
Commun.Fac.Sci.Univ.Ank.Series A1
Volume 66, Number 2, Pages 289—296 (2017)
DOI: 10.1501/Commua1_0000000819
ISSN 1303—5991

Article electronically published on March 15, 2017

http://communications.science.ankara.edu.tr/index.php?series=A1

ON THE FABER POLYNOMIAL COEFFICIENT BOUNDS OF
BI-BAZILEVIC̆ FUNCTIONS

ŞAHSENE ALTINKAYA AND SIBEL YALÇIN

Abstract. In this work, considering bi-Bazilevic̆ functions and using the
Faber polynomials, we obtain coeffi cient expansions for functions in this class.
In certain cases, our estimates improve some of those existing coeffi cient bounds.

1. Introduction

Let A denote the class of functions f which are analytic in the open unit disk
U = {z : z ∈ C and |z| < 1} of the form

f(z) = z +

∞∑
n=2

anz
n. (1.1)

Let S be the subclass of A consisting of functions f which are also univalent in
U and let P be the class of functions

ϕ(z) = 1 +

∞∑
n=1

ϕnz
n

that are analytic in U and satisfy the condition < (ϕ(z)) > 0 in U. By the
Caratheodory’s lemma (e.g., see [11]) we have |ϕn| ≤ 2.
For f (z) and F (z) analytic in U, we say that f (z) is subordinate to F (z) ,

written f ≺ F , if there exists a Schwarz function

u(z) =

∞∑
n=1

cnz
n

with |u(z)| < 1 in U, such that f (z) = F (u (z)) . For the Schwarz function u (z)
we note that |cn| < 1. (e.g. see Duren [11]).
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For 0 ≤ α < 1 and 0 ≤ β < 1, f ∈ Σ and g = f−1, let B(α, β) denote the class
of bi-Bazilevic̆ functions of order α and type β (see Bazilevic̆ [7]) if and only if

<
((

z

f(z)

)1−β
f ′(z)

)
> α, z ∈ U

and

<
((

w

g(w)

)1−β
g′(w)

)
> α, w ∈ U.

It is well known that every function f ∈ S has an inverse f−1, satisfying f−1 (f (z)) =
z, (z ∈ U) and f

(
f−1 (w)

)
= w,

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
, where

f−1 (w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · .

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in
U. For a brief history and interesting examples in the class Σ, see [24].
Historically, Lewin [17] studied the class of bi-univalent functions, obtaining the

bound 1.51 for the modulus of the second coeffi cient |a2| . Subsequently, Brannan
and Clunie [8] conjectured that |a2| 5

√
2 for f ∈ Σ. Later on, Netanyahu [20]

showed that max |a2| = 4
3 if f (z) ∈ Σ. Brannan and Taha [9] introduced certain

subclasses of the bi-univalent function class Σ similar to the familiar subclasses
S? (β) and K (β) of starlike and convex functions of order β (0 5 β < 1) in U,
respectively (see [20]). The classes S?Σ (β) and KΣ (β) of bi-starlike functions of
order β in U and bi-convex functions of order β in U, corresponding to the func-
tion classes S? (β) and K (β) , were also introduced analogously. For each of the
function classes S?Σ (β) and KΣ (β) , they found non-sharp estimates for the initial
coeffi cients. Recently, motivated substantially by the aforementioned pioneering
work on this subject by Srivastava et al. [24], many authors investigated the coeffi -
cient bounds for various subclasses of bi-univalent functions (see, for example, [5],
[13], [15], [18], [19], [25]).
The Faber polynomials introduced by Faber [12] play an important role in various

areas of mathematical sciences, especially in geometric function theory. Grunsky
[14] succeeded in establishing a set of conditions for a given function which are nec-
essary and in their totality suffi cient for the univalency of this function, and in these
conditions the coeffi cients of the Faber polynomials play an important role. Schiffer
[22] gave a differential equations for univalent functions solving certain extremum
problems with respect to coeffi cients of such functions; in this differential equa-
tion appears again a polynomial which is just the derivative of a Faber polynomial
(Schaeffer-Spencer [23]).
Not much is known about the bounds on the general coeffi cient |an| for n ≥ 4. In

the literature, there are only a few works determining the general coeffi cient bounds
|an| for the analytic bi-univalent functions ([6], [10], [15], [16]). The coeffi cient
estimate problem for each of |an| ( n ∈ N\ {1, 2} ; N = {1, 2, 3, ...}) is still an open
problem.
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Definition 1. A function f ∈ Σ is said to be in the class BΣ (β, ϕ) , 0 ≤ β < 1, if
the following subordination holes(

z

f(z)

)1−β
f ′(z) ≺ ϕ (z) (1.2)

and (
w

g(w)

)1−β
g′(w) ≺ ϕ (w) (1.3)

where g (w) = f−1 (w) .

Remark 1. From among the many choices of β and ϕ which would provide the
following known subclasses:

1) BΣ (1, ϕ) = HϕΣ (see [21]).
2) BΣ (0, ϕ) = S∗Σ(ϕ) (see [21]).
We note that, for different choices of the function ϕ, we get known subclasses of

the function class A. For example (see [26])

ϕ (z) =

(
1 + z

1− z

)α
; 0 < α ≤ 1 and ϕ (z) =

1 + (1− 2λ) z

z
; 0 ≤ λ < 1 .

In this paper, we use the Faber polynomial expansions to obtain bounds for the
general coeffi cients |an| of bi-Bazilevic̆ functions in BΣ (β, ϕ) as well as we provide
estimates for the initial coeffi cients of these functions.

2. Main Results

Using the Faber polynomial expansion of functions f ∈ A of the form (1.1), the
coeffi cients of its inverse map g = f −1 may be expressed as, [3],

g (w) = f−1 (w) = w +

∞∑
n=2

1

n
K−nn−1 (a2, a3, ...)w

n,

where

K−nn−1 =
(−n)!

(−2n+ 1)! (n− 1)!
an−1

2 +
(−n)!

[2 (−n+ 1)]! (n− 3)!
an−3

2 a3

+
(−n)!

(−2n+ 3)! (n− 4)!
an−4

2 a4

+
(−n)!

[2 (−n+ 2)]! (n− 5)!
an−5

2

[
a5 + (−n+ 2) a2

3

]
(2.1)

+
(−n)!

(−2n+ 5)! (n− 6)!
an−6

2 [a6 + (−2n+ 5) a3a4]

+
∑
j≥7

an−j2 Vj ,



292 ŞAHSENE ALTINKAYA AND SIBEL YALÇIN

such that Vj with 7 ≤ j ≤ n is a homogeneous polynomial in the variables
a2, a3, ..., an [4]. In particular, the first three terms of K

−n
n−1 are

1

2
K−2

1 = −a2,

1

3
K−3

2 = 2a2
2 − a3, (2.2)

1

4
K−4

3 = −
(
5a3

2 − 5a2a3 + a4

)
.

In general, for any p ∈ N and n ≥ 2, an expansion of Kp
n−1 is as, [3],

Kp
n−1 = pan +

p (p− 1)

2
E2
n−1 +

p!

(p− 3)!3!
E3
n−1 + ...+

p!

(p− n+ 1)! (n− 1)!
En−1
n−1 ,

(2.3)
where Epn−1 = Epn−1 (a2, a3, ...) and by [1],

Emn−1 (a2, ..., an) =

∞∑
n=2

m! (a2)
µ1 ... (an)

µn−1

µ1!...µn−1!
, for m ≤ n

while a1 = 1, and the sum is taken over all nonnegative integers µ1, ..., µn satisfying

µ1 + µ2 + ... + µn−1 = m,

µ1 + 2µ2 + ... + (n− 1)µn−1 = n− 1.

Evidently, En−1
n−1 (a2, ..., an) = an−1

2 ,(see [2]); while a1 = 1, and the sum is taken
over all nonnegative integers µ1, ..., µn satisfying

µ1 + µ2 + ... + µn = m,

µ1 + 2µ2 + ... + nµn = n.

It is clear that Enn (a1, a2, ..., an) = an1 . The first and the last polynomials are:

E1
n = an Enn = an1 .

Theorem 1. For 0 ≤ β < 1, let f ∈ BΣ (β, ϕ) . If am = 0 ; 2 ≤ m ≤ n − 1,
then

|an| ≤
2

β + (n− 1)
; n ≥ 4. (2.4)

Proof. Let f be given by (1.1). We have(
f(z)

z

)β (
zf ′(z)

f(z)

)
= 1 +

∞∑
n=2

[
1 +

(n− 1)

β

]
K−βn−1 (a2, a3, ..., an) zn−1, (2.5)
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and for its inverse map, g = f −1, we have(
g(w)

w

)β (
wg′(w)

g(w)

)
= 1 +

∞∑
n=2

[
1 +

(n− 1)

β

]
K−βn−1 (A2, A3, ..., An)wn−1. (2.6)

where

An =
1

n
K−nn−1 (a2, a3, ..., an) , n ≥ 2.

On the other hand, for f ∈ BΣ (β, ϕ) and ϕ ∈ P there are two Schwarz functions

u (z) =

∞∑
n=1

cnz
n

and

v (w) =
∞∑
n=1

dnw
n

such that (
f(z)

z

)β (
zf ′(z)

f(z)

)
= ϕ(u(z)) (2.7)

and (
g(w)

w

)β (
wg′(w)

g(w)

)
= ϕ(v(w)) (2.8)

where

ϕ(u(z)) = 1 +

∞∑
n=1

n∑
k=1

ϕkE
k
n (c1, c2, ..., cn) zn, (2.9)

and

ϕ(v(w)) = 1 +

∞∑
n=1

n∑
k=1

ϕkE
k
n (d1, d2, ..., dn)wn. (2.10)

Comparing the corresponding coeffi cients of (2.7) and (2.9) yields

[β + (n− 1)] an =

n−1∑
k=1

ϕkE
k
n−1 (c1, c2, ..., cn−1) , n ≥ 2 (2.11)

and similarly, from (2.8) and (2.10) we obtain

[β + (n− 1)]An =

n−1∑
k=1

ϕkE
k
n−1 (d1, d2, ..., dn−1) , n ≥ 2. (2.12)

Note that for am = 0 ; 2 ≤ m ≤ n− 1 we have An = −an and so
[β + (n− 1)] an = ϕ1cn−1 (2.13)

[β + (n− 1)] an = ϕ1dn−1
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Now taking the absolute values of either of the above two equations in (2.13) and
using the facts that |ϕ1| ≤ 2, |cn−1| ≤ 1and |dn−1| ≤ 1, we obtain

|an| ≤
|ϕ1cn−1|
|β + (n− 1)| =

|ϕ1dn−1|
|β + (n− 1)| ≤

2

β + (n− 1)
. (2.14)

�

Theorem 2. Let f ∈ BΣ (β, ϕ) , and 0 ≤ β < 1. Then

(i) |a2| ≤ min

{
2

β + 1
,

√
8

(β + 1) (β + 2)

}
=

2

β + 1

(ii) |a3| ≤ min

{
4

(β + 1)2
+

2

β + 2
,

8

(β + 1) (β + 2)
+

2

β + 2

}
=

4

(β + 1)2
+

2

β + 2

(iii)
∣∣a3 − a2

2

∣∣ ≤ 2

β + 2

.

(2.15)

Proof. Replacing n by 2 and 3 in (2.11) and (2.12), respectively, we find that

(β + 1) a2 = ϕ1c1, (2.16)

(β − 1) (β + 2)

2
a2

2 + (2 + β) a3 = ϕ1c2 + ϕ2c
2
1, (2.17)

− (β + 1) a2 = ϕ1d1, (2.18)

(β + 2) (β + 3)

2
a2

2 − (2 + β) a3 = ϕ1d2 + ϕ2d
2
1 (2.19)

From (2.16) or (2.18) we obtain

|a2| ≤
|ϕ1c1|
β + 1

=
|ϕ1d1|
β + 1

≤ 2

β + 1
. (2.20)

Adding (2.17) to (2.19) implies

(β + 1) (β + 2) a2
2 = ϕ1 (c2 + d2) + ϕ2

(
c21 + d2

1

)
or, equivalently,

|a2| ≤
√

8

(β + 1) (β + 2)
. (2.21)

Next, in order to find the bound on the coeffi cient |a3|, we subtract (2.19) from
(2.17). We thus get

2 (β + 2)
(
a3 − a2

2

)
= ϕ1 (c2 − d2) + ϕ2

(
c21 − d2

1

)
(2.22)

or

a3 = a2
2 +

ϕ1 (c2 − d2)

2 (β + 2)
(2.23)
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Upon substituting the value of a2
2 from (2.20) and (2.21) into (2.23), it follows that

|a3| ≤
4

(β + 1)
2 +

2

β + 2

and

|a3| ≤
8

(β + 1) (β + 2)
+

2

β + 2
.

Solving the equation (2.22) for
(
a3 − a2

2

)
, we obtain∣∣a3 − a2

2

∣∣ =

∣∣ϕ1 (c2 − d2) + ϕ2

(
c21 − d2

1

)∣∣
2 (β + 2)

≤ 2

β + 2

�

Putting β = 0 in Theorem 2, we obtain the following corollary for analytic
bi-starlike functions.

Corollary 1. If f ∈ S∗Σ(ϕ), then

(i) |a2| ≤ 2
(ii) |a3| ≤ 5
(iii)

∣∣a3 − a2
2

∣∣ ≤ 1
.

Putting β = 1 in Theorem 1, we obtain the following corollary.

Corollary 2. If f ∈ HϕΣ, then
(i) |a2| ≤ 1
(ii) |a3| ≤ 5

3

(iii)
∣∣a3 − a2

2

∣∣ ≤ 2

3

.
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