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ESTIMATION METHODS FOR SIMPLE LINEAR REGRESSION
WITH MEASUREMENT ERROR: A REAL DATA APPLICATION

RUKİYE E. DAĞALP, İHSAN KARABULUT, AND FİKRİ ÖZTÜRK

Abstract. The classical measurement error model is discussed in the con-
text of parameter estimation of the simple linear regression. The attenuation
effect of measurement error on the parameter estimation is eliminated using
the regression calibration and simulation extrapolation methods. The mass
density of pebbles population is investigated as a real data application. The
mass and volume of a pebble are regarded an error-free and error-prone vari-
ables, respectively. The population mass density is considered to be the slope
parameter of the simple linear regression without intercept.

1. Introduction

The classical simple linear regression model is making inferences in the functional
relationship between the explanatory or independent variable X and the response
or dependent variable Y from the observations (x, y). Sometimes, the explanatory
variable cannot be directly observable or diffi cult to observe for some situations. In
these situations, a substitute variable W , generally called error-prone predictor, is
observed instead of X that is, the random variable X is observed with measurement
error U . The substitution ofW forX leads to estimates that are sometimes seriously
biased. The goal of the measurement error modeling is to obtain unbiased estimates
with observed data (w, y).
Consider the classical linear regression model with one explanatory variable as

Y = α+ βXX + ε (1.1)

when experimental error ε with mean 0, variance σ2ε and the additive measurement
error model as

W = X + U (1.2)

when measurement error U with mean 0, variance σ2U . When the explanatory
variable is error-prone predictor the models given in (1.1) and (1.2) together is called
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classical measurement error model Carroll, Ruppert, Stefanski and Crainiceanu
(2006). (ε, U,X) is an independent triplet with the distribution ε

U
X

 ∼ N

 0

0
µX

 ,

 σ2ε 0 0
0 σ2U 0
0 0 σ2X

 (1.3)

For the error-free data , the usual bivariate normal regression model given in (1.1)
the normal estimating equations for α, βX and σ2ε can be derived from the condi-
tional distribution of Y1, Y2, · · · , Yn given X1, X2, · · · , Xn for the random sample
(X1, Y1), (X2, Y2), · · · , (Xn, Yn) of size n as in Casella and Berger (1990).

n∑
i=1

(Yi − α− βXXi)

(
1
Xi

)
=

(
0
0

)
,

n∑
i=1

{
(n− p)
n

σ2ε − {Yi − α− βXXi}2
}

= 0.

For error-prone data, models in (1.1) and (1.2) can be rewritten as

Yi = α+ βXXi + εi; i = 1, 2, · · · , n
Wi = Xi + Ui; i = 1, 2, · · · , n

for the random sample (W1, Y1), (W2, Y2), · · · , (Wn, Yn) of size n.
The situation is that the explanatory variable X is measured as W , i.e. ignoring

the measurement error, and modeling the regression of Y on W using the model in
(1.1) causes impairments of statistical inferences such as biased estimation. To be
specific the effect of the measurement error on the estimating equations is to bias
on the slope estimate in the direction of 0. This type bias is commonly referred
to as the attenuation in the context of the simple linear regression. The amount
of the attenuation is called reliability ratio as in Fuller (1987), Carroll, Ruppert,
Stefanski and Crainiceanu (2006) and denoted by λ.
The ordinary least squares (OLS) slope estimator β̂W for the regression of Y on

W is called the naive estimator and the OLS slope estimator β̂X for the regression
of Y on X is called the true estimator. Let us define SYW , SY U and SXU are the
sample covariances of Y and W , Y and U , and X and Urespectively. Similarly,
SUU = S2U and SXX = S2X the sample variances of U and X, respectively. The
ordinary least square estimator on the observed data (Y,W ) is written as β̂W =

λ̂β̂X + op(1), where the estimator of the reliability ratio is λ̂ = S2X/(S
2
X + S2U ) and

op(1) indicates that the remainder term converges in probability to zero. In order
to show that firstly, consider the naive ordinary least square estimator of slope
parameter as

β̂W =
SYW
SWW

=
SY X + SY U
SXX + SUU

.
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Secondly, by the Law of Large numbers, SXU and SY U converge in probability to
zero under the independence assumption, and likewise SXX

p−→ σ2X , SUU
p−→ σ2U ,

SY X
p−→ σY X as n → ∞. From these results, λ̂ → λ = σ2X/(σ

2
X + σ2U ) as n → ∞

and the regression slope parameter is βX = σY X/σ
2
X , therefore β̂W

p−→ λβX as
n → ∞ (Serfling, 1980). The attenuation factor λ is a real number in the range
[0,1] since σ2X , σ

2
U are finite. If σ

2
X > 0 and finite, then σ2U = 0 ⇔ λ = 1. In this

situation, there is no measurement error, say, X = W . If σ2U = ∞ ⇔ λ = 0, then
the data is all error.
To illustrate the attenuation induced by the measurement error, the data for the

true explanatory variable X, the regression model error ε, and the measurement
error U were generated from the trivariate normal distribution as(

X,U, ε
)T
∼ N

((
0, 0, 0

)T
, diag {1, 0.5, 0.5}

)
.

The data for the response variable Y were generated with the regression model,
Y = α + βXX + ε with α = 0, βX = 3 and the observed data W were obtained
from W = X + U . Notice that how to the true data (Xi, Yi)’s are more tightly
grouped around a well-delineated line, while the error-prone data (Wi, Yi) have
much variability about the dashed line in Figure 1.

Figure 1. Illustration of the simple linear regression with mea-
surement error. The filled circles are the plot of the true data
(X,Y ), and the dashed line is the least squares fit of these data.
The empty circles are the plot of the observed data (W,Y ) and the
solid line, which is the attenuated line, is the least squares fit of the
measurement error data. For these data σ2X = 1, σ2U = σ2ε = 0.5
and (α, βX) = (0, 3).
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The results of fitting the model with measurement error can be summarized
roughly as fallows. The regression model for E(Y |X) depends on unobservable
explanatory variable X instead of observable substitute variable W to X. As a
consequence, the estimators of the parameters of interest θ = (α, βX)

T appear in
the the model are functions of the observed substitute variable W . The data have
also additional variability because of the measurement error. Thus, it is diffi cult to
find unbiased estimator of the parameters of interest with the substitute variableW
instead of X. On the other hand, one of the feature of the measurement model has
a lack of identifiability problem (Fuller (1987), pp. 9-10). Because, the estimation
of measurement error variance, σ̂2U , can not be obtained with the data (W,Y )
at hand, so for this estimation it is required replicated data unless it is known.
As a results, not only is the regression slope estimator biased and the fitted line
attenuated, but also the data are noisier with increased error about the fitted
line. In this manuscript, two methods of correcting the attenuation, the regression
calibration and simulation of extrapolation called SIMEX, are explained in more
detail and compared in terms of the attenuation and variability. For the illustration
a simulation study is presented for different sample sizes and different values of
σ2U , σ

2
ε. Moreover, a real data example is given for an application to linear regression

without intercept.

2. The Methods of Estimates

2.1. Regression Calibration. The regression calibration (RC) is a straightfor-
ward method for fitting the regression models in the presence of measurement error
and was derived and recommended by Carroll and Stefanski (1990) and Gleser
(1990). The RC is one of the most useful methods to reduce the effect of measure-
ment error and correcting the attenuation in regression model. The basis of RC is
the replacement of the true explanatory variable X by the estimation of E(X|W ),

which is denoted as ̂E(X|W ) and also will be called as RC function. After this

replacement, the regression analysis is performed on
(
̂E(X|W ), Y

)
. RC is simple,

widely used, effective, reasonably well investigated and potentially applicable in
addition to correcting the attenuation (Carroll and Stefanski (1990, 1994)).
Carroll and Stefanski (1990) suggested an algorithm yielding a linear approxima-

tion to the RC estimate to eliminate bias in the estimated regression coeffi cients for
measurement error analysis. To operate the algorithm, measurement error variance
σ2U has to be known or estimable. If the data are replicated externally or internally
to estimate the error variance, then the algorithm is applicable. RC estimate of βX
can be derived in two steps:

• The mean squares of model error (MSE) for fitting the regression Y on W
is taken σ̂2W . If there is only one explanatory variable in the analysis like
this article, σ̂2W is the sample variance of W .

• RC estimate is β̂X = β̂W σ̂
2
W /(σ̂

2
W − σ̂2U ).
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With the replicated data, it is possible to estimate the measurement error vari-
ance σ2U . Replicate data means that measurement of X is replicated measurements
W measuring the same X. Suppose Wi1,Wi2, . . . ,Wiki are ki replicated measure-
ments of Xi, and their mean isW i.. The replication provides to obtain the estimate
of measurement error variance as

σ̂2U =

n∑
i=1

ki∑
j=1

(Wij −W i.)
2

n∑
i=1

(ki − 1)
. (2.1)

Given W , the best linear approximation to X is

E(X
∣∣W ) ≈ µX + σ2X

[(
σ2X + σ2U

)
/k
]−1 (

W − µW
)
,

where k is the number of the replication of X, µX and µW are the means of X
and W , σ2X and σ2U are the covariance matrices of X and U , respectively (Carroll,
Ruppert, Stefanski and Crainiceanu (2006)).
For the RC estimate, the sample mean of the replicated data of Xi is W i. =

ki∑
j=1

Wij/ki and the pooled sample variance of the replicated data is given in (2.1).

Similarly, the other estimates are defined as

µ̂X = µ̂X =

n∑
i=1

kiW i.

n∑
i=1

ki

, v =

n∑
i=1

ki −

n∑
i=1

k2i

n∑
i=1

ki

,

σ̂2X =

[{
n∑
i=1

ki
(
W i. − µ̂W

)2}− (n− 1)σ̂2U

]
/v.

resulting RC estimate is

X̂i = ̂E(Xi

∣∣W i. ) ≈ µ̂W + σ̂2X

[
σ̂2X + σ̂2U

ki

]−1 (
W i. − µ̂W

)
, i = 1, 2, . . . , n. (2.2)

The estimated RC in (2.2) is reproduced by replacing the unknown parameters
by their classical method of moments estimators in the best linear approximation to
X given above. To derive RC estimate it is required to have the estimates σ̂2U and
σ̂2W from observed data. If the data are not replicated or unavailable to replicate,
and but there is an estimate σ2U , gotten from an another study, still the estimate
X̂i can be obtained from equation (2.2). Even if there are exactly two replicates of
W , then the sample variance of U is derived from the half of the sample variance
of difference Wi1 −Wi2. Thus, the estimated RC is attained as in (2.1). When the
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estimate of variance σ2U is derived from replicated data, the covariance σεU of ε and
U is assumed to be zero since the independence of ε and U . When the replication
is not available for each observation, the algorithm for RC estimator produces
consistent estimates for linear regression. After reducing the measurement error
in the explanatory variable, then the regression parameters are estimated and the
statistical inference proceeds with a standard analysis. SIMEX, given in the next
section has the same advantages with RC, but it is more computationally intensive
than RC.

2.2. Simulation Extrapolation. Simulation Extrapolation (SIMEX) is a sim-
ulation based method of estimating and correcting the attenuation due to the
measurement error. SIMEX method was proposed and developed by Cook and
Stefanski (1994), Stefanski and Cook (1995) as an alternative method to reducing
bias. SIMEX estimation is a computational, graphical method and depends on a
computer algorithm that determines parameter estimates.The essential idea is to
determine the bias for an estimate caused by the measurement error by implement-
ing a virtual experiment via simulation then the unbiased estimation is found on
the graph for the no measurement error case.
SIMEX estimates are obtained by adding additional measurement errors to the

observed values of the explanatory variable W in a resampling-like stage and re-
calculating the naive estimators from the contaminated data. For each additional
measurement error, the naive estimator is obtained and the trend is then extrapo-
lated back to the case of no measurement error. The details of the algorithm are
given in this section for simple linear regression.
The key features of SIMEX method are described easily for the simple linear

regression. For this, the notation is adopted from Carroll, Ruppert, Stefanski and
Crainiceanu (2006). Suppose that simple linear regression Y = α + βxX + ε,
with additive measurement error model W = X + U , where U is independent of
(Y,X) and has mean zero and variance σ2U . For the calculation purpose, assume
U = σUZ, where Z is a standard normal random variable. σ2X denotes the variance
of the explanatory variable X, the measurement error variance σ2U assumed to
be known or to be estimated. Let now the additive measurement error model be
W = X + σUZ. When the measurement error variance is ignored, it is well known
that the ordinary least square estimate β̂W , denotes the naive estimator, of βX

converges in probability to
σ2X

σ2X + σ2U
βX as n→∞, but not to βX .

The key idea of SIMEX method is to obtain the ordinary least square estimate
of slope from the original data that is the naive estimate β̂W . There are M − 1
additional data sets with successively added measurement error that each set has
the variance σ2U (1 + νm), m = 1, 2, · · · ,M where 0 = ν1 < ν2 < · · · < νM . In the
following the set of νms is denoted by Λ. For any mth data set, the ordinary least
square estimate of slope is calculated and the estimator β̂W,m consistently estimates
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σ2X
(σ2X + (1 + ν)σ2U )

βX . Note that, for ν = −1 the naive estimator turns out to be

an unbiased estimator of βX . This suggest that the relationship between β̂W and
ν can be formulated as a nonlinear regression model. Therefore, ν is taken as if an
independent variable and β̂W is taken as if a dependent variable. The model has a
mean function of the form

E(β̂W |ν) = g(ν) =
σ2X

σ2X + σ2U (1 + ν)
βX , ν > 0. (2.3)

A generic plot of ν versus g(ν) is obtained as in Figure 2. The parameter
of interest, βX is achieved from the function g(ν) by extrapolation to ν = −1
(Carroll, Ruppert, Stefanski and Crainiceanu (2006)). Cook and Stefanski (1994)

Figure 2. A generic SIMEX plot of the effect of measurement
error of size σ2U (1 + ν) on parameter estimates. The SIMEX esti-
mate is an extrapolation to ν = −1 and the naive estimate occurs
at ν = 0.

showed that equation (2.3) fits the nonlinear function g(ν) = γ0 + γ1(γ2 + ν)−1 of
ν named as the rational linear extrapolant that generates consistent estimator of
the parameter of interest. For the unbiased parameter estimation let us recall a
commonly used M-estimation method via score function ψ which satisfies the

E [ψ(Y,X; θ) |X ] = 0

where Y = g(ν), X = ν and θ = (γ0, γ1, γ2)
T are considered as response, explana-

tory variables and the vector of parameters, respectively.
The conditionally unbiased ψ function can be devised using the M-estimation

methods described by Carroll, Ruppert, Stefanski and Crainiceanu (2006, Sec.7.3).
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The parameter θ relating Y and X is consistently estimated by θ̂ satisfying the
estimating equation

n∑
i=1

ψ(Yi, Xi; θ) = 0. (2.4)

The SIMEX algorithm suggested by Cook and Stefanski (1994) can be summa-
rized in the following steps:

• Fix the set Λ and choose νm ∈ Λ.
• Take a constant B > 0 and generally considered as B = 50, 100, 500.
• Generate the random variables Zib ∼ N(0, 1) via computer for b = 1, · · · , B
and i = 1, · · · , n.

• Define the variance V ar(Wi + σUν
1/2
m Zib |Xi ) = (1 + νm)σ2U , i = 1, · · · , n.

• Define the estimate θ̂b(νm) be a solution of
n∑
i=1

ψ(Yi,Wi + σUν
1/2
m Zib; θ) = 0

for each b.
• Average these estimations as

θ̂S(νm) =
1

B

B∑
b=1

θ̂b(νm),

where the subscript S refers to the simulation nature of the estimator.
• Repeat the steps for m = 1, 2, · · · ,M and find θ̂S(νm) for each m.
• Plot the generated data of pairs (νm, θ̂S(νm)).
• Fit the parametric model g(θ, ν) = γ0 + γ1(γ2 + ν)−1 by (νm, θ̂S(νm)) and
estimate θ = (γ0, γ1, γ2)

T .
• Find the SIMEX estimator as θ̂SIMEX = g(θ̂,−1)

When ν = 0, the SIMEX algorithm produces the estimator θ̂S(0), which denotes
the naive estimator the same as the method of moments estimator. The estimating
equation in (2.4) satisfies

E
[
ψ
(
Y,W + σUν

1/2Z; θ
) ]

= 0.

Therefore, the parameter estimator θ̂S(ν) converges in probability to θ(ν) by the
standard estimating equation theory (Serfling, 1980).

3. Simulation Study

In this section, the performance of regression calibration and SIMEX methods
are illustrated by a simulation study to eliminate the effects of measurement error
on the parameter estimation. Throughout the simulation study measurement error
variance, σ2U is assumed to be known. The data {Xi, Ui, εi}ni=1 are generated from
trivariate normal distribution as in (1.3) with µX = 0 and σ2X = 1 for the selected
the measurement error variances σ2U = {0.25, 0.5, 0.75, 1.0, 1.5, 2.0}, the model error
variances σ2ε = {0.5, 1.0}, sample sizes n = 50, 100, 200, and B = 100 simulation
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runs. The data for the response variable Y and the observed variable W were
created by using the generated data for the models given in (1.1),(1.2) with α = 0,
βX = 3. The simulation results are given only for the estimated parameter βX in
Table 1 and Table 2. The slope estimations depending on the methods are listed
below with the associated data:

• True estimation calculated from the true data {Yi, Xi}ni=1,
• Naive estimation calculated from the observed data {Yi,Wi}ni=1,
• RC estimation calculated from the observed data {Yi,Wi}ni=1,
• SIMEX estimation calculated from the observed data {Yi,Wi}ni=1 .

Table 1. Simulation study results for the true, naive, RC and
SIMEX estimators for σ2U = {0.25, 0.5, 0.75, 1.0, 1.5, 2.0} , σ2ε = 0.5,

n = {50, 100, 200} , and (α, βX) = {0, 3} .
The table entries are means of 100 simulation runs.
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Table 2. Simulation study results for the true, naive, RC and SIMEX
estimators for σ2U = {0.25, 0.5, 0.75, 1.0, 1.5, 2.0} , σ2ε = 1, n = {50, 100, 200} ,
and (α, βX) = {0, 3} . The table entries are means of 100 simulation runs.

The true, naive, RC and SIMEX estimations were compared in terms of bias.
As seen in tables, RC and SIMEX methods eliminate the attenuation due to mea-
surement error. That means, both methods correct the bias of the estimates of
regression parameters as well as true estimation. When the sample size increases,
SIMEX method gives slightly better estimates than RC.

4. An Application

The interest is to find the density of pebble population in one of the coasts of
Antalya. Pebbles are different colors (granite or white, etc.) which reflect their
texture and density. For the application purpose the sample pebbles are randomly
selected from the population of pebbles which have the same color and texture,
namely granite colored. So, the density of a granite pebble can be obtained as

ρ =
m

V
⇒ m = ρV

where ρ=density, V=volume(cm3) and m= mass(g). The volume and mass of each
pebble are measured with measuring cylinder and a very sensitive weight scale, and
then their densities can be obtained from the density formula given above. However,
the volume of a pebble is not easily measured even though it is measured with a
very sensitive instrument. The volume measurement can be considered as an error-
prone variable; therefore it is possible to be modeled as in (1.2). Throughout the
application the volume of the pebbles are assumed to be never measured accurately.
On the other hand the population density ρ can be estimated as a slope parameter
of a simple linear regression model without intercept.
For the analysis purposes, suppose that the measurement error of volume is U ∼

N(0, σ2U ). If the measurement error variance is unknown, it has to be estimated by
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a replicated sample. For this aim, a metal sphere with known volume V = 9.20 cm3

is measured several times to calculate the measurement error variance using this
replicated data given in Table 3. For this data the measuring cylinder filled with
water randomly and measured the level of the water referred as "Before" then
the metal sphere put inside the measuring cylinder and measured the level of the
water referred as "After". The difference After and Before denotes the volume of
the metal sphere for each measurement replication. Note that the each value of
"Difference" varies even if it is measured the same metal sphere which indicates
that volume measurand has a measurement error.

Table 3. Measurements of a sphere has volume 9.20 cm3,
measured with a measuring cylinder.

Figure 3. The estimated regression lines of the pebbles data for
naive, RC and SIMEX estimator

From the replicated data given in Table 3, the measurement error variance σ2U
is estimated as 0.52. The volume and the mass of pebbles are called as W = V and
Y = m, respectively to be compatible with the models (1.1) and (1.2). To fit the
data, the simple linear regression model and the additive measurement error model
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are

Yi = ρXi + εi, i = 1, 2, . . . , 38

Wi = Xi + Ui, i = 1, 2, . . . , 38

The estimated regression lines using the pebbles data are ŷi = 2.8575wi with the
OLS estimator, ŷi = 2.8868wi with the RC estimator and ŷi = 2.8869wi with the
SIMEX estimator.
The three estimated regression lines of OLS, RC and SIMEX appear to be very

close in Figure 3. The slope estimations of RC and SIMEX produce relatively close
to each other than the OLS. There are some possible reasons for indistinctiveness
of the estimated lines such as small measurement error variance, small pebble sizes,
small sample size etc. The estimated reliability ratio is λ̂ = 0.9898 for the current
application. It seems that the effect of measurement error will be more apparent
as the pebble sizes increase.
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tics, 06100 Tandoğan-Ankara/Turkey.
E-mail address : ozturk@science.ankara.edu.tr


