processes such solutions have been studied to determine the conditions

Received by the editors: October 12, 2016; Accepted: January 24, 2017.
2010 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18.
Key words and phrases. Epidemic, spread of infectives, asymptotic speed of propagation, trav-

eling waves.

c©2017 Ankara University
Communications de la Facu lté des Sciences de l’Université d’Ankara. Séries A1. Mathematics and Statistics.

243



244 OZGUR AYDOGMUS

for invasion of a previously occupied habitat by infective individuals. For continu-
ous time systems, the analysis of epidemic spread in terms of traveling waves and
spreading speeds have been studied by many authors (see e.g. [17] and references
therein.)
Here we consider the mean field equation of a generalized endemic chain-binomial

process as given in [5] with spatial dispersal. This equation keep tracks of the
frequency of infective individuals in discrete generations. We also allow individuals
to disperse in the spatial habitat. The resulting equation is an integro-difference
equation describing an epidemic process with no immunity against the disease.
Given a spatially inhomogeneous epidemic model it is natural to look for traveling

wave solutions. We show that there exists a critical traveling wave speed such that
if the traveling wave speed exceeds this value there exists a solution connecting the
disease free equilibrium and the endemic equilibrium. We also show that the model
is linearly determinate, and thus we are able to give an explicit formula to calculate
the critical wave speed in terms of the basic reproductive ratio of the model and
the moment generating function of the dispersal kernel.
The paper is organized as follows: In section 2, we briefly introduce our model

and some of its properties. In section 3, we give our main results concerning the
invasion of the spatial habitat by infective individuals. In section 4, we provide
simulation results concerning the model and verify that our theoretical findings are
in accordance with the simulation results. In addition, the effect of parameters,
range of nonlocality and basic reproductive ratio, is investigated numerically. In
section 5, we conclude our paper.

2. Model

Given a contact of a susceptible in period t, the probability that it is with an
infective is ıt = It/(N−1) where It denotes the number of infectives in a population
of size N.More generally, the probability that no effective contact with susceptibles
can be taken as a function of 1 − ıt. To define the function we follow the method
suggested in [7] i.e. we assume that this function is a probability generating function
of a discrete distribution and has the following form:

f(x) =

∞∑
k=0

pkx
k

where pk is the probability that a susceptible makes k contacts during a time
interval.
Assume that all infected individuals It at time t will return to susceptible class

at time t + 1. In this case, there is no removed state so that St + It = N for any
N ∈ N where St is the number of susceptible individuals in the population. In
[5], the Markov chain modeling this process was taken by the following conditional
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probability distribution:

Pr (It+1 = xt+1|It = xt) =

(
N − xt
xt+1

)
(1− f(1− ıt))xt+1(f(1− ıt))N−xt−xt+1 .

We consider the mean field equation of the above defined Markov process as
following difference equation:

it+1 = (1− it)(1− f(1− it)) =: g(i). (2.1)

As an easy consequence of [5, Theorem 5], one can easily verify that for any
ε > 0 and T ∈ N

lim
N→∞

Pr( max
1≤n≤T

|ın − in| > ε) = 0

where ın = In/(N − 1).
Hence, trajectories of the stochastic model and its mean field equation stay close

to each other for any finite time with probability 1. Define the basic reproductive
number as follows:

µ = f ′(1).

This value plays an important role in the dynamics of mean field equation (2.1). In
[5], conditions for the existence and stability of an endemic equilibrium are given
using the basic reproductive number as follows:

Theorem 1. [5] The following statements hold for any initial condition i0 ∈ (0, 1).

(i) If µ ≤ 1 then solutions to (2.1) approach the disease-free equilibrium i.e.
limt→∞ it = 0.

(ii) If µ > 1 then solutions to (2.1) approach the unique endemic equilibrium
ie ∈ (0, 1

2 ) i.e. limt→∞ it = ie.

Equation (2.1) does not allow spatial movements of individuals. To be able to
consider such movements, we denote the frequency of infective individuals at spatial
location x and time t by it(x). Changes in these frequencies are modeled in two
alternating steps. In the first step it(x) is mapped into g(it(x)) The second stage
is spatial shuffl ing. This stage is called dispersal stage and modeled by an integral
operator. Hence the model is given as an integro-difference equation of the form:

it+1(x) =

∫
Ω

k(x, y)g(it(y)) dy.

Here the kernel k(x, y) describes the dispersal of individuals from y. In particular,
it is the probability that an infective individual in an interval of length dy about y
disperses to an interval of the same length about x. Since k(x, y) is a probability
kernel, it must be nonnegative. In a biological point of view, It is reasonable to
assume that the dispersal weight depends on the relative distance i.e. k(x, y) =
k(x− y).
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Here we assume also that the domain is infinite and the redistribution or dispersal
kernel has exponentially bounded tails. This is to say that the moment generating
function of the probability kernel exists.
We state our standing assumptions on the probability generating function f and

moment generating function of the dispersal kernel k as follows:
Assumption 1.

• Random variables with probability generating function f and k have their
first and second moments.

• There exists a φ0 > 0 ∫
R
eφyk(y) dy <∞

for all |φ| ≤ φ0.
• Dispersal kernel k is piecewise continuous.

3. Traveling waves and spreading speeds

Consider the following integro-difference equation

it+1(x) = Q[it](x) :=

∫
R
k(x, y)g(it(y)) dy. (3.1)

Simple traveling waves are the solutions satisfying

it(x) = I(x− ct) (3.2)

for some constant c. This constant is called traveling wave speed. In this setting,
each iterate yields an extension of the solution with no change in the shape of it.
Plugging the equation (3.2) in (3.1) one obtains

I(x− c) =

∫
R
k(x− y)g(I(y)) dy. (3.3)

Here it is easy to see that the constant solutions to this equation are given by I∗ = 0
and I∗ = ie. Here we consider the traveling wave equation (3.3) with the following
boundary conditions:

I(−∞) = ie and I(∞) = 0. (3.4)

For the existence of such solutions see Appendix A. To be able to compute the
critical wave speed explicitly we need to show the operator is linear determinate
i.e.

g(i) ≤ µi.

To be able to show this recall Bernoulli’s inequality:

(1− i)n ≥ 1− in
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for n ≥ 1. Using this, we have the following inequality:

1− f(1− i) ≤ 1− p0 −
∞∑
k=1

pk(1− ik) = µi.

Thus we have g(i) ≤ µi(1− i) < µi for i ∈ (0, 1).
Linear determinacy of this map implies that the critical wave speed can be

characterized using the linearization of equation (3.1) near the equilibrium point 0
[19]. The critical wave speed c∗ is the slowest value of the traveling wave speed c
for which we can find a positive solution connecting two equilibria 0 and ie.
The linearization (or the Frechet derivative) of the of (3.1) near 0 is given by

I(x− c) =M[u](x) := µ

∫
R
k(x− y)I(y) dy. (3.5)

For a moving wave in negative direction, one can consider the following ansatz

I(x) = A exp(−φx) (3.6)

for φ positive. Plugging (3.6) in (3.5), one obtains the characteristic equation:

exp(φc) = µ

∫
R
k(s) exp(φs) ds. (3.7)

Since we require that I(x) decussates the disease-free equilibrium 0, the appearance
of such a solution coincides with the first appearance of a double root for (3.7).
Define the following function

Ψ(φ) = φc− log(µ)− log

(∫
R
k(s) exp(φs) ds

)
. (3.8)

First observe that Ψ′′(0) < 0 and hence we can conclude that Ψ′′(φ) < 0 for all
|φ| ≤ φ0 for some φ0 > 0. Thus the double root of this equation can be calculated
by taking Ψ = 0. Then, one can obtain a formula for the critical traveling wave
speed which is given by

c∗ = min
φ>0

{
1

φ
log
[
µ

∫
R
k(s) exp(φs) ds

]}
(3.9)

We have the following two results regarding the long time behavior of the model
(3.3).

Theorem 2. If c ≥ c∗, there exists solution of the equation (3.3) satisfying the
boundary conditions (3.4).

The result follows from [19, Theorem 6.6] and hypotheses are verified in Appendix
A. This theorem implies that there exists a traveling wave solution connecting two
equilibria 0 and ie. Biological interpretation of the result is that infectives in the
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population cannot spread in the population if traveling wave speed is larger than
the critical wave speed c∗.
To be able to get the whole picture we give the following result related to the

operator (3.1) that informs us about both of the cases c < c∗ and c > c∗.

Theorem 3. Suppose that the initial function 0 ≤ i0(x) ≤ 1 is zero for suffi ciently
large x and i0(x) ≥ ρ for some positive constant ρ and all suffi ciently negative x.
Then for any positive ε the solution in(x) of the recursion (3.1) has the following
properties:

• limn→∞ supx≥n(c∗+ε) in(x) = 0,

• limn→∞ supx≤n(c∗−ε)
(
ie − in(x)

)
= 0.

We used the theory developed in [10] to obtain above result and the conditions
are verified in Appendix A. The last limit tells us that infectives can spread at a
speed no higher than the critical wave speed c∗.

4. Simulation studies

In this section, we turn to simulation studies on the effects of model parameters
on epidemic spread. We are interested in effect of two parameters namely the
basic reproductive number µ for the deterministic equation (2.1) and the range of
nonlocality.
We concentrate on the normal distribution:

k(x− y) =
1√

2σ2π
exp

(
− (x− y)2

2σ2

)
(4.1)

for simulation studies. This distribution is centered around zero and parameter σ
characterizes the range of nonlocality. Here we also need to specify the discrete dis-
tribution i.e. its mass function f. Here we use Poisson distribution for computation
purposes. Hence we chose

f(x) = exp
(
− µ(1− x)

)
Thus our model without spatial dispersal can be read as

it+1 = (1− it)(1− exp(−µit)). (4.2)

In our numerical simulations, we consider (3.3) corresponding to equation (4.2)
with symmetric boundary conditions and use the discretization of the space variable
−50 ≤ x ≤ 50 with a mesh interval of ∆x = 0.01. The convolution terms is
approximated by fast Fourier transform.
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(a) (b)
Figure 1. Panels (a) and (b) display the existence and non existence of traveling

waves. The model parameters chosen here are µ = 1.5 and σ = 0.5. We set c = 2
for Panel (a) and c = 0.2 for panel (b).

For demonstration, we set µ = 1.5 and σ = 0.5. For these values, the critical
wave speed can be calculated as c∗ = 0.495 using the formula (3.9). Theorem 2
implies that traveling waves exist only for traveling wave speed c larger than this
critical value. Panel (a) in Figure 1 shows the formation of a traveling wave whose
front towards the negative direction as time evolves, and panel (b) suggests that no
traveling waves along the negative direction are formed and the solution converges
to constant ie on the domain. Hence, infective individuals spread in sustains in
panel (b) in Figure 1 and they diminish for large traveling wave speeds as shown
in panel (a) of the same figure.

Figure 2. Effect of the parameters µ and σ on the critical wave speed c∗.

Here it is clear that the critical wave speed c∗ measure the likelihood that infec-
tives vanish in a population i.e. infection diminishes when the critical wave speed
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is small. For our models (3.3) or (3.1), the critical speed is a function of two pa-
rameters, namely the basic reproductive ratio µ and the range of nonlocality σ.
To be able to further investigate and illustrate the effect of these parameters we
calculated the critical wave speed for a set of parameters. Here it is clear that the
critical wave speed c∗ measures the likelihood that infectives vanish in a popula-
tion i.e. infection diminishes when the critical wave speed is small using the kernel
function (4.1) with moment generating function exp(σ2x2/2).
As seen in Figure 2, the critical waves speed increases with the parameters µ

and σ. As expected, this implies that the higher rate of infection favors the spread
of infectives. On the other hand, as the range of nonlocality gets larger, the spread
of infectives is favored again.

5. Conclusion

In this paper, we considered spatial extension of an epidemic process derived as
mean field equation of a stochastic process. The resulting equation is an integro-
difference equation modeling nonlocal dispersal of infective individuals.
We analyze the deterministic model on an unbounded region. We focus on

studying traveling wave speed and/or the asymptotic speed of propagation. It has
been shown that the model is linearly determinate which allows us to calculate the
critical wave speed explicitly. Our main results can be summarized as follows:

(1) We investigate the critical traveling wave speed (or the spreading speed) as
a function of extend of nonlocality of the dispersal kernel and the rate of
infection. As a result, we found general conditions on the spread of infective
individuals in terms of the critical traveling wave speed.

(2) We numerically studied the model and showed that the critical traveling
wave speed increases as the range of nonlocality of the dispersal kernel
and/or the rate of infection grows. Larger model parameters favors the
spread of infectives.

One can extend these results to the multidimensional epidemic models using the
theories developed in [10, 12]. These models include the multinomial AIDS models
as presented in [18, pp. 89-92]. Another interesting question involves the study of
asymptotic behavior of spatial generalization of SEIR type endemic processes with
fractional time derivative [6, 15] .

Appendix A. Proof of Theorem 3

Here we sketch the proof of Theorem 3 by using the theory developed by Li et.
all. [10] and Weinberger [19] Existence and uniqueness of solutions are clear. This
also implies that map Q has semigroup property.
First of all note that for any constant β, Q[β] = f(β). In addition it is easy to

show that f maps [0, 1] to itself. It was shown in [5, Theorem 1], f(β) > β for
β ∈ (0, ie) and f(β) < β for β ∈ (ie, 1). Now we would like to note that the map Q
satisfies the hypotheses presented in [10, 19].
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i. Suppose that u ≤ v ≤ ie a.e. for some u, v ∈ B. Then we have

Q[u]−Q[v] =

∫
R
k(x− y)

(
g
(
u(y)

)
− g
(
v(y)

))
dy.

(A.1)

Recall that the endemic equilibrium ie s globally stable and hence the map
g is increasing for any function u ≤ ie. Then one can easily conclude that
g(u)− g(v) ≤ 0 for any u ≤ v ≤ ie. Since the above given integrand is non-
positive, we have the order preserving property of the recursion as desired.

ii. It is clear that for our model there are only two spatially homogeneous fixed
points 0 and ie. It is easy to see that ie is an asymptotically stable fixed
point of Qt for any constant initial condition by Theorem 1.

iii. If it(x) is a solution to equation (3.1) so does vt(x) = it(x− y). Hence map
Q is translation invariant.

iv. Continuity can be obtained using [16, Theorem 5.3].
v. Existence of a subsequence vnk such that Q[vnk ] converges uniformly on a
bounded set follows from Arzela-Ascoli theorem.

Consider the map Q and choose a continuous function with the following prop-
erties:

• φ(x) is non-increasing in x;
• φ(x) = 0 for all x ≥ 0;
• 0� φ(−∞)� ie

To be able to define the spreading speed, let a0(c; s) = φ(s) and define the
sequence an(c; s) by the recursion;

an+1(c; s) = max{φ(s), Q[an(c; s)](s+ c)}. (A.2)

The above defined operator is also order preserving. By definition, it is easy to see
that a1 ≥ a0 = φ(s). It can be shown that an ≤ an+1 ≤ ie by induction. Moreover,
sequence an(c; s) is not increasing in c an s. Thus the sequence an converges to
a limit function a(c; s) non-increasing in c and s and bounded by ie. It follows
from Lui’s argument [12] that a(c;±∞) are equilibrium of the map Q. In particular
a(c;±∞) = ie as noted in [10].
Now consider another initial condition φ̂ satisfying the above given properties.

Hence there is another sequence ân(c; s) whose limit function can be denoted by
â(c;∞). As discussed in [10], one can show that aN (c;x − τ) ≥ φ̂(x) for some
integer N and a translation τ . Hence, by comparison principle, it can be shown
that â(c;∞) = a(c;∞). Hence we conclude that vector a(c;∞) is independent of
the choice of the initial function φ. We then define the slowest spreading speed by

c∗+ = sup{c : a(c;∞) = 1}. (A.3)
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Hence the result follows from [10, Theorem 2.2] for map Q. It is also possible to
show that c∗+ is equal to critical traveling wave speed c∗ given in (3.9) for the
recursion (3.3) follows from [20, Theorem 3.4].
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