Commun.Fac.Sci.Univ.Ank.Series A1 Volume 66, Number 2, Pages 340–348 (2017) DOI: 10.1501/Commua1_0000000824 ISSN 1303-5991

\mathcal{N} -FUZZY IDEALS OF LATTICES

YILDIRAY ÇELIK

ABSTRACT. In this paper, the new concepts of \mathcal{N} -fuzzy ideals and \mathcal{N} -fuzzy prime ideals of lattices have been introduced. Also, some of theirs basic properties are investigated. Hence, some results about the homomorphic \mathcal{N} -image and pre-image of \mathcal{N} -fuzzy ideals of lattices are established.

1. Introduction

The concept of fuzzy sets was firstly introduced by Zadeh [16]. Rosenfeld [12] used this concept to formulate the notion of fuzzy groups. Since then many other fuzzy algebraic concepts had been studied by several authors. Yuan and Wu [15] introduced the concepts of fuzzy sublattice and fuzzy ideals of a lattice. Biswas [1] introduced the concept of anti fuzzy subgroups of groups. Shabir and Nawaz [13] introduced the concept of anti fuzzy ideals in semigroups. Khan and Asif [6] characterized different classes of semigroups by the properties of their anti fuzzy ideals. Lekkoksung [10] introduced the concept of an anti fuzzy bi-ideal of ordered Γ-semigroups. Kim and Jun [7] studied the notion of anti fuzzy ideals of a nearring. Datta [2] introduced the concept of anti fuzzy bi-ideals in rings. Anti fuzzy ideals of Γ -rings were studied by Zhou et al. [17]. Srinivas et al. [14] introduced the concept of anti fuzzy ideals of Γ -near-ring. Dheena and Mohanraaj [3] introduced the notion of anti fuzzy right ideal, anti fuzzy right k-ideal and intuitionistic fuzzy right k-ideal in semiring. Hong and Jun [5] introduced the notion of anti fuzzy ideals of BCK algebras. In this paper, we introduce the concepts of \mathcal{N} -fuzzy ideals and \mathcal{N} -fuzzy prime ideals of lattices and investigate some related properties. Also, we give some results about the homomorphic \mathcal{N} -image and pre-image of \mathcal{N} -fuzzy ideals of lattices.

2. Preliminaries

In this section, let X denotes a bounded lattice with the least element 0 and the greatest element 1 unless otherwise specified.

Received by the editors: May 31, 2016, Accepted: March 02, 2017. 2010 Mathematics Subject Classification. Primary 06D72; Secondary 20M12. Key words and phrases. Fuzzy ideal, \mathcal{N} -fuzzy ideal, fuzzy lattice, \mathcal{N} -fuzzy sublattice.

©2017 Ankara University

Definition 1. [4] A non-empty subset I of X is called an ideal of X if, for any $a, b \in I$, $a \lor b \in I$, $a \land b \in I$ and, for any $a \in I$ and $x \in X$, $x \land a = x$ implies $x \in I$. A non-empty subset D of X is called a dual ideal of X if, for any $a, b \in D$, $a \land b \in D$, $a \lor b \in D$ and, for $a \in D$ and $x \in X$, $x \lor a = x$ implies $x \in D$. An ideal P of X is called a proper ideal if $P \ne X$. A proper ideal P of X is called a prime ideal of X if, for any $a, b \in X$, $a \land b \in P$ implies $a \in P$ or $b \in P$.

Definition 2. [11] Let X, Y be two sets and f be a mapping from X to Y. A fuzzy set μ of X (see [16]) is a map from X to [0,1]. If $\mathcal{F}(X)$ is the family of all fuzzy sets of X, then, for all $\mu, \nu \in \mathcal{F}(X), \omega \in \mathcal{F}(Y)$ and $x \in X, y \in Y$, the following operations are defined:

$$(\mu \vee \nu)(x) = \max\{\mu(x), \nu(x)\}$$

$$(\mu \wedge \nu)(x) = \min\{\mu(x), \nu(x)\}$$

$$(\mu \times \omega)(x, y) = \min\{\mu(x), \omega(y)\}$$

$$f(\mu)(y) = \begin{cases} \bigvee_{f(a)=y} \mu(a) & \text{if } f^{-1}(y) \neq \emptyset, \\ 0 & \text{otherwise,} \end{cases}$$

$$f^{-1}(\omega)(x) = \omega(f(x))$$

where $f(\mu)$ and $f^{-1}(\omega)$ are called, respectively, the image of μ under f and the pre-image of ω under f.

We denote $\mu \leq \nu$ if and only if $\mu(x) \leq \nu(x)$ for every $x \in X$. For $T \subseteq X$, $\chi_T \in \mathcal{F}(X)$ is called characteristic function of T, and defined by $\chi_T(x) = 1$ if $x \in T$ and $\chi_T(x) = 0$ otherwise for all $x \in X$.

Definition 3. [8] Let μ be a fuzzy set of X. Then the complement of μ , denoted by μ^c , is the fuzzy set of X given by $\mu^c(x) = 1 - \mu(x)$ for all $x \in X$. For $t \in [0,1]$, the set $\mu_t^- = \{x \in X | \mu(x) \le t\}$ is called a lower t-level cut of μ and $\mu_t^+ = \{x \in X | \mu(x) \ge t\}$ is called an upper t-level cut of μ .

It is clearly seen that $\mu_t^- = (\mu^c)_{1-t}^+$ for all $t \in [0,1]$.

Definition 4. [8] Let $\{\mu_i|i \in \Lambda\}$ be a family of fuzzy sets in X, then the union $(\vee \mu_i)_{i \in \Lambda}$ is defined by $(\vee \mu_i)_{i \in \Lambda}(x) = \sup\{\mu_i(x)|i \in \Lambda\}$ for each $x \in X$.

Definition 5. [4] A fuzzy set μ of X is proper if it is a non constant function.

Definition 6. [9] A fuzzy set μ of X is called a fuzzy sublattice of X if $\mu(x \wedge y) \geq \min\{\mu(x), \mu(y)\}$ and $\mu(x \vee y) \geq \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$.

Definition 7. [9] A fuzzy sublattice μ of X is called a fuzzy ideal of X if $\mu(x \vee y) = \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$.

Definition 8. [9] A proper fuzzy ideal μ of X is called fuzzy prime ideal of X if $\mu(x \vee y) \leq \max\{\mu(x), \mu(y)\}\$ for all $x, y \in X$.

FIGURE 1. .

Theorem 1. [9] A nonempty subset P of X is a prime ideal of X if and only if χ_p is a fuzzy prime ideal of X.

3. $\mathcal{N} ext{-Fuzzy Ideals of Lattices}$

Definition 9. A fuzzy set μ of X is called an \mathcal{N} -fuzzy sublattice of X if $\mu(x \wedge y) \leq \max\{\mu(x), \mu(y)\}$ and $\mu(x \vee y) \leq \max\{\mu(x), \mu(y)\}$ for all $x, y \in X$.

Example 1. Consider the lattice $X = \{0, \alpha, \beta, 1\}$ given by as follows Let define a fuzzy set μ of X by $\mu(0) = 0.1$, $\mu(\alpha) = 0.2$, $\mu(\beta) = 0.3$ and $\mu(1) = 0.3$. Then μ is an \mathcal{N} -fuzzy sublattice of X.

Theorem 2. A fuzzy set μ of X is an \mathcal{N} -fuzzy sublattice of X if and only if μ^c is a fuzzy sublattice of X.

Proof. Let μ be an \mathcal{N} -fuzzy sublattice of X. Then for $x, y \in X$,

$$\begin{array}{rcl} \mu^{c}(x \wedge y) & = & 1 - \mu(x \wedge y) \\ & \geq & 1 - \max\{\mu(x), \mu(y)\} \\ & = & \min\{1 - \mu(x), 1 - \mu(y)\} \\ & = & \min\{\mu^{c}(x), \mu^{c}(y)\} \\ \\ \mu^{c}(x \vee y) & = & 1 - \mu(x \vee y) \\ & \geq & 1 - \max\{\mu(x), \mu(y)\} \\ & = & \min\{1 - \mu(x), 1 - \mu(y)\} \\ & = & \min\{\mu^{c}(x), \mu^{c}(y)\} \end{array}$$

Hence μ^c is a fuzzy sublattice of X. Similarly, the converse can be proved.

Definition 10. Let μ be an \mathcal{N} -fuzzy sublattice of X. Then μ is an \mathcal{N} -fuzzy ideal of X if $\mu(x \vee y) = max\{\mu(x), \mu(y)\}$ for all $x, y \in X$.

Example 2. Let consider the lattice $X = \{0, \alpha, \beta, 1\}$ given by in the Figure 1. Let define a fuzzy set μ of X by $\mu(0) = 0.1$, $\mu(\alpha) = 0.2$, $\mu(\beta) = 0.3$ and $\mu(1) = 0.3$. Then μ is an \mathcal{N} -fuzzy ideal of X.

Every \mathcal{N} -fuzzy sublattice of X need not be \mathcal{N} -fuzzy ideal of X.

Example 3. Let consider the lattice $X = \{0, \alpha, \beta, 1\}$ given by in the Figure 1. Let define a fuzzy set μ of X by $\mu(0) = 0$, $\mu(\alpha) = 0.2$, $\mu(\beta) = 0.3$ and $\mu(1) = 0.2$. Then μ is an \mathcal{N} -fuzzy sublattice of X, but μ is not an \mathcal{N} -fuzzy ideal of X as $\mu(\alpha \vee \beta) = \mu(1) \neq \max\{\mu(\alpha), \mu(\beta)\}$.

Remark 1. Let μ be an \mathcal{N} -fuzzy ideal of X. As $\mu(x) = \mu(x \vee 0) = \max\{\mu(x), \mu(0)\}$, then we get $\mu(0) \leq \mu(x)$ for any $x \in X$.

Theorem 3. A fuzzy set μ of X is an \mathcal{N} -fuzzy ideal of X if and only if μ^c is a fuzzy ideal of X.

Proof. Let μ be an \mathcal{N} -fuzzy ideal of X. By Theorem 2, μ^c is a fuzzy sublattice of X. For $x, y \in X$,

$$\mu^{c}(x \vee y) = 1 - \mu(x \vee y)$$

$$= 1 - \max\{\mu(x), \mu(y)\}$$

$$= \min\{1 - \mu(x), 1 - \mu(y)\}$$

$$= \min\{\mu^{c}(x), \mu^{c}(y)\}$$

Thus, μ^c is a fuzzy ideal of X. Similarly, the converse can be proved.

Theorem 4. A fuzzy set μ of X is an \mathcal{N} -fuzzy ideal of X if and only if μ_t^- is an ideal of X for each $t \in [\mu(0), 1]$.

Proof. Let μ be an \mathcal{N} -fuzzy ideal of X and $t \in [\mu(0), 1]$. Then by Theorem 3, μ^c is a fuzzy ideal of X. Hence $\mu_t^- = (\mu^c)_{1-t}^+$ is an ideal of X.

Conversely, μ , μ_t^- is an ideal of X for each $t \in [\mu(0), 1]$ and $s \in [0, 1 - \mu(0)] = [0, \mu^c(0)]$. Then $1 - s \in [\mu(0), 1]$ and $(\mu^c)_s^+ = \mu_{1-s}^-$ is an ideal of X. Hence $(\mu^c)_s^+$ is an ideal of X for all $s \in [0, \mu^c(0)]$, and μ^c is a fuzzy ideal of X. This shows that μ is an \mathcal{N} -fuzzy ideal of X.

Theorem 5. If I is an ideal of X, then for each $t \in [0,1]$, there exists an \mathcal{N} -fuzzy ideal μ of X such that $\mu_t^- = I$.

Proof. Let I be an ideal of X and $t \in [0,1]$. Let define a fuzzy set μ of X by

$$\mu(x) = \begin{cases} t, & \text{if } x \in I \\ 1, & \text{if } x \notin I \end{cases}$$

for each $x \in X$. Then $\mu_s^- = I$ for any $s \in [t, 1) = [\mu(0), 1)$, and $\mu_1^- = X$. Thus μ_s^- is an ideal of X for all $s \in [\mu(0), 1]$. Hence, from Theorem 4, μ is \mathcal{N} -fuzzy ideal of X and $\mu_t^- = I$.

Let μ be a fuzzy set of X and let define $X_{\mu} = \{x \in X | \mu(x) = \mu(0)\}$. We then get the following theorem.

Theorem 6. If μ is an \mathcal{N} -fuzzy ideal of X, then X_{μ} is an ideal of X.

Proof. Let μ be an \mathcal{N} -fuzzy ideal of X and $x, y \in X_{\mu}$. Then $\mu(x) = \mu(0)$ and $\mu(y) = \mu(0)$. So $\mu(x \vee y) = \max\{\mu(x), \mu(y)\} = \mu(0)$. Hence $x \vee y \in X_{\mu}$. Now let $x \leq a, x \in X$ and $a \in X_{\mu}$. Then $x \vee a = a$ and $\mu(a) = \mu(0)$. As μ is an \mathcal{N} -fuzzy ideal of X, $\mu(x \vee a) = \max\{\mu(x)\mu(a)\}$. Thus $\mu(a) = \max\{\mu(x), \mu(a)\}$. Therefore $\mu(x) \leq \mu(a) = \mu(0)$. Also by Remark 1, $\mu(0) \leq \mu(x)$. So we get $\mu(x) = \mu(0)$. Hence $x \in X_{\mu}$. This shows that X_{μ} is an ideal of X.

Theorem 7. If $\{\mu_i | i \in \Lambda\}$ a family of \mathcal{N} -fuzzy ideals of X, then so is $(\vee \mu_i)_{i \in \Lambda}$.

Proof. Let $\{\mu_i, | i \in \Lambda\}$ be a family of \mathcal{N} -fuzzy ideals of X. Let $x, y \in X$.

```
\begin{array}{lll} (\vee\mu_i)_{i\in\Lambda}(x\wedge y) &=& \sup\{\mu_i(x\wedge y)|i\in\Lambda\}\\ &\leq& \sup\{\max\{\mu_i(x),\mu_i(y)\}\}\\ &=& \max\{\sup\{\mu_i(x)\},\sup\{\mu_i(y)\}\}\\ &=& \max\{\vee\mu_i)_{i\in\Lambda}(x),\vee\mu_i)_{i\in\Lambda}(y)\}\\ \\ (\vee\mu_i)_{i\in\Lambda}(x\vee y) &=& \sup\{\mu_i(x\vee y)|i\in\Lambda\}\\ &\leq& \sup\{\max\{\mu_i(x),\mu_i(y)\}\}\\ &=& \max\{\sup\{\mu_i(x)\},\sup\{\mu_i(y)\}\}\\ &=& \max\{\vee\mu_i)_{i\in\Lambda}(x),\vee\mu_i)_{i\in\Lambda}(y)\}\\ \end{array}
```

Hence $(\vee \mu_i)_{i \in \Lambda}$ is an \mathcal{N} -fuzzy sublattice of X. Also,

```
\begin{array}{lcl} (\vee\mu_i)_{i\in\Lambda}(x\vee y) & = & \sup\{\mu_i(x\vee y)|i\in\Lambda\}\\ & = & \sup\{\max\{\mu_i(x),\mu_i(y)\}\}\\ & = & \max\{\sup\{\mu_i(x)\},\sup\{\mu_i(y)\}\}\\ & = & \max\{(\vee\mu_i)_{i\in\Lambda}(x),(\vee\mu_i)_{i\in\Lambda}(y)\} \end{array}
```

Hence $(\vee \mu_i)_{i \in \Lambda}$ is an \mathcal{N} -fuzzy ideal of X.

Theorem 8. Let $f: X \to Y$ be a lattice homomorphism where Y is a bounded lattice. Let μ be an \mathcal{N} -fuzzy ideal of Y. Then $f^{-1}(\mu)$ is an \mathcal{N} -fuzzy ideal of X.

Proof. Let $x, y \in X$. Then

```
\begin{array}{lcl} f^{-1}(\mu)(x \wedge y) & = & \mu(f(x \wedge y)) \\ & = & \mu(f(x) \wedge f(y)) \\ & \leq & \max\{\mu(f(x)), \mu(f(y))\} \\ & = & \max\{f^{-1}(\mu)(x), f^{-1}(\mu)(y)\} \end{array}
```

Thus $f^{-1}(\mu)(x \wedge y) \leq \max\{f^{-1}(\mu)(x), f^{-1}(\mu)(y)\}.$

Similarly we can prove $f^{-1}(\mu)(x \vee y) \leq \max\{f^{-1}(\mu)(x), f^{-1}(\mu)(y)\}$. Hence $f^{-1}(\mu)$ is an \mathcal{N} -fuzzy sublattice of X. Also for $x, y \in X$

$$f^{-1}(\mu)(x \vee y) = \mu(f(x \vee y))$$

$$= \mu(f(x) \vee f(y))$$

$$= \max\{\mu(f(x)), \mu(f(y))\}$$

$$= \max\{f^{-1}(\mu)(x), f^{-1}(\mu)(y)\}$$

Thus $f^{-1}(\mu)(x \vee y) = \max\{f^{-1}(\mu)(x), f^{-1}(\mu)(y)\}$. This shows that $f^{-1}(\mu)$ is an \mathcal{N} -fuzzy ideal of X.

Definition 11. Let $f: X \to Y$ be a mapping where Y is a non-empty set. Let μ be a fuzzy set of X. Then \mathcal{N} -image of μ under f is a fuzzy set $f(\mu)$ of Y defined by $f(\mu)(y) = \inf\{\mu(x) | x \in X \text{ and } f(x) = y\}$ for all $y \in Y$.

Theorem 9. Let $f: X \to Y$ be an onto lattice homomorphism where Y is a bounded lattice. Let μ be \mathcal{N} -fuzzy ideal of X. Then $f(\mu)$ is an \mathcal{N} -fuzzy ideal of Y.

Proof. Let μ be an \mathcal{N} -fuzzy ideal of X and $a,b \in Y$. As f is onto, there exist $p,q \in X$ such that f(p) = a and f(q) = b. Also $a \wedge b = f(p) \wedge f(q) = f(p \wedge q)$ and

$$\begin{array}{lcl} f(\mu)(a \wedge b) & = & \inf\{\mu(z)|z \in X \ and \ f(z) = a \wedge b\} \\ & \leq & \inf\{\mu(p \wedge q)|f(p) = a \ and \ f(q) = b\} \\ & \leq & \inf\{\max\{\mu(p),\mu(q)\}|f(p) = a \ and \ f(q) = b\} \\ & = & \max\{\inf\{\mu(p)/f(p) = a\},\inf\{\mu(q)|f(q) = b\}\} \\ & = & \max\{f(\mu)(a),f(\mu)(b)\} \end{array}$$

Thus $f(\mu)(a \wedge b) \leq \max\{f(\mu)(a), f(\mu)(b)\}$. Similarly we can prove that $f(\mu)(a \vee b) \leq \max\{f(\mu)(a), f(\mu)(b)\}$. Hence $f(\mu)$ is an \mathcal{N} -fuzzy sublattice of Y.

Again let $x, y \in Y$. As f is onto, there exist $r, s \in X$ such that f(r) = x and f(s) = y. Also $x \vee y = f(r) \vee f(s) = f(r \vee s)$ and

```
\begin{array}{lcl} f(\mu)(x\vee y) & = & \inf\{\mu(z)|z\in X \ and \ f(z) = x\vee y\} \\ & = & \inf\{\mu(r\vee s)|f(r) = x \ and \ f(s) = y\} \\ & = & \inf\{\max\{\mu(r),\mu(s)\}|f(r) = x \ and \ f(y) = s\} \\ & = & \max\{\inf\{\mu(r)|f(r) = x\},\inf\{\mu(s)|f(s) = y\}\} \\ & = & \max\{f(\mu)(x),f(\mu)(y)\} \end{array}
```

Thus $f(\mu)(x \vee y) = \max\{f(\mu)(x), f(\mu)(y)\}$. This shows that $f(\mu)$ is an \mathcal{N} -fuzzy ideal of Y.

Theorem 10. Every N-fuzzy ideal of X is order preserving.

Proof. Let μ be an \mathcal{N} -fuzzy ideal of X. Let $x,y \in X$ such that $x \leq y$. Then $\mu(y) = \mu(x \vee y) = \max\{\mu(x), \mu(y)\}$. Thus $\mu(x) \leq \mu(y)$.

Definition 12. Let λ and μ be fuzzy sets of X. The \mathcal{N} Cartesian product $\lambda \times \mu$: $X \times X \to [0,1]$ is defined by $\lambda \times \mu(x,y) = \max\{\lambda(x), \mu(y)\}$ for all $x,y \in X$.

Theorem 11. If λ and μ are \mathcal{N} -fuzzy ideals of X, then $\lambda \times \mu$ is \mathcal{N} -fuzzy ideal of $X \times X$.

Proof. Let (x_1, y_1) and $(x_2, y_2) \in X \times X$. Then

```
\begin{array}{lll} \lambda \times \mu((x_{1},y_{1}) \wedge (x_{2},y_{2})) & = & \lambda \times \mu(x_{1} \wedge x_{2},\,y_{1} \wedge y_{2}) \} \\ & = & \max\{\lambda(x_{1} \wedge x_{2}),\,\mu(y_{1},y_{2})\} \\ & \leq & \max\{\max\{\lambda(x_{1}),\lambda(x_{2})\},\{\max\{\mu(y_{1}),\mu(y_{2})\}\} \} \\ & = & \max\{\max\{\lambda(x_{1}),\mu(y_{1})\},\{\max\{\lambda(x_{2}),\mu(y_{2})\} \} \\ & = & \max\{\lambda \times \mu(x_{1},y_{1}),\,\lambda \times \mu(x_{2},y_{2})\} \\ & \lambda \times \mu((x_{1},y_{1}) \vee (x_{2},y_{2})) & = & \lambda \times \mu(x_{1} \vee x_{2},\,y_{1} \vee y_{2}) \} \\ & = & \max\{\lambda(x_{1} \vee x_{2}),\,\mu(y_{1} \vee y_{2}) \\ & \leq & \max\{\max\{\lambda(x_{1}),\lambda(x_{2})\},\max\{\mu(y_{1}),\mu(y_{2})\}\} \\ & = & \max\{\max\{\lambda(x_{1}),\mu(y_{1})\},\max\{\lambda(x_{2}),\mu(y_{2})\} \\ & = & \max\{\lambda \times \mu(x_{1},y_{1}),\,\lambda \times \mu(x_{2},y_{2})\} \end{array}
```

Thus $\lambda \times \mu$ is an \mathcal{N} -fuzzy sublattice of $X \times X$. Also,

```
\begin{array}{lll} \lambda \times \mu((x_1,y_1) \vee (x_2,y_2)) & = & \lambda \times \mu(x_1 \vee x_2,\, y_1 \vee y_2) \\ & = & \max\{\lambda(x_1 \vee x_2),\, \mu(y_1 \vee y_2) \\ & = & \max\{\max\{\lambda(x_1),\lambda(x_2)\},\max\{\mu(y_1),\mu(y_2)\}\} \\ & = & \max\{\max\{\lambda(x_1),\mu(y_1)\},\max\{\lambda(x_2),\mu(y_2)\}\} \\ & = & \max\{\lambda \times \mu(x_1,y_1),\, \lambda \times \mu(x_2,y_2)\} \end{array}
```

Hence $\lambda \times \mu$ is an \mathcal{N} -fuzzy ideal of $X \times X$.

Definition 13. Let μ be an \mathcal{N} -fuzzy ideal of X. Then μ is called an \mathcal{N} -fuzzy prime ideal of X if $\mu(x \wedge y) \geq \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$.

Example 4. Consider the lattice $X = \{0, \alpha, \beta, 1\}$ given by in the Figure 1. Let define a fuzzy set μ of X by $\mu(0) = 0.2$, $\mu(\alpha) = 0.2$, $\mu(\beta) = 0.3$ and $\mu(1) = 0.3$. Then μ is an \mathcal{N} -fuzzy prime ideal of X.

Every \mathcal{N} -fuzzy ideal of X need not be \mathcal{N} -fuzzy prime ideal of X.

Example 5. Consider the lattice $X = \{0, \alpha, \beta, 1\}$ given by in the Figure 1. Let define a fuzzy set μ of X by $\mu(0) = 0.1$, $\mu(\alpha) = 0.2$, $\mu(\beta) = 0.3$ and $\mu(1) = 0.3$. Then μ is an \mathcal{N} -fuzzy ideal of X, but μ is not an \mathcal{N} -fuzzy prime ideal of X as $\mu(\alpha \wedge \beta) = \mu(0) \not\geq \min\{\mu(\alpha), \mu(\beta)\}$.

Theorem 12. Let P be a non-empty subset of X and $r, t \in [0, 1]$ such that r < t. Let μ_p be a fuzzy subset of X such that

$$\mu_p(x) = \begin{cases} r, & \text{if } x \in P \\ t, & \text{if } x \not\in P \end{cases}$$

for all $x \in X$. Then P is a prime ideal of X if and only if μ_p is an N-fuzzy prime ideal of X.

Proof. Let P be a prime ideal of X and $x,y\in X$. If $x\wedge y\in P$, then $\mu_p=(x\wedge y)=r\leq \max\{\mu_p(x),\mu_p(y)\}$. If $x\wedge y\not\in P$, then $x\not\in P$ and $y\not\in P$. Then $\mu_p(x\wedge y)=t$, $\mu_p(x)=t$ and $\mu_p(y)=t$. Hence $\mu_p(x\wedge y)\leq \max\{\mu_p(x),\mu_p(y)\}$. Therefore we have $\mu_p(x\wedge y)\leq \max\{\mu_p(x),\mu_p(y)\}$. Similarly we can prove that $\mu_p(x\vee y)\leq \max\{\mu_p(x),\mu_p(y)\}$. This shows that μ_p is an \mathcal{N} -fuzzy sublattice of X.

Now let $x, y \in X$. If $x \vee y \in P$, then $x \in P$ and $y \in P$. Therefore $\mu_p(x \wedge y) = r$, $\mu_p(x) = r$ and $\mu_p(y) = r$. Hence $\mu_p(x \vee y) = \max\{\mu_p(x), \mu_p(y)\}$. If $x \vee y \notin P$, then $x \notin P$ or $y \notin P$. Therefore $\mu_p(x \wedge y) = t$, $\mu_p(x) = t$ or $\mu_p(y) = t$. Hence $\mu_p(x \vee y) = \max\{\mu_p(x), \mu_p(y)\}$. This shows that μ_p is an \mathcal{N} -fuzzy ideal of X.

Again let $x,y\in X$. If $x\wedge y\in P$, then $x\in P$ or $y\in P$ (since P is a prime ideal of X). Therefore $\mu_p(x\wedge y)=r$, $\mu_p(x)=r$ or $\mu_p(y)=r$. Hence $\mu_p(x\vee y)\geq \min\{\mu_p(x),\mu_p(y)\}$. If $x\wedge y\not\in P$, then $x\not\in P$ and $y\not\in P$ (since P is an ideal of X). Therefore $\mu_p(x\wedge y)=t$, $\mu_p(x)=t$ and $\mu_p(y)=t$. Hence $\mu_p(x\wedge y)\geq \min\{\mu_p(x),\mu_p(y)\}$. This shows that μ_p is \mathcal{N} -fuzzy prime ideal of X.

Conversely, let μ_p be \mathcal{N} -fuzzy prime ideal of X and $x,y\in P$. As μ_p is \mathcal{N} -fuzzy sublattice of X, $\mu_p(x\wedge y)\leq \max\{\mu_p(x),\mu_p(y)\}=r$. Hence $x\wedge y\in P$. Similarly we can prove that $x\vee y\in P$. This shows that P is a sublattice of X. Now let $a\in P, x\in X$ such that $x\wedge a=x$. Thus $x\vee a=(x\wedge a)\vee a=a$. Therefore $r=\mu_p(a)=\mu_p(x\vee a)=\max\{\mu_p(x),\mu_p(a)\}$. Hence $\mu_p(x)=r$ and so $x\in P$. This shows that P is an ideal of X.

Again let $x \wedge y \in P$. Then $\mu_p(x \wedge y) = r$. As μ_p is \mathcal{N} -fuzzy prime ideal of X, $\mu_p(x \wedge y) \geq \min\{\mu_p(x), \mu_p(y)\}$. Therefore $\mu_p(x) = r$ or $\mu_p(y) = r$. Hence $x \in P$ or $y \in P$. This shows that P is a prime ideal of X.

4. Conclusion

In this paper we defined the notions of \mathcal{N} -fuzzy sublattice, \mathcal{N} -fuzzy ideal and \mathcal{N} -fuzzy prime ideal of a bounded lattice. We showed that the complement of \mathcal{N} -fuzzy sublattice of a bounded lattice is a fuzzy sublattice. We also showed that the union a family of \mathcal{N} -fuzzy ideals of a bounded lattice is also \mathcal{N} -fuzzy ideal of a bounded lattice. We stated how the homomorphic \mathcal{N} -images and inverse images of \mathcal{N} -fuzzy ideals of a bounded lattice become \mathcal{N} -fuzzy ideals of a bounded lattice. We also investigated how the \mathcal{N} -Cartesian product of \mathcal{N} -fuzzy ideals of a bounded lattice becomes \mathcal{N} -fuzzy ideal of a bounded lattice. Our future work will focus on studying the intuitionistic \mathcal{N} -fuzzy ideals of a bounded lattice.

References

- Biswas, R., Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets and Systems 35 (1990), 121-124.
- [2] Datta, S. K., On anti fuzzy bi-ideals in rings, International Journal of Pure and Applied Mathematics 51 (2009), 375-382.
- [3] Dheena P. and Mohanraaj G., On Intuitionistic Fuzzy K-ideals of Semiring, International Journal of Computational Cognition 9(2) (2011), 45-50.
- [4] Gratzer, G., Lattice theory First concepts and Distributive lattices, Freeman Company, San Francisco, 1971.
- [5] Hong, S. M. and Jun, Y. B., Anti fuzzy ideals in BCK-algebras, Kyungpook Mathematical Journal 38 (1998), 145-150.
- [6] Khan, M. and Asif, T., Characterizations of semigroups by their anti Fuzzy ideals, Journal of Mathematics Research 2(3) (2010), 134-143.
- [7] Kim, K. H. and Jun, Y. B., Anti fuzzy R-subgroups of near-rings, Scientiae Mathematicae 2 (1999), 147-153.
- [8] Klir, G. J. and Yuan, B., Fuzzy Sets and Fuzzy Logic: Theory and Applications, New Delhi, 1997.
- [9] Koguep, B. B. N., Nkuimi, C. and Lele, C., On Fuzzy Prime Ideals of Lattices, SAMSA Journal of Pure and Applied Mathematics 3 (2008), 1-11.
- [10] Lekkoksung, S. and Lekkoksung, N., On Generalized Anti Fuzzy Bi-Ideals in Ordered Γ-Semigroups, International Journal of Contemporary Mathematical Sciences 7(16) (2012), 759-764.
- [11] Mordeson, J. N. and Malik, D. S., Fuzzy Commutative Algebra, World Scientific Publishing Company, Singapure, 1998.
- [12] Rosenfeld, A., Fuzzy Groups, Journal of Mathematical Analysis and Applications 35 (1971), 512-517.
- [13] Shabir, M. and Nawaz, Y., Semigroups characterized by the properties of their anti fuzzy ideals, Journal of Advanced Research in Pure Mathematics 3 (2009), 42-59.
- [14] Srinivas, T., Nagaiah, T. and Swamy, P. N., Anti fuzzy ideals of Γ-near rings, Annals of Fuzzy Mathematics and Informatics 3(2) (2012), 255-266.
- [15] Yuan, B. and Wu, W., Fuzzy ideals on a distributive lattice, Fuzzy Sets and Systems 35 (1990), 231-240.
- [16] Zadeh, L. A., Fuzzy sets, Information and Control 8 (1965), 338-353.
- [17] Zhou, M., Xiang, D. and Zhan, J., On anti fuzzy ideals of Γ-rings, Annals of Fuzzy Mathematics and Informatics 1 (2011), 197–205.

 $\label{eq:current} \textit{Current address} \hbox{: Yıldıray Celik: Department of Mathematics, Ordu University, 52200, Ordu, TURKEY.}$

 $E ext{-}mail\ address: ycelik61@gmail.com}$