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SEMI-INVARIANT SEMI-RIEMANNIAN SUBMERSIONS

MEHMET AKIF AKYOL AND YILMAZ GÜNDÜZALP

Abstract. In this paper, we introduce semi-invariant semi-Riemannian sub-
mersions from para-Kähler manifolds onto semi-Riemannian manifolds. We
give some examples, investigate the geometry of foliations that arise from
the definition of a semi-Riemannian submersion and check the harmonicity of
such submersions. We also find necessary and suffi cient conditions for a semi-
invariant semi-Riemannian submersion to be totally geodesic. Moreover, we
obtain curvature relations between the base manifold and the total manifold.

1. Introduction

The theory of Riemannian submersion was introduced by O’Neill and Gray in
[19] and [13], respectively. Later, Riemannian submersions were considered between
almost complex manifolds by Watson in [26] under the name of almost Hermitian
submersion. He showed that if the total manifold is a Kähler manifold, then the
base manifold is also a Kähler manifold. Since then, Riemannian submersions have
been used as an effective tool to describe the structure of a Riemannian manifold
equipped with a differentiable structure. Presently, there is an extensive literature
on the Riemannian submersions with different conditions imposed on the total
space and on the fibres. For instance, Riemannian submersions between almost
contact manifolds were studied by Chinea in [5] under the name of almost contact
submersions. Riemannian submersions have been also considered for quaternionic
Kähler manifolds [14] and para-quaternionic Kähler manifolds [4],[15]. This kind of
submersions have been studied with different names by many authors (see [1], [10],
[12], [21], [22], [23], [24] and more).
On the other hand, para-complex manifolds, almost para-Hermitian manifolds

and para-Kähler manifolds were defined by Libermann [18] in 1952. In fact, such
manifolds arose in [25] (see also [6]). Indeed, Rashevskij introduced the properties
of para-Kähler manifolds, when he considered a metric of signature (m,m) defined
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from a potential function the so-called scalar field on a 2m−dimensional locally
product manifold called by him stratified space.

2. Preliminaries

In this section, we define almost para-Hermitian manifolds, recall the notion of
semi-Riemannian submersions between semi-Riemannian manifolds and give a brief
review of basic facts of semi-Riemannian submersions.
An almost para-Hermitian manifold is a manifold M endowed with an almost

para-complex structure P 6= ±I and a semi-Riemannian metric g such that
P 2 = I, g(PX,PY ) = −g(X,Y ) (2.1)

for X,Y tangent to M, where I is the identity map. The dimension of M is even
and the signature of g is (m,m), where dimM = 2m. Consider an almost para-
Hermitian manifold (M,P, g) and denote by ∇ the Levi-Civita connection on M
with respect to g. Then M is called a para-Kähler manifold if P is parallel with
respect to ∇, i.e.,

(∇XP )Y = 0 (2.2)

for X,Y tangent to M [17].
Let (M, g1) and (N, g2) be two connected semi-Riemannian manifolds of index

s(0 ≤ s ≤ dimM) and s′(0 ≤ s′ ≤ dimN) respectively, with s > s′. A semi-
Riemannian submersion is a smooth map π : M → N which is onto and satisfies
the following conditions:
(i) π∗p : TpM → Tπ(p)N is onto for all p ∈M ;

(ii) The fibres π−1(q), q ∈ N, are semi-Riemannian submanifolds of M ;
(iii) π∗ preserves scalar products of vectors normal to fibres.
The vectors tangent to the fibres are called vertical and those normal to the fibres
are called horizontal. We denote by V the vertical distribution, by H the horizontal
distribution and by v and h the vertical and horizontal projection. A horizontal
vector field X on M is said to be basic if X is π−related to a vector field X∗ on N.
It is clear that every vector field X∗ on N has a unique horizontal lift X to M and
X is basic.
We recall that the sections of V, respectively H, are called the vertical vector

fields, respectively horizontal vector fields. A semi-Riemannian submersion π :
M → N determines two (1, 2) tensor fields T and A on M, by the formulas:

T (E,F ) = TEF = h∇1vEvF + v∇1vEhF (2.3)

and
A(E,F ) = AEF = v∇1hEhF + h∇1hEvF (2.4)

for any E,F ∈ Γ(TM), where v and h are the vertical and horizontal projections
(see [2],[8]). From (2.3) and (2.4), one can obtain

∇1UW = TUW + ∇̂UW ; (2.5)
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∇1UX = TUX + h(∇1UX); (2.6)

∇1XU = v(∇1XU) +AXU ; (2.7)

∇1XY = AXY + h(∇1XY ), (2.8)

for any X,Y ∈ Γ((kerπ∗)
⊥), U,W ∈ Γ(kerπ∗). Moreover, if X is basic then

h(∇1UX) = h(∇1XU) = AXU.
We note that for U, V ∈ Γ(kerπ∗), TUV coincides with the second fundamental form
of the immersion of the fibre submanifolds and for X,Y ∈ Γ((kerπ∗)

⊥), AXY =
1
2v[X,Y ] reflecting the complete integrability of the horizontal distribution H. It
is known that A is alternating on the horizontal distribution: AXY = −AYX, for
X,Y ∈ Γ((kerπ∗)

⊥) and T is symmetric on the vertical distribution: TUV = TV U,
for U, V ∈ Γ(kerπ∗).

We now recall the following result which will be useful for later.

Lemma 2.1 (see [8],[20]). If π : M → N is a semi-Riemannian submersion and
X,Y basic vector fields on M, π−related to X∗ and Y∗ on N, then we have the
following properties

(1) g1(X,Y ) = g2(X∗, Y∗) ◦ π;
(2) h[X,Y ] is a basic vector field and π∗h[X,Y ] = [X∗, Y∗] ◦ π;
(3) h(∇1XY ) is a basic vector field π−related to (∇2X∗Y∗), where ∇

1 and ∇2 are
the Levi-Civita connection on M and N ;

(4) [E,U ] ∈ Γ(kerπ∗), for any U ∈ Γ(kerπ∗) and for any basic vector field E.

Let (M, g1) and (N, g2) be (semi-)Riemannian manifolds and π : M → N is a
smooth map. Then the second fundamental form of π is given by

(∇π∗)(X,Y ) = ∇πXπ∗Y − π∗(∇1XY ) (2.9)

for X,Y ∈ Γ(TM), where we denote conveniently by ∇ the Levi-Civita connec-
tions of the metrics g and g

′
. Recall that π is called a totally geodesic map if

(∇π∗)(X,Y ) = 0 for X,Y ∈ Γ(TM)[16]. It is known that the second fundamental
form is symmetric.

3. Semi-invariant semi-Riemannian submersions

In this section, we define semi-invariant semi-Riemannian submersions from a
para-Kähler manifold onto a semi-Riemannian manifold, investigate the integrabil-
ity of distributions and obtain a necessary and suffi cient condition for such submer-
sions to be totally geodesic map.

Definition 3.1. Let (M, g1, P ) be an almost para-Hermitian manifold and (N, g2)
a semi-Riemannian manifold. A semi-Riemannian submersion π : M → N is called
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a semi-invariant semi-Riemannian submersion if there is a distribution D1 ⊆ kerπ∗
such that

kerπ∗ = D1 ⊕D2 and PD1 = D1, P (D2) ⊆ (kerπ∗)
⊥

where D2 is orthogonal complementary to D1 in kerπ∗.

We note that it is known that the distribution kerπ∗ is integrable. Hence, De-
finition 3.1 implies that the integral manifold (fibre) π−1, q ∈ B, of kerπ∗ is a
CR-submanifold of M. For CR-submanifolds, see [7].

Note that given a semi-Euclidean spaceR2nn with coordinates (x1, ..., x2n) onR2nn ,
we can naturally choose an almost para-complex structure P on R2nn as follows:

P (
∂

∂x2i
) =

∂

∂x2i−1
, P (

∂

∂x2i−1
) =

∂

∂x2i
,

where i = 1, ..., n. Let R2nn be a semi-Euclidean space of signature (+,-,+,-,...) with
respect to the canonical basis ( ∂

∂x1
, ..., ∂

∂x2n
).

Remark 3.1. Let (M,P1, g1) and (N,P2, g2) be almost para-Hermitian manifolds.
A semi-Riemannian submersion π : M → N is called an almost para-Hermitian
submersion if π is an almost para-complex map, i.e. π∗ ◦ P1 = P2 ◦ π∗.
We now give some examples of a semi-invariant semi-Riemannian submersion.

Example 3.1. Let π : R42 → R21 be a map defined π(x1, x2, x3, x4) = (x1+x3√
2
, x2+x4√

2
).

Then it is easy to see that π is an almost para-Hermitian submersion. Every an al-
most para-Hermitian submersion from an almost para-Hermitian manifold onto an
almost para-Hermitian manifold is a semi-invariant semi-Riemannian submersion
with D2 = {0}.

Example 3.2. Every anti-invariant semi-Riemannian submersion from an almost
para-Hermitian manifold onto a semi-Riemannian manifold is a semi-invariant semi-
Riemannian submersion with D1 = {0}[11].

Example 3.3. Let π : R63 → R31 be a map defined π(x1, x2, x3, x4, x5, x6) =
(x1,

x4+x6√
2
, x3+x5√

2
). Then, by direct calculations

kerπ∗ = Span{V1 =
∂

∂ x2
, V2 = − ∂

∂ x4
+

∂

∂ x6
, V3 = − ∂

∂ x3
+

∂

∂ x5
}

and

(kerπ∗)
⊥ = Span{X1 =

∂

∂ x1
, X2 =

∂

∂ x4
+

∂

∂ x6
, X3 =

∂

∂ x3
+

∂

∂ x5
}.

Then it is easy to see that π is a semi-Riemannian submersion. Hence we have
PV2 = V3 and PV1 = X1. Thus it follows that D1 = span{V2, V3} and D2 =
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span{V1}. Moreover one can see that µ = span{X2, X3}. As a result, π is a semi-
invariant semi-Riemannian submersion.

Let π : (M, g1, P ) → (N, g2) be a semi-invariant semi-Riemannian submersion
from a para-Kähler manifold (M, g1, P ) to a semi-Riemannian manifold (N, g2).
We denote the complementary distribution to PD2 in (kerπ∗)

⊥ by µ. Then for
V ∈ Γ(kerπ∗), we write

PV = φV + ωV, (3.1)
where φV ∈ Γ(D1) and ωV ∈ Γ(D2). Also for X ∈ Γ((kerπ∗)

⊥), we have

PX = BX + CX, (3.2)

where BX ∈ Γ(D1) and CX ∈ Γ(µ). Then, by using (2.5), (2.6),(3.1) and (3.2) we
get

(∇V φ)W = BTVW − TV ωW, (∇V ω)W = CTVW − TV φW,
for V,W ∈ Γ(kerπ∗), where

(∇V φ)W = ∇̂V φW − φ∇̂VW and (∇V ω)W = h∇1V ωW − ω∇̂VW.

Lemma 3.1. Let π be a semi-invariant semi-Riemannian submersion from a
para-Kähler manifold (M, g1, P ) to a semi-Riemannian manifold (N, g2). Then we
have

g(PTUV,X) = g(TUPV,X),

for any U ∈ Γ(kerπ∗), V ∈ Γ(D1) and X ∈ Γ(µ).

Proof. Since M is a para-Kähler manifold, then for any U ∈ Γ(kerπ∗) and V ∈
Γ(D1) using (2.2) we have

P∇1UV = ∇1UPV.
On using (2.5) we get

P (TUV + ∇̂UV ) = TUPV + ∇̂UPV.
Taking inner product with X ∈ Γ(µ), we get

g(PTUV,X) + g(∇̂UV,X) = g(TUPV,X) + g(∇̂UPV,X). (3.3)

Since µ is invariant under P, then the result follows from (3.3).

Now, we investigate the integrability of the distribution D1 and D2. Since fibers
of semi-invariant semi-Riemannian submersions from para-Kähler manifolds are
CR-submanifolds and T is the second fundamental form of the fibers, we have the
following theorem.

Theorem 3.1. Let π be a semi-invariant semi-Riemannian submersion from a
para-Kähler (M, g1, P ) to a semi-Riemannian manifold (N, g2). Then
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(i) the distribution D1 is integrable if and only if g(TV PW − TWPV, PU) = 0
for V,W ∈ Γ(D1) and U ∈ Γ(D2),

(ii) the distribution D2 is integrable.

Proof. (i) Since M is a para-Kähler manifold, then for any V,W ∈ Γ(D1), then
(2.2) and (2.5) give

P [V,W ] = P∇1VW − P∇1WV
= ∇1V PW −∇1WPV
= TV PW − TWPV + ∇̂V PW − ∇̂WPV.

Therefore,
TV PW − TWPV = P [V,W ]− ∇̂V PW + ∇̂WPV. (3.4)

Now if D1 is integrable then P [V,W ] ∈ Γ(D1) as [V,W ] ∈ Γ(D1). Hence in (3.4)
right hand side is vertical while the left hand side is horizontal. On comparing the
horizontal and vertical part we get

TV PW = TWPV,

for any V,W ∈ Γ(D1). In particular, we have

g(TV PW,PU) = g(TWPV, PU).

Conversely, firstly using (3.4), i.e.,

g(TV PW − TWPV, PU) = 0

which shows that
TV PW − TWPV ∈ Γ(µ).

Now for any X ∈ Γ(µ), using Lemma 3.1 we have

g(TV PW − TWPV,X) = g(PTVW − PTWV,X) = 0,

which implies that TV PW − TWPV = 0, for any V,W ∈ Γ(D1). Thus from (3.4),
we get

P [V,W ] = ∇̂V PW − ∇̂WPV.
Since ∇̂V PW − ∇̂WPV lies in V,W ∈ Γ(kerπ∗), this implies that [V,W ] lies in
Γ(D1) and hence Γ(D1) is integrable.
ii) Since M is a para-Kahler manifold, dΩ = 0. For any X ∈ Γ(D1) and Y, Z ∈
Γ(D2)

3dΩ(X,Y, Z) = XΩ(Y, Z)− Y Ω(X,Z)− ZΩ(X,Y )

− Ω([X,Y ], Z) + Ω(Y, [X,Z]) + Ω(X, [Y,Z])

= XgM (Y, JZ)− Y gM (X, JZ)− ZgM (X, JY )

− gM ([X,Y ], JZ)− gM (JY, [X,Z])− gM (JX, [Y,Z])

= −gM (JX, [Y, Z])

= 0,
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which gives the proof (ii). The proof of the following proposition is similar to the
proof of Theorem 5.1 in [3].

Proposition 3.1. Let π be a semi-invariant semi-Riemannian submersion from
a para-Kähler (M, g1, P ) to a semi-Riemannian manifold (N, g2). Then the fibers
of π are locally product manifolds if and only if (∇V φ)W = 0 for V,W ∈ Γ(kerπ∗).

Now, we obtain necessary and suffi cient conditions for a semi-invariant semi-
Riemannian submersion to be totally geodesic. We note that a differentiable map
π between two semi-Riemannian manifolds is called totally geodesic if ∇π∗ = 0.

Theorem 3.2. Let π be a semi-invariant semi-Riemannian submersion from a
para-Kähler manifold (M, g1, P ) to a semi-Riemannian manifold (N, g2). Then π
is a totally geodesic map if and only if

(i) ∇̂XφY + TXωY and ∇̂XBZ + TXCZ belong to D1

(ii) ∇1XωY + TXφY and TXBZ + h∇1XCZ belong to PD2

for Z ∈ Γ((kerπ∗)
⊥) and X,Y ∈ Γ(kerπ∗).

Proof. First of all, since π is a semi-Riemannian submersion, we have

(∇π∗)(Z1, Z2) = 0, Z1, Z2 ∈ Γ((kerπ∗)
⊥). (3.5)

For X,Y ∈ Γ(kerπ∗), by using (2.2) we have (∇π∗)(X,Y ) = −π∗(P∇1XPY ). Using
(3.1) we get (∇π∗)(X,Y ) = −π∗(P∇1XφY + P∇1XωY ). Then from (2.5) and (2.6)
we have

(∇π∗)(X,Y ) = −π∗(P (∇̂XφY + TXφY + h∇1XωY + TXωY )).

Using (3.1) and (3.2) in above equation we get

(∇π∗)(X,Y ) = −π∗(φ∇̂XφY + ω∇̂XφY +BTXφY + CTXφY

+ Bh∇1XωY + Ch∇1XωY + φTXωY + ωTXωY ).

Since φ∇̂XφY +BTXφY +Bh∇1XωY + φTXωY ∈ Γ(kerπ∗), we derive

(∇π∗)(X,Y ) = −π∗(ω∇̂XφY + CTXφY + Ch∇1XωY + ωTXωY ).

Then, since π is a linear isometry between (kerπ∗)
⊥ and TN, (∇π∗)(X,Y ) = 0 if

only and only if ω∇̂XφY +CTXφY +Ch∇1XωY +ωTXωY = 0. Thus (∇π∗)(X,Y ) =
0 if and only if

ω(∇̂XφY + TXωY ) = 0, C(TXφY + h∇1XωY ) = 0. (3.6)

In a similar way for Z ∈ Γ((kerπ∗)
⊥) and X ∈ Γ(kerπ∗), (∇π∗)(X,Z) = 0 if and

only if
ω(∇̂XBZ + TXCZ) = 0, C(TXBZ + h∇1XCZ) = 0. (3.7)

The proof comes from (3.5)-(3.7).
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Now, we investigate the geometry of leaves of the distribution (kerπ∗)
⊥.

Theorem 3.3. Let π be a semi-invariant semi-Riemannian submersion from a
para-Kähler manifold (M, g1, P ) to a semi-Riemannian manifold (N, g2). Then the
the distribution (kerπ∗)

⊥ defines a totally geodesic foliation if and only if

AZ1BZ2 + h∇1Z1CZ2 ∈ Γ(µ), AZ1CZ2 + v∇1Z1Z2 ∈ Γ(D2)

for Z1, Z2 ∈ Γ((kerπ∗)
⊥).

Proof. From (2.1) and (2.2) we obtain∇1Z1Z2 = P∇1Z1PZ2 for Z1, Z2 ∈ Γ((kerπ∗)
⊥).

Using (2.7), (2.8) and (3.2) we have

∇1Z1Z2 = P (AZ1BZ2 + v∇1Z1BZ2) + P (AZ1CZ2 + h∇1Z1CZ2).
Then by using (3.1) and (3.2) we obtain

∇1Z1Z2 = BAZ1BZ2 + CAZ1BZ2 + φv∇1Z1BZ2 + ωv∇1Z1BZ2 + φAZ1CZ2

+ ωAZ1CZ2 +Bh∇1Z1CZ2 + Ch∇1Z1CZ2.

Hence, we have ∇1Z1Z2 ∈ Γ((kerπ∗)
⊥) if and only if

BAZ1BZ2 + φv∇1Z1BZ2 + φAZ1CZ2 +Bh∇1Z1CZ2 = 0.

Thus ∇1Z1Z2 ∈ Γ((kerπ∗)
⊥) if and only if

B(AZ1BZ2 + h∇1Z1CZ2) = 0, φ(v∇1Z1BZ2 +AZ1CZ2) = 0,

which completes proof.

Theorem 3.4. Let π be a semi-invariant semi-Riemannian submersion from a
para-Kähler manifold (M, g1, P ) to a semi-Riemannian manifold (N, g2). Then the
the distribution (kerπ∗) defines a totally geodesic foliation if and only if

TX1
φX2 + h∇1X1

ωX2 ∈ Γ(PD2), TX1
ωX2 + ∇̂X1

φX2 ∈ Γ(D1)

for X1, X2 ∈ Γ(kerπ∗).

Proof. From (2.1) and (2.2) we obtain∇1X1
X2 = P∇1X1

PX2 forX1, X2 ∈ Γ(kerπ∗).
Using (2.5), (2.6) and (3.1) we have

∇1X1
X2 = P (TX1

φX2 + ∇̂X1
φX2) + P (TX1

ωX2 + h∇1X1
ωX2).

Then by using (3.1) and (3.2) we obtain

∇1X1
X2 = BTX1φX2 + CTX1φX2 + φ∇̂X1φX2 + ω∇̂X1φX2 + φTX1ωX2

+ ωTX1
ωX2 +Bh∇1X1

ωX2 + Ch∇1X1
ωX2.

Hence, we have ∇1X1
X2 ∈ Γ(kerπ∗) if and only if

ωTX1
ωX2 + ω∇̂X1

φX2 + CTX1
φX2 + Ch∇1X1

ωX2 = 0.
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Thus ∇1X1
X2 ∈ Γ(kerπ∗) if and only if

ω(TX1
ωX2 + ∇̂X1

φX2) = 0, C(TX1
φX2 + h∇1X1

ωX2) = 0,

which completes proof.

From Theorem 3.4, we have the following result.

Corollary 3.1. Let π be a semi-invariant semi-Riemannian submersion from a
para-Kähler manifold (M, g1, P ) to a semi-Riemannian manifold (N, g2). Then the
distribution kerπ∗ defines a totally geodesic foliation if and only if

g2(∇π∗)(X1, X2), π∗PZ) = 0

g2(∇π∗)(X1, ωX2), π∗W ) = −g1(TX1W,φX2)

for X1, X2 ∈ Γ(kerπ∗), Z ∈ Γ(D2) and W ∈ Γ(µ).

Proof. For X1, X2 ∈ Γ(kerπ∗), TX1ωX2 + ∇̂X1φX2 ∈ Γ(D1) if and only if
g1(TX1

ωX2 + ∇̂X1
φX2, Z) = 0 for Z ∈ Γ(D2). Skew-symmetric T and (2.5) imply

that

g1(TX1
ωX2 + ∇̂X1

φX2, Z) = −g1(TX1
Z, ωX2) + g1(∇1X1

φX2, Z)

= −g1(TX1
Z, ωX2) + g1(∇1X1

Z, φX2).

Using (2.5) again we obtain

g1(TX1
ωX2 + ∇̂X1

φX2, Z) = −g1(TX1
Z, ωX2)− g1(∇̂X1

Z,PX2).

Hence we have

g1(TX1ωX2 + ∇̂X1φX2, Z) = −g1(∇1X1
Z,PX2).

Then from (2.2) we derive

g1(TX1ωX2 + ∇̂X1φX2, Z) = g1(∇1X1
PZ,X2).

Thus we have

g1(TX1
ωX2 + ∇̂X1

φX2, Z) = −g1(∇1X1
X2, PZ).

Then semi-Riemannian submersion π implies that

g1(TX1
ωX2 + ∇̂X1

φX2, Z) = −g2(π∗(∇1X1
X2), π∗(PZ)).

Using (2.9) we obtain

g1(TX1ωX2 + ∇̂X1φX2, Z) = g2((∇π∗)(X1, X2), π∗(PZ)). (3.8)

On the other hand, for X1, X2 ∈ Γ(kerπ∗), TX1
φX2 + h∇1X1

ωX2 ∈ Γ(PD2) if and
only if g1(TX1φX2 + h∇1X1

ωX2,W ) = 0 for W ∈ Γ(µ). Since T is skew-symmetric,
we have

g1(TX1
φX2 + h∇1X1

ωX2,W ) = −g1(TX1
W,φX2) + g1(h∇1X1

ωX2,W ).
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Since π is a semi-Riemannian submersion, we have

g1(TX1
φX2 + h∇1X1

ωX2,W ) = −g1(TX1
W,φX2) + g2(π∗(h∇1X1

ωX2), π∗(W )).

Then from (2.9) we arrive at

g1(TX1
φX2+h∇1X1

ωX2,W ) = −g1(TX1
W,φX2)+g2(π∗(−(∇π∗)(X1, ωX2), π∗(W )).

(3.9)
Thus the proof follow from (3.8),(3.9) and Theorem 3.4.
From Proposition 3.1 and Theorem 3.3 we have the following theorem.

Theorem 3.5. Let π be a semi-invariant semi-Riemannian submersion a para-
Kähler manifold (M, g1, P ) onto a semi-Riemannian manifold (N, g2). Then M1

is a locally product manifold MD1
×MD2

×M(kerπ∗)⊥ if and only if (∇φ) = 0 on
kerπ∗ and

AZ1BZ2 + h∇1Z1CZ2 ∈ Γ(µ), AZ1CZ2 + v∇1Z1Z2 ∈ Γ(D2)

for Z1, Z2 ∈ Γ((kerπ∗)
⊥), where MD1

, MD2
and M(kerπ∗)

⊥ are integral manifolds
of the distributions D1, D2 and (kerπ∗)

⊥.
From Corollary 3.1 and Theorem 3.3 we have the following theorem.

Theorem 3.6. Let π be a semi-invariant semi-Riemannian submersion a para-
Kähler manifold (M, g1, P ) onto a semi-Riemannian manifold (N, g2). Then M1 is
a locally product manifold Mkerπ∗ ×M(kerπ∗)⊥ if and only if

g2(∇π∗)(X1, X2), π∗PZ) = 0

g2(∇π∗)(X1, ωX2), π∗W ) = −g1(TX1
W,φX2)

and
AZ1BZ2 + h∇1Z1CZ2 ∈ Γ(µ), AZ1CZ2 + v∇1Z1Z2 ∈ Γ(D2)

for X1, X2 ∈ Γ(kerπ∗), Z ∈ Γ(D2), W ∈ Γ(µ) and Z1, Z2 ∈ Γ((kerπ∗)
⊥), where

Mkerπ∗ andM(kerπ∗)
⊥ are integral manifolds of the distributions kerπ∗ and (kerπ∗)

⊥.

Let π be a semi-invariant semi-Riemannian submersion a para-Kähler manifold
(M, g1, P ) onto a semi-Riemannian manifold (N, g2). Then there is a distribution
D1 ⊆ kerπ∗ such that

kerπ∗ = D1 ⊕D2 and PD1 = D1, P (D2) ⊆ (kerπ∗)
⊥

where D2 is orthogonal complementary to D1 in kerπ∗.
We choose a local orthonormal frame {v1, ..., vl} of D2 and a local orthonormal
frame {e1, ..., e2k} of D1 such that e2i = Pe2i−1 for 1 ≤ i ≤ k.
Since π∗(∇Pe2i−1Pe2i−1) = π∗(∇e2i−1e2i−1), 1 ≤ i ≤ k, we easily have

trace(∇π∗) = 0⇔
l∑

j=1

π∗(∇vjvj).
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Thus, we obtain

Theorem 3.7. Let π be a semi-invariant semi-Riemannian submersion from a
para-Kähler manifold (M, g1, P ) onto a semi-Riemannian manifold (N, g2). Then
π is a harmonic map if and only if trace(∇π∗) = 0 on D2.

Corollary 3.2. Let π be a semi-invariant semi-Riemannian submersion from
a para-Kähler manifold (M, g1, P ) onto a semi-Riemannian manifold (N, g2) such
that kerπ∗ = D1. Then π is a harmonic map.

Let π : (M, g1) −→ (N, g2) be a semi-Riemannian submersion. The map π is
called a semi-Riemannian submersion with totally umbilical fibers if

TXY = g1(X,Y )H for X, Y ∈ Γ(kerπ∗),

where H is the mean curvature vector field of the fiber.

Proposition 3.2. Let π be a semi-invariant semi-Riemannian submersion from a
para-Kähler (M, g1, P ) to a semi-Riemannian manifold (N, g2). Then H ∈ Γ(PD2).

Proof. For X,Y ∈ Γ(D1) and W ∈ Γ(µ) we have

TXPY + ∇̂XPY = ∇1XPY = P∇1XY
= BTXY + CTXY + φ∇̂XY + ω∇̂XY

so that

g1(TXPY,W ) = g1(CTXY,W ).

By the assumption, with some computations we get

g1(X,PY )g1(H,W ) = −g1(X,Y )g1(H,PW ).

Interchanging the role of X and Y, we obtain

g1(Y, PX)g1(H,W ) = −g1(Y,X)g1(H,PW ).

so that combining the above two equations, we have

g1(Y,X)g1(H,PW ) = 0,

which means H ∈ Γ(PD2), since Pµ = µ.

Finally, we are going to obtain curvature relations of semi-invariant semi-Riemannian
submersion from a para-Kähler manifold (M, g1, P ) onto a semi-Riemannian man-
ifold (N, g2).



SEMI-INVARIANT SEMI-RIEMANNIAN SUBMERSIONS 91

Let (M, g) be a semi-Riemannian manifold. The sectional curvature K of a
2-plane in TpM, p ∈M, spanned by {X,Y }, is defined by:

K(X,Y ) =
R(X,Y,X, Y )

g(X,X)g(Y, Y )− g(X,Y )2
.

It is clear that the above definition makes sense only for non-degenerate planes, i.e.
those satisfying Q(X,Y ) = g(X,X)g(Y, Y )− g(X,Y )2 6= 0.
As we know, the para-holomorphic sectional curvatures determine the Riemannian
curvature tensor in a para-Kähler manifold.
Given a plane D invariant by P in TpM, p ∈ M, there is an orthonormal basis
{X,PX} of D. Denote by K(D), K∗(D) and K̂(D) the sectional curvatures of the
plane D in M, N and the fiber π−1(π(p)), respectively, where K∗(D) denotes the
sectional curvature of the plane D∗ =< π∗X,π∗PX > in N. Using of Corollary 1
in [19], we get the following,

(i) If D ⊂ (D1)p, then with some computations we have

K(D) = K̂(D) + |TXX|2 − |TXPX|2 + εXg1(TXX,P [PX,X]).

(ii) If D ⊂ (D2 ⊕ PD2)p with X ∈ (D2)p, then we obtain

K(D) = −(g1((∇1PXT )XX,PX) + |hP∇1XX|2 − |vP∇1XX|2).

(iii) If D ⊂ (µ)p, then we get

K(D) = K∗(D) + 3|vP∇XX|2,

where εX = g(X,X) ∈ {±1}.
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[6] Çayır, H. Akdaǧ, K.: Some notes on almost para-complex structures associated with the
diagonal lifts and operators on cotangent bundle T ∗(Mn). New Trends in Mathematical
Sciences. 4 (4), 42-50 (2016).

[7] Etayo, F., Fioravanti, M. and Trias, U.R.: On the submanifolds of an almost para-hermitian
manifold. Acta math. Hungar 85(4), 277-286 (1999).

[8] Falcitelli, M., Ianus, S. and Pastore, A.M.: Riemannian Submersions and Related Topics.
World Scientific, 2004.



92 MEHMET AKIF AKYOL AND YILMAZ GÜNDÜZALP

[9] Falcitelli, M., Ianus, S., Pastore, A.M. and Visinescu, M.: Some applications of Riemannian
submersions in physics. Rev. Roum. Phys. 48, 627-639 (2003).

[10] Gündüzalp, Y. and S. ahin, B.: Paracontact semi-Riemannian submersions. Turkish J.Math.
37(1), 114-128 (2013).

[11] Gündüzalp, Y.: Anti-invariant semi-Riemannian submersions from almost para-Hermitian
manifolds. Journal of Function Spaces and Applications,ID 720623,(2013).

[12] Gündüzalp, Y. and S. ahin, B.: Para-contact para-complex semi-Riemannian submersions.
Bull. Malays. Math. Sci. Soc. 37(1), 139-152 (2014).

[13] Gray, A.: Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech.
16, 715-737 (1967)

[14] Ianus, S., Mazzocco, R. and Vilcu, G.E.: Riemannian submersions from quaternionic mani-
folds. Acta Appl. Math. 104, 83-89 (2008).

[15] Ianus, S., Marchiafava, S. and Vilcu, G.E.: Para-quaternionic CR-submanifolds of para-
quaternionic Kähler Manifols and semi-Riemannian submersions. Central European Journal
of Mathematics 4,735-753 (2010).

[16] Ianus, S., Vilcu, G.V. and Voicu, R.C:: Harmonic maps and Riemannian submersions between
manifolds endowed with special structures. Banach Center Publications 93 , 277-288 (2011).

[17] Ivanov, S. and Zamkovoy, S.: Para-Hermitian and para-quaternionic manifolds. Diff. Geom.
and Its Appl. 23, 205-234 (2005).

[18] Libermann, P.: Sur les structures presque para-complexes. C.R. Acad. Sci. Paris Ser. I Math.
234, 2517-2519 (1952)

[19] O‘Neill, B.: The fundamental equations of a submersion. Michigan Math. J. 13, 459— 469
(1966).

[20] O‘Neill, B.: Semi-Riemannian Geometry with Application to Relativity. Academic Press,
New York, 1983.

[21] Park, K.S.: H-semi-invariant submersions. Taiwanese Journal of Math. 16(5), 1865-1878
(2012).

[22] S. ahin, B.: Semi-invariant Riemannian submersions from almost Hermitian manifolds. Cana-
dian Mathematical Bulletin, Doi:10.4153/CMB-2011-144-8.

[23] S. ahin, B.: Riemannian submersions from almost Hermitian manifolds, Taiwanese J. Math.
17(2) (2013), 629-659.

[24] S. ahin, B.: Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their
Applications, Elsevier, Academic Press, (2017).

[25] Rashevskij, P.K.: The scalar field in a stratified space. Trudy Sem. Vektor. Renzor. Anal. 6,
225-248 (1948).

[26] Watson, B.: Almost Hermitian submersions. J. Differential Geom. 11, 147-165 (1976).

Current address : Mehmet Akif Akyol: Department of Mathematics, Bingöl University 12000,
Bingöl TURKEY
E-mail address : mehmetakifakyol@bingol.edu.tr
Current address : Yılmaz Gündüzalp: Department of Mathematics, Dicle University 21280,

Diyarbakır TURKEY
E-mail address : ygunduzalp@dicle.edu.tr


