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STATISTICAL INFERENCE FOR THE BURR TYPE III
DISTRIBUTION UNDER TYPE II CENSORED DATA

Ö. ALTINDAĞ, M. N. ÇANKAYA, A. YALÇINKAYA, AND H. AYDOĞDU

Abstract. In this study, estimation and prediction problems for the Burr type
III distribution under type II censored data are considered. Maximum likeli-
hood and maximum product spacing estimation methods are used to estimate
model parameters. EM algorithm is employed to obtain maximum likelihood
estimates. Unobserved future order statistics are predicted with best unbiased
prediction method. A simulation study is carried out to exhibit performance
of the estimation methods. Further, a numerical example is presented to illus-
trate the usefulness of the Burr III distribution.
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1. Introduction

Irwing W. Burr [1] introduced a distribution family which includes twelve distri-
bution types. Among these distributions, Burr type III (BIII) and type XII (BXII)
have attracted considerable attention in the literature. It should be noted that they
are reciprocal. Lindsay [2] used BIII distribution to model diameter distributions
of forest stands as an alternative to Weibull distribution. Shao [3] has modelled
the NOEC toxicity data with BIII distribution. Zimav et al. [4] showed that BXII
distribution is a useful model for failure data in reliability studies. Some other
usages of the BIII and BXII distributions can be found in [5-10]. However, BIII
distribution is more flexible to fit data than BXII in the sense that it provides wider
skewness and kurtosis region. One can refer to Rodriguez [11] and Tadikamalla [12]
for the details.
When investigating lifetime characteristics of a unit, it is aimed to fit failure data

with a flexible distribution. Since BIII distribution can properly approximates
many classical lifetime models such as Weibull, gamma and lognormal [13], it is
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worthwhile to model failure data with BIII distribution. So, BIII distribution plays
an important role in lifetime analysis. In survival and reliability context, some
censoring schemes are applied due to time and cost restrictions. A commonly used
censoring scheme is type II censoring in which only the first r ≤ n failures among
the n units are observed. Wingo [14] studied the maximum likelihood estimation for
BXII distribution under type II censoring. Wang and Cheng [15] and Sayyareh [16]
derived the expectation-maximization (EM) procedure for BXII distribution under
multiple censoring and type II censoring, respectively. It should be pointed out
that once the parameters of BXII distribution have been estimated from a random
sample, the parameters of BIII distribution have already been obtained because of
their reciprocal property, vice versa. However, this relation does not hold for the
type II censored data though it holds for the complete sample. This fact can be
explained as follows.
Let the random variable Y has BXII distribution, then X = 1/Y has BIII dis-

tribution. So, when a complete sample from BIII distribution is observed, the
estimates of parameters can be obtained from the estimation procedure of BXII
model by replacement of each observation with its reciprocal. Let type II censored
sample from BIII distribution has been observed. It is clear that, the inverses of
these observations do not correspond to the type II censored sample from BXII dis-
tribution. Thus, estimation procedure for the parameters of BIII distribution under
type II censoring has to be derived. Moradi et al. [17] have considered so called
exponentiated-BIII distribution under type II censored data. However, extending
the BIII distribution with exponentiation is meaningless since the distribution they
have derived corresponds to reparametrized version of the BIII distribution. Azizi
et al. [18] and Singh et al. [19] have studied parameter estimation for the BIII
distribution under type II hybrid censoring and type II progressive censoring, re-
spectively. It should be noted that these are generalizations of the classic type II
censoring. In this study, estimation problem for the parameters of BIII distribution
and prediction of the unobserved future order statistics under type II censored data
are considered. Unlike the previous studies, the maximum product spacing (MPS)
method is also taken into account as an alternative.
Remainder of the article is organized as the following. In Section 2, ML and

MPS estimation methods for the parameters are considered. The EM algorithm
is used to obtain ML estimates. Asymptotic variances and covariance of the ML
estimates are calculated with missing information principle (MIP) introduced by
Louis [20]. The Section 3 is divided to the prediction of unobserved future order
statistics for the type II censored sample. A comprehensive simulation study is
carried out to evaluate the performances of ML and MPS estimation methods with
different parameter, sample size and censoring settings in Section 4. An illustrative
real data example is studied in Section 5. Finally, the study is concluded in Section
6.
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2. Parameter Estimation

The cumulative distribution function (cdf) and the probability density function
(pdf) of the BIII distribution are given by

F (x; c, k) =
(
1 + x−c

)−k
, x ≥ 0; c, k > 0, (2.1)

f (x; c, k) = kcx−(c+1)
(
1 + x−c

)−(k+1)
, x ≥ 0; c, k > 0, (2.2)

respectively. The parameters c and k are the shape parameters of the distribu-
tion. Suppose that X1, X2, ..., Xn be independent and identically BIII distributed
random variables representing the lifetimes of n independent units. For type II
censoring case, only the first prefixed r (r ≤ n) failures, say X1:n, X2:n, ..., Xr:n,
are observed. These failures correspond to the first r order statistics of the random
sample X1, X2, ..., Xn. To estimate the parameters of the BIII distribution we will
consider ML and MPS methods, respectively.

2.1. ML method. The likelihood function of the BIII distribution under type II
censored data is given by

L (c, k;x) =
n!

(n− r)!

r∏
i=1

f (xi:n; c, k) [1− F (xr:n; c, k)]n−r

=
n!

(n− r)!k
rcr
[
1−

(
1 + x−cr:n

)−k]n−r r∏
i=1

x
−(c+1)
i:n

(
1 + x−ci:n

)−(k+1)
(2.3)

where x = (x1:n, x2:n, ..., xr:n). It is generally tractable to work with log-likelihood
function instead of the likelihood function. Therefore, the log-likelihood function is

logL (c, k;x) = constant+ r (log c+ log k) + (n− r) log
(
1−

(
1 + x−cr:n

)−k)
− (c+ 1)

r∑
i=1

log (xi:n)− (k + 1)
r∑
i=1

log
(
1 + x−ci:n

)
. (2.4)

The ML estimates of c and k are the arguments maximizing the logL function. For
the Equation (2.4), the ML estimators cannot be obtained in an analytical form.
One way to obtain ML estimates of c and k is that the first partial derivatives of
the logL function with respect to c and k are equated to zero and these nonlinear
equations are solved by a numerical procedure such as Newton-Raphson (NR).
However, when employing the NR method some errors such as non-convergence
or convergence to wrong value can occur. This may result in incorrect estimates.
Dempster et al. [21] developed a method called EM to calculate the ML estimates
in the presence of missing data. The EM algorithm is based on repeating the E
and M steps until convergence occurs. Since the log-likelihood function increases
in each repetition, the EM algorithm provides remarkable results for computation
of the ML estimates. For the type II censoring case, the censored observations can
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be thought of missing data and therefore the EM algorithm can be used to obtain
the ML estimators. For the type II censored data with given prefixed constant r,
let us denote the observed and censored data by X = (X1:n, X2:n, ..., Xr:n) and
Z = (Z1, Z2, ..., Zn−r), respectively. Then the complete data is W = (X, Z).
The log-likelihood function for the complete sample W is expressed as

logLc (c, k;W ) = n (log k + log c)− (c+ 1)
n∑
i=1

logwi − (k + 1)
n∑
i=1

log(1 + w−ci )

= n (log k + log c)− (c+ 1)
(

r∑
i=1

log xi:n +

n−r∑
i=1

logZi

)

− (k + 1)
(

r∑
i=1

log
(
1 + x−ci:n

)
+

n−r∑
i=1

log
(
1 + Z−ci

))
(2.5)

In the E step of the algorithm, the conditional expectation of the logLc given
X1:n = x1:n, ..., Xr:n = xr:n, that is EZ|X [logLc (c, k;W )] has to be calculated.
By the theorem of Ng et al. [22], givenX = (x1:n, ..., xr:n), the unobserved variables
Z1, Z2, ..., Zn−r are conditionally independent and their conditional distributions
are identical truncated BIII distribution with left truncation at xr:n. Therefore,

EZ|X [logLc (c, k;W )]

= n (log k + log c)− (c+ 1)
(

r∑
i=1

log xi:n +

n−r∑
i=1

E [logZi|Zi > xr:n]

)

− (k + 1)
(

r∑
i=1

log
(
1 + x−ci:n

)
+

n−r∑
i=1

E
[
log
(
1 + Z−ci

)
|Zi > xr:n

])
, (2.6)

where

E
[
log
(
1 + Z−ci

)
|Zi > xr:n

]
=

ck

1− F (xr:n)

∫ ∞
xr:n

log
(
1 + z−c

)
z−(c+1)

(
1 + z−c

)−(k+1)
dz

=
1

k
− (1 + x−cr:n)

−k

1−
(
1 + x−cr:n

)−k log (1 + x−cr:n), (2.7)

E [logZi|Zi > xr:n] =
ck

1− F (xr:n)

∫ ∞
xr:n

(log z) z−(c+1)
(
1 + z−c

)−(k+1)
dz.

(2.8)
The details for the integration are given in the appendix.
In the M step of the algorithm, the function EZ|X [logLc (c, k;W )] is max-

imized with respect to the parameters c and k. Let us write λ (c, k;xr:n) =
E
[
log
(
1 + Z−ci

)
|Zi > xr:n

]
and τ (c, k;xr:n) = E [logZi|Zi > xr:n]. Hereby, the
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ML estimates ĉ and k̂ of the parameters c and k are obtained by repeating the
iteration(
c(h+1), k(h+1)

)
= arg max

c,k>0

{
n (log k + log c)

− (c+ 1)
[

r∑
i=1

log xi:n + (n− r) τ
(
c(h), k(h);xr:n

)]

− (k + 1)
[

r∑
i=1

log
(
1 + x−ci:n

)
+ (n− r)λ

(
c(h), k(h);xr:n

)]}
,

h = 0, 1, 2, ...,

until
∥∥(c(h+1) − c(h), k(h+1) − k(h))∥∥ < ε is satisfied, where ‖.‖ stands for the

Euclidean norm in R2, c(0) and k(0) are the initial guesses of ĉ and k̂ and ε > 0

denotes pre-specified tolerance level. Thus, ĉ = c(h+1) and k̂ = k(h+1) for which h
is the smallest integer such that the convergence criterion holds.
The maximization procedure can be done as given by Kundu and Pradhan [23].

First, c(h+1) is obtained by solving the fixed point type equation

g (c) = c,

where

g (c) = n

[
r∑
i=1

log xi:n + (n− r) τ
(
c(h), k(h);xr:n

)
− (k (c) + 1)

r∑
i=1

x−ci:n log xi:n

1 + x−ci:n

]−1
(2.9)

and

k (c) = n

[
r∑
i=1

log
(
1 + x−ci:n

)
+ (n− r)λ

(
c(h), k(h);xr:n

)]−1
. (2.10)

Then k(h+1) is obtained as k(h+1) = k
(
c(h+1)

)
.

One of the advantages using the EM algorithm when computing the ML estimates
is that it enables us to obtain Fisher information matrix easily via MIP. The MIP
is based on the idea

Observed information = Complete information - Missing information.

Let us write θ = (c, k) . Then, the complete information and the missing infor-
mation matrices are defined as

Icom (θ) = −nE
[

∂2 log f(X;θ)
∂c2

∂2 log f(X;θ)
∂c∂k

∂2 log f(X;θ)
∂c∂k

∂2 log f(X;θ)
∂k2

]
, (2.11)

Imis (θ) = − (n− r)E
[

∂2 log f(X|X>xr:n;θ)
∂c2

∂2 log f(X|X>xr:n;θ)
∂c∂k

∂2 log f(X|X>xr:n;θ)
∂c∂k

∂2 log f(X|X>xr:n;θ)
∂k2

]
, (2.12)
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respectively, where X is BIII random variate and f is the pdf of X. Thus, the
observed information matrix is given as

Iobs (θ) = Icom (θ)− Imis (θ) . (2.13)

The elements of these matrices are given in the appendix. By inverting the ma-
trix Iobs (θ), one can obtain the asymptotic variance-covariance matrix of the ML
estimates ĉ and k̂.
In order to evaluate the performance of approximation for the variances and

covariance of the ML estimates obtained from the information matrix, we have
carried out a Monte Carlo simulation with 1000 replications. For the sake of
simplicity, we take c = 1 and k = 1. The variances and covariance obtained
from simulation and information matrix are given in Table 1. We also give cov-
erage probability (CP) of %95 confidence interval of ĉ + k̂. It is ratio satisfying

c + k ∈ (ĉ + k̂ − 1.96
√
Var(ĉ+ k̂), ĉ + k̂ + 1.96

√
Var(ĉ+ k̂)). Here, Var(ĉ + k̂) =

Var(ĉ) +Var(k̂) + 2Cov(ĉ+ k̂) and it is computed from information.

Table 1. Variances, covariance and coverage probability of ML
estimates using the EM algorithm

Simulated From Information CP
n r Var(ĉ) Var(k̂) Cov(ĉ, k̂) Var(ĉ) Var(k̂) Cov(ĉ, k̂) c+k
30 21 0.0541 0.0452 -0.0251 0.0430 0.0555 -0.0221 0.956

24 0.0412 0.0407 -0.0180 0.0392 0.0478 -0.0188 0.953
27 0.0357 0.0445 -0.0170 0.0364 0.0450 -0.0162 0.954

50 35 0.0224 0.0270 -0.0117 0.0209 0.0329 -0.0123 0.951
40 0.0222 0.0243 -0.0087 0.0211 0.0285 -0.0108 0.952
45 0.0188 0.0274 -0.0089 0.0199 0.0262 -0.0095 0.954

100 70 0.0096 0.0126 -0.0051 0.0094 0.0163 -0.0059 0.946
80 0.0101 0.0123 -0.0049 0.0097 0.0141 -0.0052 0.950
90 0.0097 0.0120 -0.0046 0.0095 0.0127 -0.0047 0.955

It is seen from the Table 1 that the approximations for the variances and co-
variance determined from the information matrix are satisfactory in the case of
moderate n and low censoring. The approximations become more accurate as n
increases even if the censoring level is high. Also, the values of CP are near 0.95 in
almost all cases.

2.2. MPS method. The MPS method was introduced as an alternative to ML
method by Cheng and Amin [24] and independently by Ranneby [25]. Their aim is
to overcome an unboundedness problem of the likelihood with a pdf having shifted
origin for which the ML estimators may become inconsistent. For comprehensive
content, one can refer to Ekström [26]. MPS and ML estimators are asymptotically
equal and have same asymptotic suffi ciency, consistency and effi ciency properties as
pointed out in Cheng and Amin [24]. The MPS method is based on maximizing the
product of consecutive differences between values of the cdf at ordered observations.
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Considering the probability integral transform, it is clear that MPS method chooses
the values as estimates which make the spacings as uniform as possible. Since the
cdf is being used as base function, there does not occur any unboundedness problem.
The MPS estimators of c and k are given for complete and type II censored data

as follows. LetX = (X1, X2, ..., Xn) be a complete sample from BIII distribution.
Therefore, the MPS estimates are the arguments maximizing the function G(c, k;x)

G (c, k;x) =

n+1∏
i=1

[F (xi:n; c, k)− F (xi−1:n; c, k)] , (2.14)

with respect to c and k where (x1:n, x2:n, ..., xn:n) is the ordered sample and
F (x0:n; c, k) := 0, F (xn+1:n; c, k) := 1. For the type II censored sample, the
function G (c, k;x) can be obtained similarly as given in Ng et al. [27] by

G (c, k;x) =

r+1∏
i=1

[F (xi:n; c, k)− F (xi−1:n; c, k)]× [1− F (xr:n; c, k)]n−r, (2.15)

where x = (x1:n, x2:n, ..., xr:n) and F (xr+1:n; c, k) is taken to be 1 for convenience.
Hence, the MPS estimators are(

c̃, k̃
)
= arg max

c,k>0
G (c, k;X) . (2.16)

Since there are no analytic expressions for c̃ and k̃, they can be obtained by nu-
merical non-linear optimization techniques.

3. Prediction of future order statistics

In this section, we will consider predicting the unobserved future order statistics
for type II censored data. As well as, there are some methods, we prefer to use the
best unbiased prediction method. Let X = (X1:n, X2:n, ..., Xr:n) be the sample
will being observed and Yk = Xr+k:n, k = 1, ..., n−r be the unobservable variables
for the type II censored data. Therefore, the best unbiased predictor (BUP) for Yk,
k = 1, ..., n− r is defined as

Ŷk = E [Yk|X] . (3.1)

Considering the Markovian property of order statistics, E [Yk|X] = E [Yk|Xr:n] .
It should be noted that, Yk, k = 1, ..., n− r, corresponds to the kth order statistic
of n − r units from the truncated BIII distribution with left truncation at xr:n,
given Xr:n = xr:n. Therefore, given Xr:n = xr:n, the pdf of Yk is

fk (y|xr:n; c, k) = k

(
n− r
k

)
[F (y; c, k)− F (xr:n; c, k)]k−1[1− F (y; c, k)]n−r−k

×[1− F (xr:n; c, k)]r−n, y > xr:n, (3.2)
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where f and F are the pdf and cdf of BIII distribution with parameters c and k,
respectively. Thus, the BUP for Yk, k = 1, ..., n− r is

Ŷk =

∫ ∞
xr:n

yfk(y|xr:n; ĉ, k̂)dy, (3.3)

where ĉ and k̂ are the ML estimates based on (x1:n, x2:n, ..., xr:n).

4. Simulation study

In this section, we will carry out a Monte Carlo simulation in order to investigate
how the ML and MPS estimation methods perform for BIII distribution under
different settings for sample sizes, censoring and parameter values. For this purpose,
the number of replications is chosen asN = 104. Sample sizes are taken as 20, 40, 60
and 100. Two censoring levels, %10 and %30, are considered for each sample sizes.
It should be noted that the pdf of the BIII distribution is L-shaped when ck ≤ 1
and unimodal when ck > 1. So, we both consider L-shaped and unimodal cases
by choosing the parameters as (c = 1, k = 1), (c = 0.6, k = 0.8), (c = 2, k = 0.4)
and (c = 1, k = 2), (c = 0.8, k = 1.5), respectively. For convergence criteria of the
EM algorithm, we take the tolerance level as ε = 10−5. All the simulations are
conducted in MATLABTM program. The nonlinear optimization tools are used for
computation of the MPS estimators. We present the simulation mean, bias and
mean square error (MSE) values for both ML and MPS estimators of c and k in
Tables 2-6.

Table 2. ML and MPS estimations when c = 1, k = 1

Table 3. ML and MPS estimations when c = 0.6, k = 0.8
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Table 4. ML and MPS estimations when c = 0.4, k = 2

Table 5. ML and MP Sestimations when c = 0.8, k = 1.5

Table 6. ML and MPS estimations when c = 1, k = 2

The simulation results have been summarized as follows. First of all, the be-
haviors of the ML and MPS estimators do not show a discrepancy depending on
whether the pdf is L-shaped or unimodal. The biases of ĉ and k̂ are a bit greater,
compared to the biases of c̃ and k̃. Although the biases of c̃ and k̃ do not change
depending on the censoring proportion, the biases of ĉ and k̂ increase as the censor-
ing proportion increases. All the biases get smaller as the sample size gets larger.
k̃ mostly underestimate the parameter k for all cases whereas k̂ overestimates ab-
solutely. Similarly, c̃ usually underestimates the parameter c. However, there is no
such a case for ĉ. For each sample size, the MSE values of all the estimators increase
when the censoring proportion gets larger. Also, all the MSE values get smaller as
the sample size increases. Since the ML and MPS estimators are consistent, this
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is an expected situation. Further, it is observed that there is not any remarkable
superiority between the ML and MPS estimators with respect to the MSE criterion,
that is, all the MSE values are close to each other for both methods in much cases.

5. Illustrative example

In this section, we will consider a real data set given by Mann and Fertig [28].
This data set is also studied by Prakash and Singh [29] from a Bayesian perspective.
The data set contains 10 failure times of airplane components of total 13 items. The
censoring scheme is type II censoring with r = 10 and n = 13. The data set is

{0.22, 0.50, 0.88, 1.00, 1.32, 1.33, 1.54, 1.76, 2.50, 3.00} .

If we model this data set with BIII distribution, the ML estimates of parameters
and the related standard errors (in parenthesis) are obtained as ĉ = 1.4990(0.1458)
and k̂ = 1.7025(0.2279). This data set was also studied in Crowder et al. [30]. They
considered Weibull and lognormal models. For these models, the rough estimates
were found by graphical technique as α̂ = 1.4, β̂ = 2.2, µ̂ = 0.5, σ̂ = 1.
Here, α and β are shape and scale parameters of the Weibull distribution, re-

spectively, µ and σ are the parameters of lognormal distribution which are mean
and standard deviation of the corresponding normal distribution, respectively. We
have computed the ML estimations of these parameters as given in Table 7. In
order to compare BIII, Weibull and lognormal models for this data set, we consider
loglikelihood, Akaike information criteria (AIC) values and Cramér-von Mises and
Anderson-Darling test statistics. The results are presented in Table 7. It should
be noted that the Cramér-von Mises and Anderson-Darling test statistics for the
type II censored data are computed by using the W 2

r,n and A
2
r,n statistics given

in D’Agostino and Stephens [31] at p. 114. Critical points of the W 2
r,n and A

2
r,n

statistics at significance level 0.5 are nearly 0.085 and 0.503, respectively as given
in Table 4.5 of [31]. So, the associated p-values of both statistics for BIII, Weibull
and lognormal models are much bigger than 0.5.

Table 7. Comparison of BIII, Weibulland Lognormal models

From Table 7, it can be considered that the BIII is successful to model this
data set as much as Weibull and lognormal models. This indicates that the BIII
distribution may be a good alternative for fitting lifetime data sets. Furthermore,
the predictions for the unobserved variables are computed as Ŷ1 = 4.0601, Ŷ2 =
6.3858 and Ŷ3 = 20.0207 via BUP approach. When a sample of size 13 from BIII
distribution with c = 1.4990 and k = 1.7025 is generated 10000 times, the last
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three observations of ordered sample are computed averagely as 4.2975, 6.8485 and
19.9901. These values agree with the predictions, as expected.

6. Conclusion

In this study, we have concerned with the statistical inference problem for the
BIII distribution under type II censored data. For this purpose, we have taken into
account the ML and MPS methods. We have implemented the EM algorithm for
the computation of the ML estimators. Also, the information matrix is derived
by means of MIP. The unobserved future order statistics have been predicted via
BUP approach. Monte Carlo simulations indicate that in order to estimate the
model parameters, both of the ML and MPS methods can be used. Especially, if
the censoring proportion is large we suggest to use the MPS method since absolute
biases of the MPS estimators are lower than that of ML estimators. Finally, the
real life examination has illustrated modeling capacity of the BIII distribution.
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7. Appendix

The integral given in Equation (2.7) is analytically obtained by first applying
1 + z−c = y transformation and then applying partial integration. These steps are
as follows:

E
[
log
(
1 + Z−ci

)
|Zi > xr:n

]
=

ck

1− F (xr:n)

∫ ∞
xr:n

log
(
1 + z−c

)
z−(c+1)

(
1 + z−c

)−(k+1)
dz

=
k

1− F (xr:n)

∫ 1+x−cr:n

1

log (y)y−(k+1)dy

=
k

1− F (xr:n)

[
log (y)

(
y−k

−k

)
|1+x

−c
r:n

1 +

∫ 1+x−cr:n

1

y−(k+1)dy

]

=
k

1− F (xr:n)

[
log
(
1 + x−cr:n

)( (1 + x−cr:n)−k
−k

)
+
1

k2
(1− F (xr:n))

]

=
1

k
− (1 + x−cr:n)

−k

1−
(
1 + x−cr:n

)−k log (1 + x−cr:n).
Existence of the expectation given in Equation (2.8) can be easily shown by simple
calculus.
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To get the complete information Icom(θ) the second partial derivatives of log f
with respect to c and k are

∂2 log f

∂c2
=
−1
c2
− (k + 1) log

2(x)x−c

(1 + x−c)
2 ,

∂2 log f

∂k2
=
−1
k2
,

∂2 log f

∂c∂k
=
log (x)x−c

1 + x−c
.

Therefore the elements of the complete information based on n units are

Icom(θ)11 = n

(
1

c2
+ (k + 1)E

[
log2(X)X−c

(1 +X−c)
2

])
,

Icom(θ)12 = −nE
[
log (X)X−c

1 +X−c

]
,

Icom(θ)21 = Icom(θ)12,

Icom(θ)22 =
n

k2
,

where X is BIII random variable. Since the expectations E
[
log2(X)X−c

(1+X−c)2

]
and

E
[
log (X)X−c

1+X−c

]
cannot be obtained analytically, they have to be computed numer-

ically. The missing information is obtained in a similar manner. Skipping the
derivation steps, we obtain the elements of the missing information as

Imis(θ)11 = (n− r)
(
1

c2
+ (k + 1)E

[
log2(X)X−c

(1 +X−c)
2 |X > xr:n

]
+A

)
,

Imis(θ)12 = − (n− r)
(
E

[
log (X)X−c

1 +X−c
|X > xr:n

]
+B

)
,

Imis(θ)21 = Imis(θ)12,

Imis(θ)22 = (n− r)
(
1

k2
− C

)
,

where

A =
log2(xr:n)k

[
(1 + x−cr:n)

k
(xcr:n − k)− xcr:n

]
(1 + xcr:n)

2
(
1−

(
1 + x−cr:n

)−k)2 ,

B =
(1 + x−cr:n)

−k−1
log(xr:n)x

−c
r:n(

1−
(
1 + x−cr:n

)−k) [
1− k log

(
1 + x−cr:n

) (
1−

(
1 + x−cr:n

)−k)−1]
,
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C =
log2(1 + x−cr:n)(1 + x

−c
r:n)
−k(

1−
(
1 + x−cr:n

)−k)2 .

Here, the expectations have to be computed numerically since they have no ana-
lytical solution. Also, it should be pointed out that all the expectations related
with the information matrices exist. It is straightforward from the existence of
E[log(X)].
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