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ON THE WAVE SOLUTIONS OF CONFORMABLE FRACTIONAL
EVOLUTION EQUATIONS

ALPER KORKMAZ

Abstract. The exact solutions in the wave form are derived for the time
fractional KdV and the time fractional Burgers’equations in conformable frac-
tional derivative sense. The fractional variable change using the fundamental
properties of the conformable derivative reduces both equations to some non-
linear ODEs. The predicted solution is assumed to be in a finite series form
of a function satisfying a particular first-order ODE whose solution contains
an exponential function in the denominator. The solutions are represented in
explicit forms and illustrated by some choices of the parameters for various
fractional orders of the equations. The solutions are illustrated for various
values of parameters covering derivative order α.

1. Introduction

Recent developments in symbolic programming and computer algebra have enabled
to solve more complicated problems in many fields covering engineering, physics,
mathematics and the related fields. Moreover, many new techniques have been
derived to solve different problems in various forms. The reflections of all stimu-
late the applied mathematicians to suggest new techniques for solutions of PDEs,
particularly the nonlinear ones.
In the last several decades, we all have witnessed that the number of the studies
dealing with many problems described by the nonlinear PDEs increases rapidly.
Many new methods from the tanh method to different types of expansion meth-
ods and the others such as the methods based on ansatzes, exponential rational
functions, trial equation, extended equation or first integrals are implemented to
nonlinear PDEs covering fractional forms [1—11]. The expansion methods class
is a special family of these techniques. There are numerous practical techniques
covering the Jacobi elliptic, the exp-function, the hyperbolic tangent expansions
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and their variations, modifications or generalizations in the literature. The F -
expansion method in the generalized form, for example, is used to develop some
Jacobi elliptic-type exact solutions, soliton-like and trigonometric type solutions for
the Konopelchenko-Dubrovsky equation in two space dimension [12]. The method
of (G′/G)-expansion is also a widely used method to derive the solutions to the
nonlinear PDEs. In this method, G is chosen as a solution of a second-order ODE.
The coupled KdV-mKdV, the KdV-Burgers’ and the reaction-diffusion equation
have exact solutions represented in the finite series [13]. Sub-equation approach
has also been implemented to express some solutions to the generalized Kuramoto-
Sivashinsky equation in the conformable fractional sense [14]. Another expansion
based on Jacobi elliptic functions has been implemented in a recent study to derive
solutions to Boussinesq equation and Kdv-modified KdV equations in the con-
formable fractional forms [15]. Kurt et al. have derived approximate analytical
solution of Burgers’-Korteweg-de Vries equation in the conformable fractional form
by homotopy analysis method [16].
The variations of the Kudryashov method can also be classified in the expansion
methods. The method, briefly, predicts a solution in a finite series form of a func-
tion solving a particular first-order ODE. The determination of the coeffi cients
used in the series are determined by forcing the solution to satisfy the equation.
Kudryashov, himself, describes the method as one of old methods to solve nonlin-
ear differential equations exactly [17]. That study focuses on exact solutions of the
Fisher and a higher order nonlinear PDE and proposes exact solutions in a finite
series. Kabir’s study suggests some solitary wave solutions in traveling form for
some higher order nonlinear PDEs [18]. Some exact solutions in series of rational
functions with exponential components form are derived by Tandogan et al. to
the power non-linear Rosenau-Kawahara equation [19]. Hosseini et al. deal with
various nonlinear conformal time fractional Klein-Gordon equations by using the
modified form of Kudryashov method [20,21].
The present study aims to determine some explicit wave type exact solutions of the
conformable time fractional Burgers’equation (ctfBE) of the form

Dα
t (u) + εuux − νuxx = 0, t > 0 (1.1)

and the conformable time fractional KdV equation (ctfKdVE)

Dα
t (u) + εuux + βuxxx = 0, t > 0 (1.2)

where Dα
t (u) stands for α fractional derivative of the function u with respect to

the variable t by implementing the Kudryashov method in modified form. Before
starting to describe the method, some significant properties of the conformable
derivative are explained in the next section. The following sections involve the
implement of the method to the ctfBE and to the ctfKdVE.
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2. Conformable Fractional Derivative

Consider f = f(t) defined in the positive semi half space t > 0. The conformable
derivative of order α of f is defined as

Dα
t (f(t)) = lim

h→0

f(t+ ht1−α)− f(t)
h

, t > 0, α ∈ (0, 1] (2.1)

for f : [0,∞) → R [22]. The conformable fractional derivative defined above has
properties given in the Theorem 1.

Theorem 1. Assume that α ∈ (0, 1] is the derivative order, and suppose that
v = v(t) and w = w(t) are α-differentiable for all positive t. Then,

• Dα
t (av + bw) = aDα

t (v) + bD
α
t (w)

• Dα
t (t

p) = ptp−α,∀p ∈ R
• Dα

t (v(t)) = 0, for all constant function v(t) = λ
• Dα

t (vw) = vDα
t (w) + wD

α
t (v)

• Dα
t (

v
w ) =

wDα
t (v)− vDα

t (w)

w2

• Dα
t (v)(t) = t1−α dvdt

for all real a, b [23,24].

The conformable derivative defined in (2.1) has significant properties like the chain
rule and Gronwall’s inequality [25]. A useful one is the relation between the con-
formable derivative and the classical integer ordered derivative in the definition of
the composite function.

Theorem 2. Let v be a differentiable and α-conformable differentiable function
and w also be defined defined in the range of the function v and be differentiable.
Thus,

Dα
t (v ◦ w) = t1−αDα

t (w)(t)D
α
t v(w(t)) (2.2)

where
′
denotes the derivative with respect to t.

3. Description of the Modified Kudryashov Method

Consider a nonlinear PDE of the form

P (u, uαt , ux, u
2α
t , uxx, ...) = 0 (3.1)

where u = u(x, t) and the fractional derivative order α ∈ (0, 1]. The classical
transformation

u(x, t) = u(ξ), ξ = x− c

α
tα (3.2)

gives an ODE of the form
R(u, u′, u′′, . . .) = 0 (3.3)

where the prime (′) shows the derivative of u w.r.t. the transformation variable
ξ [26].
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Consider the equation (3.3) has a solution of the form

u(ξ) = a0 + a1Q(ξ) + a2Q
2(ξ) + . . . anQ

n(ξ) (3.4)

for a finite n where an 6= 0 and all ai, 0 ≤ i ≤ n are constants. This polynomial of
Q(ξ) is assumed to satisfy the first-order differential equation

Q
′
(ξ) = Q(ξ)(Q(ξ)− 1) lnA (3.5)

Thus, one can determine it as

Q(ξ) =
1

1 + dAξ

where d and A are nonzero constants with A > 0 and A 6= 1. The balance between
the nonlinear term and the term having the highest order derivative in (3.3) gives
the degree n of the power series (3.4). Since (3.4) is a solution, it must satisfy
(3.3). Substituting it into (3.3) and rearranging the resultant equation for the
powers of Q(ξ) leads a polynomial for Q(ξ). The obtained polynomial equality is
solved by equating the coeffi cients to zero. Thus, the coeffi cients a0, a1, a2, . . . an are
determined algebraically in terms of other parameters originated from the regarding
equation, the transformation and the other operations if exist for nonzero an.

4. The solution of the ctfBE

The transformation (3.2) decreases the dimension of the cftBE(1.1) to one as

−cu
′
+ εuu

′
− νu

′′
= 0 (4.1)

where (
′
) stands for d

dξ . Integrating (4.1) once gives

−cu+ ε1
2
u2 − νu

′
= K (4.2)

where K is integral constant. The balance of u2 and u
′
gives n = 1. Thus, the

solution should be expressed as

u(ξ) = a0 + a1Q(ξ) (4.3)

for a nonzero a1. Substituting the solution (4.3) and its derivative into (4.2) gives(
1

2
ε a1

2 − ν a1 ln (A)
)
Q2 (ξ) + (ε a0a1 − ca1 + ν a1 ln (A))Q (ξ)− ca0 +

1

2
ε a0

2 −K = 0

(4.4)
Equating the coeffi cients of each power of Q(ξ) and the constant term to zero yields
the algebraic system of equations

−K − ca0 +
1

2
ε a0

2 = 0

ε a0a1 − ca1 + ν a1 ln (A) = 0
1

2
ε a1

2 − ν a1 ln (A) = 0

(4.5)
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This system has various solutions for a1 6= 0:
Solution 1: When the solution of the system (4.5) is chosen as

a0 = −
ν ln (A) +

√
ν2 (ln (A))

2 − 2 εK
ε

a1 = 2
ν ln (A)

ε

c = −
√
ν2 (ln (A))

2 − 2 εK

(4.6)

the solution of (4.2) is constructed as

u(ξ) = −
ν ln (A) +

√
ν2 (ln (A))

2 − 2 εK
ε

+ 2
ν ln (A)

ε

1

1 + dAξ
, (4.7)

where
√
ν2 (ln (A))

2 − 2 εK ≥ 0 and ε 6= 0. Thus, the solution of the ctfBE (1.1)
is expressed as

u1(x, t) = −
ν ln (A) +

√
ν2 (ln (A))

2 − 2 εK
ε

+ 2
ν ln (A)

ε

1

1 + dA
x+
√
ν2(ln(A))2−2 εK

tα

α
(4.8)

Solution 2: When the solution of the system (4.5) is chosen as

a0 = −
ν ln (A)−

√
ν2 (ln (A))

2 − 2 εK
ε

a1 = 2
ν ln (A)

ε

c =

√
ν2 (ln (A))

2 − 2 εK

(4.9)

the solution of the ODE (4.2) can be written as

u(ξ) = −
ν ln (A)−

√
ν2 (ln (A))

2 − 2 εK
ε

+ 2
ν ln (A)

ε

1

1 + dAξ
(4.10)

with the conditions
√
ν2 (ln (A))

2 − 2 εK ≥ 0 and ε 6= 0. Thus, the exact solution
of the ctfBE (1.1) is written in an explicit form as

u2(x, t) = −
ν ln (A)−

√
ν2 (ln (A))

2 − 2 εK
ε

+ 2
ν ln (A)

ε

1

1 + dA
x−
√
ν2(ln(A))2−2 εK

tα

α
(4.11)

Some solutions derived from u1(x, t) for the parameter values ε = 1, A = 3,
d = 1, K = 1, ν = 4 are illustrated in Fig 1(a)-1(d) for various values of the
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derivative order α. In all choices of α, an initial wave moves to the right along the
space axis. When the derivative order α changes from zero to one, the shape of
the wave does not change. On the other hand, the speed of the wave is larger at
the beginning of the motion but gets slower as time variable increases for smaller
values of α. When α is chosen as one, we observe that the initial wave moves with
a constant speed.

5. The solution of the ctfKdVE

The transformation (3.2) converts the ctfKdVE to

−cu
′
+ εuu

′
+ βu

′′′
= 0 (5.1)

Integrating the equation (5.1)once changes it to

−cu+ ε1
2
u2 + βu

′′
= K (5.2)

where K is the integration constant. The balance of u2 and u
′′
gives n = 2.

Substituting the predicted solution u(ξ) = a0+a1Q(ξ)+a2Q
2(ξ), a2 6= 0 into (5.2)

yields(
1

2
ε a2

2 + 6β a2 (ln (A))
2

)
Q4 (ξ) +

(
2β a1 (ln (A))

2 − 10β a2 (ln (A))2 + ε a1a2
)
Q3 (ξ)

+

(
1

2
ε a1

2 + ε a0a2 − 3β a1 (ln (A))2 + 4β a2 (ln (A))2 − ca2
)
Q2 (ξ)

+
(
−ca1 + ε a0a1 + β a1 (ln (A))2

)
Q (ξ) +

1

2
ε a0

2 −K − ca0 = 0
(5.3)

in the arranged form. Forcing the coeffi cients of the powers of Q(ξ) and the constant
term to be zero gives an algebraic system

1

2
ε a0

2 −K − ca0 = 0

−ca1 + ε a0a1 + β a1 (ln (A))2 = 0

1

2
ε a1

2 + ε a0a2 − 3β a1 (ln (A))2 + 4β a2 (ln (A))2 − ca2 = 0

2β a1 (ln (A))
2 − 10β a2 (ln (A))2 + ε a1a2 = 0

1

2
ε a2

2 + 6β a2 (ln (A))
2
= 0 (5.4)
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Figure 1. Illustrations of u1(x, t) for ε = 1, A = 3, d = 1, K = 1,
ν = 4

Solution 1: The solution

a0 =
−β (ln (A))2 +

√
β2 (ln (A))

4 − 2 εK
ε

a1 = 12
β (ln (A))

2

ε

a2 = −12 β (ln (A))
2

ε

c =

√
β2 (ln (A))

4 − 2 εK (5.5)
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of the system (5.4) gives the solution of the ODE (5.2) as

u(ξ) =
−β (ln (A))2 +

√
β2 (ln (A))

4 − 2 εK
ε

+ 12
β (ln (A))

2

ε

1

1 + dAξ

−12 β (ln (A))
2

ε

1

(1 + dAξ)2
(5.6)

where
√
β2 (ln (A))

4 − 2 εK ≥ 0 and ε 6= 0. Thus, the exact solution of the ct-
fKdVE (1.2) is written in an explicit form as

u3(x, t) =
−β (ln (A))2 +

√
β2 (ln (A))

4 − 2 εK
ε

+12
β (ln (A))

2

ε

1

1 + dA
x−
√
β2(ln(A))4−2 εK

tα

α

−12 β (ln (A))
2

ε

11 + dAx−√β2(ln(A))4−2 εK tαα
2 (5.7)

Solution 2: Similarly, the solution

a0 = −
β (ln (A))

2
+

√
β2 (ln (A))

4 − 2 εK
ε

a1 = 12
β (ln (A))

2

ε
(5.8)

a2 = −12
β (ln (A))

2

ε

c = −
√
β2 (ln (A))

4 − 2 εK

of the system (5.4) gives the solution of the ODE (5.2) as

u(ξ) = −
β (ln (A))

2
+

√
β2 (ln (A))

4 − 2 εK
ε

+12
β (ln (A))

2

ε

1

1 + dAξ

−12 β (ln (A))
2

ε

1

(1 + dAξ)2
(5.9)
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where
√
β2 (ln (A))

4 − 2 εK ≥ 0 and ε 6= 0. Thus, the exact solution of the ct-
fKdVE (1.2) is written in an explicit form as

u4(x, t) = −
β (ln (A))

2
+

√
β2 (ln (A))

4 − 2 εK
ε

+ 12
β (ln (A))

2

ε

1

1 + dA
x+
√
β2(ln(A))4−2 εK

tα

α

−12 β (ln (A))
2

ε

11 + dAx+√β2(ln(A))4−2 εK tαα
2 (5.10)

Some solutions are generated from the general form of the solution u4(x, t) by
choosing the parameters ε = 1/5, A = 3, d = 1, K = 1, β = 3/2, Fig 2(a)-2(d).
This solution represents motion of an initial positive pulse along x−axis without
changing its shape and direction as time proceeds. The speed of the pulse is higher
when t and α are smaller but as t increases the speed decreases. The change in the
speed of the pulse decreases as α approaches 1.

6. Conclusion

Some conformable time fractional partial differential equations are solved by using
the modified Kudryashov method. Both the ctfBE and the ctfKdVE equations
are reduced to some nonlinear ODEs of integer order by using compatible wave
transformations. The balance between the nonlinear term and the term with the
highest order derivative gives the highest power of the series forming the solution.
Substituting the solution into the resultant ODEs and some computer algebra give
the relations between the parameters of the equations and the coeffi cients of the
finite series solution.
Some explicit solutions are given for the conformable time fractional Burgers’and
the conformable time fractional KdV equations. The solutions are illustrated for
particular choices of the parameters and various values of α.
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Figure 2. Illustrations of u4(x, t) for ε = 1/5, A = 3, d = 1,
K = 1, β = 3/2
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