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SHAPE CURVATURES OF THE LORENTZIAN PLANE CURVES

HAKAN SIMSEK AND MUSTAFA ÖZDEMIR

Abstract. In this paper, we examine the Lorentzian similar plane curves
using the hyperbolic structure and spherical arc length parameter. We classify
all self-similar Lorentzian plane curves and give formulas for pseudo shape
curvatures of evolute, involute and parallel curves of a nonnull plane curve.

1. Introduction

A similarity transformation (or similitude), which consists of a rotation, a trans-
lation and an isotropic scaling, is an automorphism preserving the angles and ratios
between lengths. These mappings are the smallest extension of one parameter mo-
tion. The similarity transformations are used in many areas of the pure and applied
mathematics. KS. Chou and C. Qu [16, 17] showed that the motions of curves in
two-, three- and n-dimensional (n > 3) similarity geometries correspond to the
Burgers hierarchy, Burgers-mKdV hierarchy and a multi-component generalization
of these hierarchies by using the similarity invariants of curves. Alcazar et. al. [14]
presented a novel and deterministic algorithm to detect whether two given rational
plane curves are related by means of a similarity transformation, which is a central
question in Pattern Recognition. On the other hand, the self-similar objects, whose
images under the similarity map are themselves, have had a wide range of applica-
tions in areas such as fractal geometry, dynamical systems, computer networks and
statistical physics. Mandelbrot called these objects fractals, which are the systems
that present such self-similar behavior and the examples in nature are many. The
Cantor set, the von Koch snowflake curve and the Sierpinski gasket are some of
most famous examples of such sets (see [4, 13, 15]).
Berger [18] represented the broad content of similarity transformations in the

Euclidean spaces. Some geometric properties of a Euclidean plane curve as frames,
curvature and so on were examined by [1] using the complex structure which is
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defined by a linear map J : R2 → R2

J (x1, x2) = (−x2, x1) .

Encheva and Georgiev [20] studied the differential geometric invariants of Frenet
curves under a similarity map in 2-dimensional Euclidean space. Schwenk-Schell-
scmidt et. al. [3] characterized conic sections by using their spherical image in
terms of appropriate eigenvalue equations of second order in the Euclidean plane.
Then, they investigated the evolutes and involutes and their geometric properties
in relation to the eigenvalue equations considered in [21]. On the other hand, in the
Lorentzian plane, Öztekin and Ergüt studied the Lorentzian version of the paper
[21] for nonnull Lorentzian plane curves. Saloom and Tari [2] handled the caustic,
evolute, Minkowski symmetry set and parallels of a smooth and regular Lorentzian
plane curve. Simsek and Özdemir [10] introduced the hyperbolic structure in the
Clifford algebra Cl1,1 and gave a formula for the curvature function of Lorentzian
plane curves by means of the hyperbolic structure. Also, they [11] investigated the
Lorentzian similarity geometry of nonnull Frenet curves in any dimensional space.
The content of paper is as follows. We give basic informations about the Lorentzian

plane geometry and pseudo similarity map by means of the geometric product. We
examine the differential geometry of a nonnull plane curve under the similarity map
in view of the hyperbolic structure. We find formulas related to the pseudo shape
curvatures of the evolutes, involutes and parallel curves of nonnull plane curves.
We determine all nonnull self-similar plane curves and show that the evolutes and
parallel curves of hyperbolic logarithmic spirals are self-similar and similar curves,
respectively.

2. Preliminaries

The Clifford algebra Clp,q is an associative and distributive geometric algebra
generated by a pseudo-Euclidean vector spaceMp,q equipped with a quadratic form
Q. We can think of it as a structure generalizing the hypercomplex number systems
such as the complex numbers, quaternions, split quaternions, double numbers. The
algebra operation xy, called the geometric product, for any x, y ∈ Mp,q is defined
by

xx = x2 = Q (x) ,

xy = x · y + x ∧ y

where x · y and x ∧ y are inner product and outer product of Mp,q and Q (x) =

−
q∑
t=1

x2t +

p+q∑
t=q+1

x2t for x = (x1, ..., xp+q) . We can express the inner product and
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outer product in terms of the geometric product:

x · y =
1

2
(xy + yx)

x ∧ y =
1

2
(xy − yx) .

In this paper, we shall deal with the Clifford algebra Cl1,1 = gen {i, j} defined
by the geometric product rules

i2 = −1, j2 = 1 and ij = i ∧ j = −ji

where {i, j} is the standard basis of Minkowski planeM1,1. Any element of Cl1,1,
called a multivector or geometric number, has the form

s+ x+ tij,

where s, t ∈ R and x = x1i+ x2j for x1x2 ∈ R. In other words, the multivectors in
Cl1,1 are linear combinations of scalars (0-vector) s, vectors (1-vector) i, j, bivector
(2-vector) ij. One can find more information about the Clifford algebras in [6, 7, 12].

We can study the Minkowski plane M1,1 by means of the Clifford algebra
Cl1,1 by defining as M1,1 = {x1i+ x2j :x1, x2 ∈ R}. The vector x is called a
spacelike vector, lightlike (or null) vector and timelike vector if x2 > 0 or x = 0,
x2 = 0 or x2 < 0, respectively. The norm of the vector x is described by ‖x‖ =√
|x2|. Also, the inverse of any nonnull vector x can be defined in the Clifford

algebra as the following

x−1 =
x

x2
.

The Lorentzian rotation in M1,1 can be expressed with a spinor, is a linear
combination of a scalar and a bivector. If we take any vector v = v1i + v2j and
B = µ1 + µ2J , where J = ji, then the geometric product of v and B is equal to

vB = (v1µ1 + v2µ2) i+ (v1µ2 + v2µ1) j =

[
µ1 µ2
µ2 µ1

] [
v1
v2

]
,

which is a vector in M1,1. When µ1 = cosh θ and µ2 = sinh θ , the spinor has
the form B = cosh θ + sinh θJ = eθJ and vB is a vector obtained by rotation of
v through θ. The geometric product of two spinor gives a new spinor. Thus, the
spinors form a subgroup of Cl1,1.
The similarity transformation in any finite dimensional Minkowski space is a

composition of an homothety and Lorentzian motion and called p-similarity (pseudo-
similarity) transformation. This map preserves the angles between any two vectors
and the causal character of a vector. Also, the p-similarity of Minkowski plane is
orientation-preserving map. The set of p-similarity transformations form a group
under the composition of maps and is denoted by Sim

(
M1,1

)
(see [11]).
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The hyperbolic structure ofM1,1 is the linear map J :M1,1 →M1,1 given by

J x = xij = (x1i+ x2j) ij = −x2i− x1j, for any x = x1i+ x2j. (1)

It is easy to prove that the hyperbolic structure has the following properties

J 2 = I,

(J x) · (J y) = −x · y, (2)

J x · x = 0,

xy = x · y + (x·J y) ij

for x, y ∈ M1,1 where I :M1,1 →M1,1 is the identity linear map. In the rest of
the paper, we will show the hyperbolic structure with J (see [10]).
Let’s consider a smooth and regular nonnull curve γ : U →M1,1

γ (s) = γ1 (s) i+ γ2 (s) j

parameterized by arc length s, where U is an open interval in R. Let us denote by
ϕ (s) the hyperbolic angle between the tangent vector and the positive direction at
s. The (oriented) curvature at a point measures the rate of bending as the point
moves along the curve with unit speed and can be defined as

κ (s) =
dϕ

ds
. (3)

If we denote T as a tangent vector of γ, we can say the following equations
dT

ds
= εJTκJT,

dJT
ds

= εJTκT

where εx = 1 if x is spacelike or εx = −1 if x is timelike.

Lemma 1. Let γ = γ (t) parameterized by t be a nonnull curve and κ be the
curvature of γ. Then, we have

κ =
ε (γ̈ · J γ̇)

‖γ̇‖3
(4)

where γ̇ =
dγ

dt
and ε = 1 or −1 if γ is timelike or spacelike, respectively ([10]).

3. Similar Curves in the Lorentzian Plane

Now, we define p-similarity map using the geometric product in M1,1. A p-
similarity of Minkowski plane, f :M1,1 →M1,1, can be given by

f (x) = λBx+ b, (5)

where λ 6= 0, B and b are a real constant, a spinor and a fixed translation vector,
respectively. The constant λ is called p-similarity ratio of f .
Let γ : t ∈ I → γ (t) = γ1 (t) i + γ2 (t) j = m (t) ∈ M1,1 be a nonnull curve of

class C2. We let γ∗ = f ◦ γ for f ∈ Sim
(
M1,1

)
such that

γ∗ (t) = λBm (t) + b. (6)
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The arc length functions of γ and γ∗ starting at t0 ∈ I are

s(t) =

t∫
t0

∥∥∥∥dγ (u)

du

∥∥∥∥ du, s∗ (t) =

t∫
t0

∥∥∥∥dγ∗ (u)

du

∥∥∥∥ du = |λ| s (t) .

Lemma 2. Let σ be the spherical arc-length parameter of γ. The arc-length element

dσ and the function κ̃ = − dκ

κdσ
are invariants under the p-similarity map.

Proof. Let σ∗ and κ∗ be the spherical arc-length parameter and curvature of γ∗

defined by (6), respectively. From (4) we can calculate the curvature κ∗ as follows

κ∗ = ε
d2γ∗

ds∗2
· J dγ

∗

ds∗
=

1

|λ|ε
d2γ

ds2
· J dγ

ds
=

1

|λ|κ. (7)

Then, we can find

dσ = κds = κ∗ds∗ = dσ∗. (8)

Thus, the spherical arc-length element dσ is invariant under the p-similarities of
M1,1. Using (7) and (8) , we can write

− dκ∗

κ∗dσ∗
= − dκ

κdσ

so that it is obtained κ̃ is an invariant. �

From the Lemma 1, we can use the spherical arc-length parameter in order to
study the geometry of nonnull plane curves under the p-similarity motion. The
derivative formulas of γ with respect to σ are

dγ

dσ
=

1

κ
T,

dT

dσ
= εJTκJ

dγ

dσ
,

d (JT)

dσ
= εJTκ

dγ

dσ
(9)

and
d2γ

dσ2
= κ̃

dγ

dσ
+ εJTJ

dγ

dσ
d

dσ

(
J dγ
dσ

)
= κ̃J dγ

dσ
εJT

dγ

dσ
.

(10)

Similarly, the equations (9) and (10) are also valid for the nonnull curve γ∗. The
function κ̃ takes the form

κ̃ (σ) =
d2γ
dσ2 ·

dγ
dσ

dγ
dσ ·

dγ
dσ

(11)

by the equation (10).

Definition 3. The function κ̃ = − dκ

κdσ
is called a p-shape curvature of a curve in

M1,1.
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Remark 4. The p-shape curvature of a Minkowski plane curve parameterized by
an arbitrary parameter t can be expressed by

κ̃ =
−κ̇

κ2 ‖γ̇‖

= ε
3 (γ̈ · γ̇) (γ̈ · J γ̇)− (

...
γ · J γ̇) |γ̇ · γ̇|

(γ̈ · J γ̇)
2 . (12)

If the spacelike or timelike curve γ is given as the graph of a function y = f (x),
the p-shape curvature is

κ̃ (x) = 3f ′ (x)− f ′′′ (x) ((f ′ (x))2 − 1)

(f ′′ (x))
2

or

κ̃ (x) = 3f ′ (x) +
f ′′′ (x) (1− (f ′ (x))2)

(f ′′ (x))
2 ,

respectively, using the formula (12).

Now, let’s show that two curves having same p-shape curvature are equivalent to
each other under the p-similarity map by means of the hyperbolic structure. The
following proposition is also showed in [11] without the hyperbolic structure.

Proposition 5. Let γ, γ∗ : I →M1,1 be two nonnull curves of class C2 parameter-
ized by the same spherical arc-length parameter σ and have the same causal char-
acter, where I ⊂ R is an open interval. Suppose that γ and γ∗ have the (oriented)
non-zero curvature and κ̃ = κ̃∗ for any σ ∈ I. Then, there exists a p-similarity f
such that γ∗ = f ◦ γ.

Proof. Let κ and κ∗ be the curvature of γ and γ∗. Using the equality κ̃ = κ̃∗, we
get κ = λκ∗ for some real constant λ > 0. We can choose any point σ0 ∈ I. There
exists a Lorentzian motion % ofM1,1 such that

% (γ (σ0)) = γ∗ (σ0) , % (T (σ0)) = −εJTT∗ (σ0) , % (JT (σ0)) = εJTJT∗ (σ0)

Let’s consider the function Ψ : I → R defined by

Ψ (σ) = (% (T (σ)) + εJTT
∗ (σ))

2
+ (% (JT (σ))− εJTJT∗ (σ))

2
.

Taking the derivative of Ψ with respect to σ, we get

dΨ

dσ
= 0

Since we know Ψ (σ0) = 0, we can write Ψ (σ) = 0 for any σ ∈ I. As a result, we
can say that

% (T (σ)) = −εJTT∗ (σ) and % (JT (σ)) = εJTJT∗ (σ) ∀σ ∈ I.
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The map g = λ% : M1,1 → M1,1 is a p-similarity of M1,1. We examine the
other function Φ : I → R such that

Φ (σ) =

(
d

dσ
g (γ (σ)) + εJT

d

dσ
γ∗ (σ)

)2
for ∀σ ∈ I.

Taking the derivative of this function, we can easily find

dΦ

dσ
= 0

by using (9) and (10). Since we have Φ (σ0) = 0, the function Φ (σ) is equal to zero
for ∀σ ∈ I. This means that

d

dσ
g (α (σ)) = −εJT

d

dσ
γ∗ (σ)

or equivalently γ∗ (σ) = −εJTg (γ (σ)) + v0 where v0 is a constant vector. Then,
the theorem is proved. �

The next proposition states the existence of a unique nonnull plane curve whose
p-shape curvature is given.

Proposition 6. ([11]) Let z : I → R be the function of class C1 and e01, e
0
2 be

an orthonormal 2-frame at x0 in M1,1 where x0 ∈ M1,1. There exists an unique
nonnull curve γ : I →M1,1 parameterized by the spherical arc-length parameter σ
under the p-similarity mapping such that γ (σ0) = x0 for any σ0 ∈ I, the moving
frame of γ at x0 is

{
e01, e

0
2

}
and the invariant κ̃ is equal to z.

From the Proposition 5 and Proposition 6, we get the following fundamental
theorem for plane curves under the p-similarity motion inM1,1.

Theorem 7. Let z : I → R be the function of class C1. There exists a unique
nonnull curve with the p-shape curvature z.

The Theorem 7 implies that we can define a unique nonnull curve γ : I →M1,1

parameterized by

γ (σ) = x0 +

∫ σ

σ0

e
∫
κ̃(σ)dσe1 (σ) dσ, σ ∈ I (13)

such that its moving frame {e1, e2} satisfy the system
de1
dσ

= εe2e2,
de2
dσ

= εe2e1 (14)

with the initial conditions
{
e01, e

0
2

}
.

Example 8. Let γ : I → M1,1 be a timelike curve with the p-shape curvature

κ̃ =
1

σ
. Choose initial conditions

e01 = i, e02 = j.
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The system (14) defines a vector e1 (σ) = (coshσ) i + (sinhσ) j with e1 (0) = e01.
Solving the equation (13) we get the parametrization of timelike curve γ as the
following

γ (σ) = (2 + σ sinhσ − coshσ) i+ (σ coshσ − sinhσ) j (see Figure 1). (15)

Figure 1. .

The locus of centres of osculating pseudo-circles of a nonnull curve, with inflection
points removed, is called evolute of it. For a unit speed curve γ, we can find the
evolute Eγ as

Eγ (s) = γ (s)− εJT
κ
JT (16)

Eγ is singular at the vertices of γ and a spacelike (timelike) curve when γ is a

timelike (spacelike) curve. We can easily compute κE = εJT
κ3

|κ′| from the equation

(4) where κ′ =
dκ

ds
. Also, we know that the arc-length parameters of spherical image

of Eγ and γ are equal to each other; namely σE = σ (see also [9]).
The curve Inγ,a, whose normal directions are tangent directions of nonnull curve

γ, is called involute of γ. The equation of Inγ,a is given by

Inγ,a (s) = γ (s)− (s− a)T, a ∈ R.

Also, we have
dsı
ds

= κ(c−a) where sı is arc-length parameter of Inγ,a. The involute

Inγ,a is singular at the points satisfying the equation s− a = 0. From (4) , we can

find the curvature κı of Inγ,a as κı =
sign (κ)

|s− a| and know that the spherical arc-
length parameters coincide σIn = σ.

Lemma 9. Let γ : I →M1,1 be a unit-speed nonnull curve and β be involute of γ.
Then, the evolute of β is the curve γ.
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The next proposition show how we can find the p-shape curvatures of the evolute
and involute of general nonnull plane curves.

Proposition 10. Let γ : I →M1,1 be a nonnull curve parameterized by spherical
arc length parameter σ and κ̃ 6= 0 be p-shape curvature of γ.
i) The p-shape curvature of evolute Eγ of γ is

κ̃Eγ (σ) = κ̃ (σ) +
d (|−κ̃ (σ)|)
|−κ̃ (σ)| dσ . (17)

ii) The p-shape curvature of involute Inγ,a of γ is

κ̃Inγ,a (σ) =
1

κ

(∫ 1

κ (σ)
dσ − a

) . (18)

Proof. i) From the definition of p-shape curvature and κ′ = −κ̃κ2, we can write

κ̃Eγ (σ) = −
d
(
κ3/ |κ′|

)
(κ3/ |κ′|) dσ = κ̃ (σ) +

d (|−κ̃ (σ)|)
|−κ̃ (σ)| dσ .

ii) The involute of γ parameterized by σIn = σ can be stated as

Inγ,a (σ) = γ (σ)−
(∫

1

κ (σ)
dσ − a

)
T (σ) .

Using the formulas (9), we can write

dInγ,a
dσ

= −εJT
(∫

1

κ (σ)
dσ − a

)
JT,

d2Inγ,a
dσ2

=
−εJT
κ
JT−

(∫
1

κ (σ)
dσ − a

)
T.

Then, the formula (11) implies the equation (18) . �

Corollary 11. The vertices of a nonnull curve γ inM1,1 are the points where the
p-shape curvature κ̃ vanish.

A parallel curve α to a nonnull plane curve γ : I →M1,1 with unit speed at a
Lorentzian distance r 6= 0 is defined by

α (s) = γ (s) + rJT (s) , t ∈ I (19)

(see also [19]). Using the formula (4), we can obtain the curvature of parallel curve
as the following

κα =
εJTκ

|1 + rεJTκ|
.

For p-shape curvature of the parallel curve α, we have the following formula.
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Lemma 12. Let γ : I → M1,1 be a nonnull curve with p-shape curvature κ̃ 6= 0.
For parallel curve, the p-shape curvature is given by

κ̃α (σ) = κ̃ (σ) +

∣∣∣∣ rκ (σ) κ̃ (σ)

εJT + rκ (σ)

∣∣∣∣ (20)

Proof. Let σα and sα be a spherical arc length parameter and arc length parameter
of α, respectively. Since we have dsα = ‖α′‖ ds = |1 + εJTrκ| ds from the definition
(19), we can write dσα = dσ, which means that the spherical arc length elements
coincide. Then, the p-shape curvature of parallel curve is

κ̃α (σ) =
−dκα
καdσα

= κ̃ (σ) +

∣∣∣∣εJTrdκ/dσ1 + εJTrκ

∣∣∣∣ = κ̃ (σ) +

∣∣∣∣ rκ (σ) κ̃ (σ)

εJT + rκ (σ)

∣∣∣∣ .
�

4. Self-Similar Curves in the Minkowski Plane

A curve γ is called self-similar curve inM1,1 if every p-similarity f ∈ G conserve
globally γ and G acts transitively on the nonnull curve γ where G is a one-parameter
subgroup of Sim

(
M1,1

)
. We can say that the invariant κ̃ is a constant for every

self-similar curves with κ 6= 0 inM1,1.
Let’s find the parametrizations of nonnull self similar curves with a constant

p-shape curvature κ̃ in Lorentzian plane. For a curve γ : I → M1,1 of class C3

parameterized by the spherical arc-length parameter σ, we know

dγ

dσ
=

1

κ
T and

d2γ

dσ2
= κ̃

dγ

dσ
+ εJTJ

dγ

dσ
. (21)

The differential equation (21) can be rewritten as the system

d2γ1
dσ2

= κ̃
dγ1
dσ
− εJT

dγ2
dσ

d2γ2
dσ2

= κ̃
dγ2
dσ
− εJT

dγ1
dσ

(22)

where γ (σ) = γ1 (σ) i+ γ2 (σ) j.
If γ is a timelike curve, the solution of the above system with initial conditions

γ1 (0) = 0,
dγ1 (0)

dσ
= 1, γ2 (0) = 1,

dγ2 (0)

dσ
= 0

is given by

γ1 (σ) =
−κ̃+ eκ̃σ[κ̃ coshσ − sinhσ]

κ̃2 − 1
, γ2 (σ) =

κ̃2 − 2− eκ̃σ[κ̃ sinhσ − coshσ]

κ̃2 − 1
.

(23)
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Figure 2. The graph of timelike self-similar curve for κ̃ = 0.5.

Thus, the parametrization of a timelike self-similar curve is expressed by (23)
(see Figure 2).
If γ is a spacelike curve, the solution of the system (22) with initial conditions

γ1 (0) = 1,
dγ1 (0)

dσ
= 0, γ2 (0) = 0,

dγ2 (0)

dσ
= 1

is given by

γ1 (σ) =
κ̃2 + eκ̃σ[κ̃ sinhσ − coshσ]

κ̃2 − 1
, γ2 (σ) =

−κ̃+ eκ̃σ[κ̃ coshσ − sinhσ]

κ̃2 − 1
,

(24)
which is the equation of a spacelike self-similar curve (see figure 3).
Suppose that κ̃ = 0 for κ 6= 0. Then, we get the timelike curve γ (σ) =

(sinhσ, coshσ) and spacelike curve γ (σ) = (coshσ, sinhσ) by using (23) and
(24) . In addition, there is a one-parameter group of pseudo-rotations preserving a
pseudo-circle which acts transitively on pseudo-circle. Thus, pseudo-circles are the
unique Minkowski plane curves that satisfy κ̃ = 0 with κ 6= 0. On the other hand,
there is no a self-similar nonnull curve which has the property κ̃ = ±1.
Now, we examine Lorentzian self-similar curves whose curvature can be equal

to zero. Let α : I → M1,1 be a nonnull self-similar curve and κ (s0) = 0 for
some s0 ∈ I. There exists a orientation-preserving p-similarity f ofM1,1 such that
f (α) = α and f (α (s)) = α (s0) for any s ∈ I. Then, κ̃ (s) does not exist, or
equivalently κ (s) = 0. Thus, we find that κ (s) = 0 for all s ∈ I, i.e., the nonnull
self-similar curve α is a straight line. Conversely, every straight line is clearly a
self-similar curve.
The logarithmic spirals are the unique self-similar curves except the straight lines

and circles in the Euclidean space (see [20]). Then, we may think that the curves
parameterized by (23) and (24) are the hyperbolic logarithmic spirals of Lorentzian
plane since they are the unique self-similar curves except the lines and pseudo-
circles in M1,1. As a result, from the above considerations, we get the following
Lemma.
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Figure 3. The graph of spacelike self-similar curve for κ̃ = 0.5.

Lemma 13. The unique self-similar curves are straight lines, pseudo-circles and
hyperbolic logaritmic spirals in Lorentzian plane. Moreover, there is no the self-
similar curve whose p-shape curvature is equal to ±1.

Lastly, we consider the evolutes, involutes and parallel curves of hyperbolic
logarithmic spirals. We can say the following results.

Lemma 14. Let κ̃ be the constant p-shape curvature of hyperbolic logarithmic spi-
rals.
i) The evolutes of the hyperbolic logarithmic spirals are also self-similar curves.
ii) The involutes of γ the hyperbolic logarithmic spirals are not self-similar curves

for κ̃ 6= 0.
iii) The parallel curves of timelike and spacelike hyperbolic logarithmic spirals

are similar curves but not self-similar curves for κ̃ 6= 0.

Proof. i) Let β1 and β2 be the timelike and spacelike hyperbolic logarithmic spirals,
respectively. Using the formula (10), we obtain the p-shape curvatures of evolutes
as κ̃Eβ1 = κ̃Eβ2 = κ̃.
ii) From the Lemma 1, the curvatures of β1 and β2 can be found as κβ1 = e−κ̃σ

and κβ2 = −e−κ̃σ. Then, the p-shape curvatures of involutes of β1 and β2 are

κ̃Inβ1,a =
κ̃eκ̃σ

eκ̃σ − κ̃a , κ̃Inβ2,a =
κ̃eκ̃σ

eκ̃σ + κ̃a

by the formula (18) , which says that the involutes are not self-similar curves.
iii) Using the formula (20) and the curvatures κβ1 = e−κ̃σ and κβ2 = −e−κ̃σ,

the p-shape curvatures of parallel curves α1 and α2 are

κ̃α1 = κ̃α2 = κ̃+

∣∣∣∣ rκ̃e−κ̃σ

1 + re−κ̃σ

∣∣∣∣ ,
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which proves the hypothesis. �
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