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NUMERICAL SOLUTIONS OF THE MRLW EQUATION USING
MOVING LEAST SQUARE COLLOCATION METHOD

AYŞE GÜL KAPLAN AND YILMAZ DERELİ

Abstract. In this paper, the Modified Regularized Long Wave (MRLW)
equation is solved by using moving least square collocation (MLSC) method.
To show the accuracy of the used method several numerical test examples
are given. The motion of single solitary waves, the interaction of two soli-
tary waves and the Maxwellian initial condition problems are chosen as test
problems. For the single solitary wave motion whose analytical solution is
known L2, L∞ error norms are calculated. Also mass, energy and momentum
invariants are calculated for every test problem. Obtained numerical results
are compared with some earlier works. According to the obtained results, the
method is very effi cient and reliable.

1. Introduction

The regularized long wave (RLW) equation was defined for the first time by
Peregrine [1] to introduce the behavior of the bore development. Later Benjamin et
al. used as model for a larger class of physical phenomena. The modified regularized
long wave equation (MRLW) is a special form of RLW equation. This equation
plays a very important role at the modelling of the nonlinear, dispersive media
being modeled feature small-amplitude, long-wave length disturbances. The MRLW
equation has the following form

Ut + Ux + εU2Ux − µUxxt = 0 (1)

where ε and µ are positive integers and subscripts x and t denote space and time
derivatives, respectively.
The exact solution of the MRLW equation was found by as follows [3]

U(x, t) =

√
6c

ε
sech (k (x− (c+ 1)t− x0]) (2)
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where k =
√

c
µ(c+1) , x0 and c are arbitrary constants. For the single solitary wave

6c/ε is the amplitude of solitary wave and its width is represented by k, also x0 is
the peak position of the wave. This solitary wave propagates to the right side by
keeping its original shape at a steady velocity c+1 while time is increasing, [14]. In
this study numerical experiments will be performed for the parameter ε = 6, µ = 1,
c = 1 and x0 = 40. In the present study, in order to find a numerical solution
of the MRLW equation on the finite domain [a, b], boundary conditions and initial
condition are chosen as follow, respectively:

U(a, t) = 0, U(b, t) = 0, a ≤ x ≤ b, t > 0
U(x, 0) = f(x).

(3)

The MRLW equation has been solved numerically by using numerical techniques.
These include finite element, finite difference, Fourier method and meshless meth-
ods. The MRLW equation was solved by various types of B-spline functions by
using finite element method such as the collocation method with quintic B-splines
finite element method in [3], the collocation method using cubic B-splines finite
element in [7], a numerical scheme based on quartic B-spline method in [17], based
on collocation of quintic B-splines finite elements in [18] was presented. Also the
collocation method with quadratic, cubic, quartic and quintic B-splines [10], cubic
B-spline lumped Galerkin finite element method [11], a Petrov-Galerkin method
[13] were used.
A finite difference scheme and Fourier stability analysis in [5], two finite differ-

ence approximations for the space dicretization and a multi-time step method for
the time discretization for the MRLW equation in [15] and a fully implicit finite
difference method in [19] were presented for the numerical solution of the MRLW
equation. Also, the Adomian decomposition method was applied to solve numeri-
cally the MRLW equation in [6].
The meshless methods were applied to the MRLW equation in the literature.

The meshless kernel based method of lines was used in [8] where gaussian, multi-
quadric and Wendland’s compactly supported radial basis functions were used as
kernel functions in computations. The radial basis functions collocation method
by using different shape functions which were multiquadric, gaussian, inverse mul-
tiquadric and inversequadric radial basis functions was applied in [9]. A meshless
method based on the moving least-squares approximation for the nonlinear gener-
alized regularized long wave equation was used in [16]. In where the cubic spline
function was used as weight function also convergence of the iterative process was
presented.
In this study, the moving least square collocation method by using gaussian weight
function will be applied to the MRLW equation and obtained results will be com-
pared with other results in the literature.
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2. The moving least square approximation

To solve the MRLW equation (1) numerically, the moving least square collocation
(MLSC) approximation will be applied. Lancaster and Salkauskas [12] defined a
local approximation for u(x) as follow

uh(x)=

m∑
i=1

pi(x)ai(x) = pT (x)a(x) (4)

where pi(x) is the given monomial basis function of order m, ai(x) are the un-
known coeffi cients of basis functions at spatial coordinates x. uh(x) represents the
MLS approximation of u(x). The unknown coeffi cients ai(x) will be determined by
minimizing the weighted discrete error norm given by

J(x) =

N∑
i=1

ω(x− xi)[u
h(x)− u(xi)]

2

=

N∑
i=1

ω(x− xi)

 m∑
j=0

pj(x)aj(x)− u(xi)

2

where ω(x− xi) are weight functions, xi are nodes of spatial coordinates x. To find
the value of vector a(x) by minimizing the J we obtain

∂J

∂a
= A(x)a(x)−B(x)u = 0

so this can be written in the equation system

A(x)a(x) = B(x)u,

from this resulting equation a(x) is found as

a(x) = A
−1

(x)B(x)u

where the matrices A(x), B(x), u, W(x) and p(x) are defined as follow:

A(x) = pT (x)W(x)p(x),

B(x) = pT (x)W(x),

uT = (u1, u2, ..., uN ),
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W(x) =


ω(x− x1) 0 · · · 0

0 ω(x− x2) · · · 0
...

...
. . .

...
0 0 · · · ω(x− xN )

 ,

p(x) =


p0(x1) p1(x1) · · · pm(x1)
p0(x2) p1(x2) · · · pm(x2)
...

...
. . .

...
p0(xN ) p1(xN ) · · · pm(xN )

 .
Therefore, substituting a(x) into Eq. (4) approximation function of u(x) is obtained
as

u(x) ≈ uh(x) = pT (x)A−1(x)B(x)u

or

u(x) ≈ uh(x) =

N∑
i=1

φi(x)ui= ΦT (x)u. (5)

ΦT (x) is a matrix of shape function and has the following form

Φ(x) = (φ1(x), φ2(x), ..., φN (x)) (6)

= pT (x)A
−1

(x)B(x)

where φi(x) has the following form

φi(x) =

m∑
j=0

pj(x)
[
(A−1(x)B(x))

]
ji
. (7)

In the literature there are some weight functions and in our algorithms Gaussian
weight function with compact supported is chosen. Gaussian weight function is
defined as follows

ω(x− xi) =


e−(di/ci)

2 − e−(ri/ci)2

1− e−(ri/ci)2 , 0 ≤ di ≤ ri

0, di > ri

(8)

where ci is the shape parameter and di = |x− xi| is the distance between collocation
points x and xi. The support size ri for weight functions ω(x− xi) determines the
support of node xi. Derivatives of the approximate solution uh(x) can be obtained
as

∂k

∂xk
uh(x) =

n∑
i=1

∂kφi(x)

∂xk
ui. (9)
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3. Discretization of the MRLW equation

In this section, the MRLW equation is discretized by using a Crank-Nicolson
scheme for U and a forward difference rule for Ut in time as following:

Un+1 − Un
∆t

+
Un+1x + Unx

2
+ 6

(
U2Ux

)n+1
+
(
U2Ux

)n
2

− µU
n+1
xx − Unxx

∆t
= 0. (10)

Eq. (10) can be rewritten as

Un+1−Un+
∆t

2

(
Un+1x + Unx

)
+3∆t

((
U2Ux

)n+1
+
(
U2Ux

)n)−µ (Un+1xx − Unxx
)

= 0.

(11)
The nonlinear term (U2Ux)n+1 in Eq. (11) may be linearized by using Taylor series
expansion as follows(

U2Ux
)n+1

= (U2)nUn+1x + 2UnUnxU
n+1 − 2

(
U2
)n
Unx . (12)

Substituting Eq. (12) in to the Eq. (11) time-discretized the MRLW equation can
be written as

Un+1 +
∆t

2
Un+1x − µUn+1xx + 3∆t

(
(U2)nUn+1x + 2UnUnxU

n+1
)

= Un − ∆t

2
Unx − µUnxx + 3∆t

(
U2)nUnx

)
.

(13)

4. Implementation of the MLSC method

In this section, the MLSC method will be applied to the discretized form of the
MRLW equation (13). To find the numerical value of U used approximation is given
as follows

Un =

N∑
i=1

φi(xk)λni , k = 1, 2, · · · , N (14)

where φi(xk) are shape functions at each collocation points xk and λi are the
unknown values. Eq. (14) can be written as the following matrix form

Un = Ãλn (15)

where
Ã = [φi(xk) : i, k = 1, N ], λn = [λn1 , λ

n
2 , · · · , λnN ]T .

First and second derivatives of Eq. (14) given by

Unx =

N∑
i=1

φ
′

i(xk)λni , Unxx =

N∑
i=1

φ
′′

i (xk)λni , k = 1, 2, · · · , N (16)

respectively. We put our trial functions Eqs. (14) and (16) into the Eq. (13)
and Eq. (3) at the collocation points xk, gives the following systems of algebraic
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equations:

N∑
i=1

φi(xk)λn+1i +
∆t

2

N∑
i=1

φ
′

i(xk)λn+1i + 3∆t
N∑
i=1

φ2i (xk)λni ·
N∑
i=1

φ
′

i(xk)λn+1i

+6∆t
N∑
i=1

φi(xk)λni ·
N∑
i=1

φ
′

i(xk)λni ·
N∑
i=1

φi(xk)λn+1i − µ
N∑
i=1

φ
′′

i (xk)λn+1i

=
N∑
i=1

φi(xk)λni −
∆t

2

N∑
i=1

φ
′

i(xk)λni + 3∆t
N∑
i=1

φ2i (xk)λni ·
N∑
i=1

φ
′

i(xk)λni

−µ
N∑
i=1

φ
′′

i (xk)λni , k = 2, . . . , N − 1

N∑
i=1

φi(xk)λn+1i = α, k = 1

N∑
i=1

φi(xk)λn+1i = β, k = N

(17)

Substituting Eq. (7) into Eq. (17) and simplifying we have obtain following
linear equation system

M1λ
n+1 = α, k = 1

5∑
j=1

Mjλ
n+1 =

3∑
j=1

Mjλ
n −M4λ

n , k = 2, . . . , N − 1

M1λ
n+1 = β, k = N

(18)

where coeffi cients Mj are defined as follows:

M1 =
N∑
i=1

m∑
j=0

pj(xk)[A−1(xk)B(xk)]ji

M2 = −µ
N∑
i=1

m∑
j=0

pj(xk)[A−1(xk)B(xk)]
′′

ji

M3 = 3∆t
N∑
i=1

m∑
j=0

pj(xk)[A−1(xk)B(xk)]2jiλ
n
i ·

N∑
i=1

m∑
j=0

pj(xk)[A−1(xk)B(xk)]
′

ji

M4 = 6∆t
N∑
i=1

m∑
j=0

pj(xk)[A−1(xk)B(xk)]jiλ
n
i ·

N∑
i=1

m∑
j=0

pj(xk)[A−1(xk)B(xk)]
′

jiλ
n
i

·
N∑
i=1

m∑
j=0

pj(xk)[A−1(xk)B(xk)]ji

M5 =
N∑
i=1

m∑
j=0

pj(xk)[A−1(xk)B(xk)]
′

ji
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By solving the equations system (18) numerical values of λn+1 are obtained at
each nodal points. Substituting these values into the Eq. (14) numerical values of
the MRLW equation at the each nodal points on solution interval is obtained.

5. Numerical examples and comparisons

In this section, MRLW equation are solved for three test problems to demonstrate
accuracy and effi ciency of the method. Also, conserved quantities and error norms
will be calculated for test problems.
The MRLW equation has three conservation laws which are [4]

C1 =

b∫
a

Udx, C2 =

b∫
a

(
U2 + µ (Ux)

2
)
dx, C3 =

b∫
a

(U4 − µ (Ux)
2
)dx

and corresponding to conservation of mass, momentum and energy respectively. In
our computations numerical values of invariants are computed by using rectangular
rule.
The root mean square error L2 and maximum error L∞ will be used to measure

the error between the analytical and numerical solutions:

L2 =

√
h

N∑
j=1

∣∣Uexactj − Unum.j

∣∣2 , L∞ = max
1≤j≤N

∣∣Uexactj − Unum.j

∣∣ .
5.1. Test 1: Single solitary wave motion. The single solitary wave solution of
the MRLW equation is written as follow:

U(x, t) =
√
c sech (k [x− (c+ 1)t− x0]) , k =

√
c

µ(c+ 1)

For numerical calculations, boundary conditions U(0, t) = U(100, t) = 0 and initial
condition U(x, 0) =

√
c sech (k [x− x0]) are used. Simulations are done over the

solution domain 0 ≤ x ≤ 100 in the time period 0 ≤ t ≤ 10 with parameters
h = 0.2, ∆t = 0.025, µ = 1, c = 1 and x0 = 40. The analytical values of invariants
are given as [3]

C1 =
π
√
c

k
= 4.44288

C2 =
2c

k
+

2µkc

3
= 3.29983 (19)

C3 =
4c2

3k
− 2µkc

3
= 1.41421

At the time t = 10, calculated values of invariants C1, C2, C3 and error norms
L2, L∞ are listed in Table 1. It is clear that, obtained results are all in very good
agreement with the analytical and other numerical results [3, 7, 9, 11]. The solitary
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wave profile is depicted in Figure 1 at different times. From Figure 1, it is seen that
solitary wave propagates to the right along the x-axis without changing its shape.

Table 1 : Comparison of invariants and error norms.

Method L2 × 103 L∞ × 103 C1 C2 C3

MLSC 1.69905 0.79871 4.44288 3.29979 1.41416
[3] 16.39 9.24 4.442 3.299 1.413
[7] 9.30196 5.43718 4.44288 3.29983 1.41420
G[9] 4.17678 2.17187 4.44280 3.29957 1.41395
MQ[9] 3.98518 2.05606 4.44209 3.29974 1.41413
IQ[9] 5.87856 3.20703 4.44176 3.29795 1.41233
IMQ[9] 2.91797 1.54209 4.44323 3.30032 1.41470
[11] 2.41750 1.08099 4.44319 3.30030 1.41469

Figure 1. Motion of the single solitary wave.

5.2. Test 2: Interaction of Two Solitary Waves. Interaction of two positive
solitary waves for MRLW equation is modelled by using the following initial condi-
tions

U(x, 0) =

2∑
j=1

√
cj sech (ki(x− xj)) , kj =

√
cj

µ(cj + 1)
(19)

where xj , cj are arbitrary constants, j = 1, 2. In this test problems, parameters are
chosen µ = 1, c1 = 4, c2 = 1, x1 = 25, x2 = 55 over the solution domain [0, 250]
in the time period 0 ≤ t ≤ 20 with space step h = 0.2, time step ∆t = 0.025. The
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analytical values of invariants are given as [3]

C1=
2∑
j=1

π
√
cj

kj
= 11.4677,

C2=
2∑
j=1

(
2cj
kj

+
2µkjcj
3 ) = 14.6292,

C3=
2∑
j=1

(
4c2j
3kj
− 2µkjcj

3 ) = 22.8805.

(20)

Calculated values of invariants are tabulated in Table 2. Obtained results are
compared with analytical and other numerical results [7, 9, 11]. Two solitary waves
profiles are depicted in Figure 2 and 3 at different times. As seen from these
figures, the larger wave moves faster than the smaller one and it catches up and
passes the smaller wave as time progresses. It is seen from figures a small tail occurs
after completed of interaction of waves because these waves are solitary waves not
solitons. It is known that solitary waves don’t obey the principle of superposition.
When the faster wave overtakes a slower wave, again solitary waves don’t combine
and add together [15].

Table 2: Comparison of invariants.

Method C1 C2 C3

MLSC 11.4677 14.5830 22.6965
[7] 11.4677 14.6292 22.8805
G[9] 11.4677 14.5834 22.6978
MQ[9] 11.4644 14.5819 22.6927
IQ[9] 11.4698 14.5811 22.6859
IMQ[9] 11.4602 14.5708 22.6524
[11] 11.4662 14.6253 22.8650

5.3. Test 3: The Maxwellian initial condition. Maxwellian initial condition
for MRLW equation is defined as

U(x, 0) = exp(−(x− x0)2).
Boundary conditions are taken as U(0, t) = U(80, t) = 0 in the time period 0 ≤
t ≤ 10. The computed values of the invariants for µ = 0.1, µ = 0.05, µ = 0.025,
x0 = 20, h = 0.2 and 4t = 0.01 are recorded in Table 3. Obtained results are
compared with numerical results in [13]. It is seen that from Figures 4, 5 and 6
the number of solitary wave is increased when µ is reduced. For instance, a single
solitary wave is occurred in Figure 4 while a few solitary wave is occurred in Figure
5 and 6.
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Figure 2. Interaction of two solitary waves at different times.

Figure 3. Interaction of two solitary waves at t = 10.

Table 3: Computed values of invariants.

Method µ C1 C2 C3

MLSC 0.1 1.77245 1.38255 0.75714
[13] 0.1 1.77245 1.3808 0.7618
MLSC 0.05 1.77245 1.32353 0.82520
[13] 0.05 1.77246 1.31898 0.825787
MLSC 0.025 1.77245 1.27829 0.894994
[13] 0.025 1.77245 1.28935 0.863683

Figure 4. Maxwellian initial condition at t = 10 for µ = 0.1.
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Figure 4. Maxwellian initial condition at t = 10 for µ = 0.1.

Figure 5. Maxwellian initial condition at t = 10 for µ = 0.05.
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Figure 6. Maxwellian initial condition at t = 10 for µ = 0.025.

6. Conclusion

The MRLW equation is solved numerically by using moving least square collo-
cation method. The performance of the used numerical method with the different
three test problems which are the single solitary wave motion, interaction of two
solitary waves and the Maxwellian initial condition have been examined. The error
norms L2 and L∞ for the single solitary wave motion have been calculated. Also,
for the examined test problems numerical values of three conserved quantities have
been evaluated. It has been seen that evaluated numerical results are in good agree-
ment with the results obtained by previous studies. According to obtained results,
the method satisfied very highly acceptable results for the MRLW equation.
This method is a meshless method hence has the simplicity of implementation and
very high accuracy. The obtained results indicate that the present method is very
effective and reliable numerical technique for solving this type nonlinear equations.
It should point that the used numerical technique can be applied to nonlinear prob-
lems.
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kişehir, Turkey


