
Commun.Fac.Sci.Univ.Ank.Series A1
Volume 67, Number 1, Pages 93—101 (2018)
DOI: 10.1501/Commua1_0000000833
ISSN 1303—5991

Available online: June 16, 2017

http://communications.science.ankara.edu.tr/index.php?series=A1

GLOBAL STABILITY FOR A HIV/AIDS MODEL

CRISTIANA J. SILVA AND DELFIM F. M. TORRES

Abstract. We investigate global stability properties of a HIV/AIDS popula-
tion model with constant recruitment rate, mass action incidence, and variable
population size. Existence and uniqueness results for disease-free and endemic
equilibrium points are proved. Global stability of the equilibria is obtained
through Lyapunov’s direct method and LaSalle’s invariance principle.

1. Introduction

Mathematical models may represent a useful tool in the development of pub-
lic health policies [8, 20, 21]. Although it is unlikely that a mathematical model
will provide accurate long-term predictions on the number of AIDS cases, one such
model, based on interactions that lead to disease transmission, could eventually
allow researchers to answer many useful questions [13]. As a result, several mathe-
matical models have been proposed in the last decades for HIV/AIDS transmission
dynamics: see, e.g., [1, 2, 3, 4, 11, 17, 19, 22] and references cited therein.
Global stability of equilibrium points for mathematical models of HIV/AIDS

transmission dynamics has been studied by different authors: see, e.g., [5, 9, 12]. In
[12], the authors consider different latent stages depending on other chronic diseases
that each individual may have. The epidemic model in [16] considers a latent stage
and vaccination of newborns and susceptible. In [18], it is assumed that the HIV
epidemic spreads both through horizontal and vertical transmission; in [23], the
immigration of infective individuals is considered, both models with a variable size
population. The effect of screening unaware infective individuals on the spread of
HIV, in a constant population, is considered in the mathematical model proposed in
[25]. In [5], the global stability is studied for a HIV/AIDS model with two infective
stages and where a discrete time delay is introduced, describing the time from start
of treatment in the symptomatic stage until treatment effects become visible.
Motivated by the results of [24], in this paper we propose a mathematical model

for HIV/AIDS transmission with varying population size in a homogeneously mixing

Received by the editors: September 08, 2016, Accepted: April 21, 2017.
2010 Mathematics Subject Classification. Primary 34D23, 34C60; Secondary 92D30.
Key words and phrases. HIV/AIDS mathematical model, global stability, Lyapunov functions.

c©2018 Ankara University
Communications de la Facu lté des Sciences de l’Université d’Ankara. Séries A1. Mathematics and Statistics.

93



94 CRISTIANA J. SILVA AND DELFIM F. M. TORRES

population. Differently from [24], here we consider a mass action hypothesis for
the transmission rate. We assume that the rate at which susceptible are infected
by individuals with AIDS symptoms is bigger or equal than the rate of infection
by contact with HIV-infected individuals (pre-AIDS). This is justifiable because
individuals with AIDS symptoms have a higher viral load and it is known that
there exists a positive correlation between viral load and infectiousness [6]. On the
other hand, individuals with HIV-infection under anti-retroviral treatment (ART)
suffer a partial restoration of the immune function and, therefore, we assume that
the rate of infection by contact with individuals under ART is smaller or equal than
the rate of infection by contact with HIV-infected individuals (pre-AIDS), which
are not under ART (see, e.g., [7]). We prove the global stability of the disease free
equilibrium whenever the basic reproduction number R0 is less than one; and the
global stability of the unique endemic equilibrium when R0 is greater than one.
The global stability analysis is done through Lyapunov’s direct method combined
with LaSalle’s invariance principle.
The paper is organized as follows. In Section 2, we describe the mathematical

model for HIV/AIDS transmission. Then, in Section 3, we prove existence and
global stability of the disease free equilibrium. The existence and global stability of
the unique endemic equilibrium point is proved in Section 4. The stability results
are then illustrated through numerical simulations in Section 5. We finish the paper
with Section 6 of concluding remarks.

2. Model for HIV/AIDS transmission

In this paper, we propose and analyze a mathematical model for HIV/AIDS
transmission with varying population size in a homogeneously mixing population.
The model is based on that of [24], and subdivides the human population into
four mutually-exclusive compartments: susceptible individuals (S); HIV-infected
individuals with no clinical symptoms of AIDS (the virus is living or developing
in the individuals but without producing symptoms or only mild ones) but able
to transmit HIV to other individuals (I); HIV-infected individuals under ART
treatment (the so called chronic stage) with a viral load remaining low (C); and
HIV-infected individuals with AIDS clinical symptoms (A). The total population
at time t, denoted by N(t), is given by

N(t) = S(t) + I(t) + C(t) +A(t).

The effective contact with people infected with HIV is at a rate λ, given by

λ = β (I + ηC C + ηAA) ,

where β is the contact rate for HIV transmission. The modification parameter
ηA ≥ 1 accounts for the relative infectiousness of individuals with AIDS symptoms,
in comparison to those infected with HIV and no AIDS symptoms. Individuals with
AIDS symptoms are more infectious than HIV-infected individuals (pre-AIDS) be-
cause they have a higher viral load and there is a positive correlation between
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viral load and infectiousness [6]. On the other hand, ηC ≤ 1 translates the par-
tial restoration of the immune function of individuals with HIV infection that are
correctly treated under ART [7].
We assume that HIV-infected individuals with and without AIDS symptoms

have access to ART treatment. HIV-infected individuals with no AIDS symptoms,
I, progress to the class of individuals with HIV infection under ART treatment,
C, at a rate φ, and HIV-infected individuals with AIDS symptoms are treated for
HIV at a rate α. We assume that HIV-infected individuals with AIDS symptoms,
A, that start treatment, move to the class of HIV-infected individuals, I, and will
move to the chronic class, C, only if the treatment is maintained. HIV-infected
individuals with no AIDS symptoms, I, that do not take ART treatment, progress
to the AIDS class, A, at rate ρ. We assume that only HIV-infected individuals
with AIDS symptoms, A, suffer from an AIDS induced death, at a rate d. These
assumptions are translated into the following mathematical model:

Ṡ(t) = Λ− β (I(t) + ηC C(t) + ηAA(t))S(t)− µS(t),

İ(t) = β (I(t) + ηC C(t) + ηAA(t))S(t)− (ρ+ φ+ µ) I(t) + ωC(t) + αA(t),

Ċ(t) = φI(t)− (ω + µ)C(t),

Ȧ(t) = ρ I(t)− (α+ µ+ d)A(t).

(2.1)
From N(t) = S(t) + I(t) + C(t) +A(t) and (2.1), it follows that

Ṅ(t) = Λ− µN(t)− dA(t).

Thus, the total population size N may vary in time. Let Ω denote the biologically
feasible region

Ω =
{

(S, I, C,A) ∈ R4
+ : N ≤ Λ/µ

}
.

Using a standard comparison theorem (see [14]), one can easily show that N(t) ≤ Λ
µ

if N(0) ≤ Λ
µ . Thus, the region Ω is positively invariant. Hence, it is suffi cient to

consider the dynamics of the flow generated by (2.1) in Ω. In this region, the model
is epidemiologically and mathematically well posed in the sense of [10]. In other
words, every solution of the model (2.1) with initial conditions in Ω remains in Ω
for all t > 0. Therefore, the dynamics of our model will be considered in Ω.

3. Existence and global stability of the DFE

Model (2.1) has a disease-free equilibrium (DFE) given by

Σ0 =
(
S0, I0, C0, A0

)
=

(
Λ

µ
, 0, 0, 0

)
. (3.1)

Following [26], the basic reproduction number R0 for (2.1), which represents the
expected average number of new HIV infections produced by a single HIV-infected
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individual when in contact with a completely susceptible population, is given by

R0 =
S0β (ξ2 (ξ1 + ρ ηA) + ηC φ ξ1)

µ (ξ2 (ρ+ ξ1) + φ ξ1 + ρ d) + ρω d
=
S0N
D ,

where ξ1 = α+ µ+ d, ξ2 = ω + µ, N = β (ξ2 (ξ1 + ρ ηA) + ηC φ ξ1), and

D = µ (ξ2 (ρ+ ξ1) + φ ξ1 + ρ d) + ρω d.

The following local stability result follows easily from Theorem 2 of [26].

Lemma 1. The disease free equilibrium Σ0 is locally asymptotically stable if R0 < 1
and unstable if R0 > 1.

Now we prove the global stability of the disease free equilibrium (3.1).

Theorem 1. The disease free equilibrium Σ0 is globally asymptotically stable for
R0 < 1.

Proof. Let ξ3 = ρ+ φ+ µ. Consider the following Lyapunov function:

V = (ξ1ξ2 + ξ1φηC + ξ2ρηA) I + (ξ1ω + ξ1ξ3ηC + ρηAω − ηCρα)C

+ (αξ2 + ξ2ξ3ηA + φηCα− φηAω)A.

Note that ξ1ω+ξ1ξ3ηC+ρηAω−ηCρα = ξ1ω+α(φ+µ)ηC+(µ+d)ξ3ηC+ρηAω > 0
and αξ2 + ξ2ξ3ηA + φηCα− φηAω = αξ2 + ω(ρ+ µ)ηA + µξ3ηA + φηCα > 0. The
time derivative of V computed along the solutions of (2.1) is given by

V̇ = (ξ1ξ2 + ξ1φηC + ξ2ρηA) İ + (ξ1ω + ξ1ξ3ηC + ρηAω − ηCρα) Ċ

+ (αξ2 + ξ2ξ3ηA + φηCα− φηAω) Ȧ

= (ξ1ξ2 + ξ1φηC + ξ2ρηA) (β (I + ηC C + ηAA)S − ξ3I + αA+ ωC)

+ (ξ1ω + ξ1ξ3ηC + ρηAω − ηCρα) (φI − ξ2C)

+ (αξ2 + ξ2ξ3ηA + φηCα− φηAω) (ρ I − ξ1A) ,

which can be further simplified to

V̇ = (ξ1ξ2β + ξ1φηCβ + ξ2ρηAβ)IS + (−ξ1ξ2ξ3 + ξ1ωφ+ αξ2ρ)I

+ ηC(ξ1ξ2β + ξ1φηCβ + ξ2ρηAβ)CS + ηC(−ξ1ξ3ξ2 + ξ1φω + ραξ2)C

+ ηA(ξ1ξ2β + ξ1φηCβ + ξ2ρηAβ)AS + ηA(−ξ2ξ3ξ1 + φωξ1 + ξ2ρα)A.

As S ≤ S0, the following inequality holds:

V̇ ≤ (ξ1ξ2β + ξ1φηCβ + ξ2ρηAβ)IS0 + (−ξ1ξ2ξ3 + ξ1ωφ+ αξ2ρ)I

+ ηC(ξ1ξ2β + ξ1φηCβ + ξ2ρηAβ)CS0 + ηC (−ξ1ξ3ξ2 + ξ1φω + ραξ2)C

+ ηA(ξ1ξ2β + ξ1φηCβ + ξ2ρηAβ)AS0 + ηA (−ξ2ξ3ξ1 + φωξ1 + ξ2ρα)A.
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From S0 (ξ1ξ2β + ξ1φηCβ + ξ2ρηAβ) = N and −ξ1ξ2ξ3 + ξ1ωφ+ αξ2ρ = −D,
V̇ ≤ N I −DI + ηC(NC −DC) + ηA(NA−DA)

= DI (R0 − 1) + ηCDC (R0 − 1) + ηADA (R0 − 1)

≤ 0 for R0 < 1.

Because all model parameters are nonnegative, it follows that V̇ ≤ 0, for R0 < 1
with V̇ = 0, if and only if I = C = A = 0. Substituting (I, C,A) = (0, 0, 0) into
(2.1) shows that S → S0 = Λ

µ as t → ∞. Hence, V is a Lyapunov function on Ω

and the largest compact invariant set in {(S, I, C,A) ∈ Ω : V̇ = 0} is the singleton
{Σ0}. Thus, by LaSalle’s invariance principle [15], every solution of (2.1), with
initial conditions in Ω, approaches Σ0 as t→∞, whenever R0 < 1. �

4. Existence and global stability of the endemic equilibrium

It is easy to show that model (2.1) has a unique endemic equilibrium

Σ+ = (S∗, I∗, C∗, A∗)

whenever R0 > 1. This is precisely stated in Lemma 2.

Lemma 2. The model (2.1) has a unique endemic equilibrium Σ+ = (S∗, I∗, C∗, A∗)
whenever R0 > 1, which is given by

S∗ =
D
N , I∗ =

ξ1ξ2(ΛN − µD)

DN , C∗ =
φξ1(ΛN − µD)

DN , A∗ =
ρξ2(ΛN − µD)

DN .

We now prove the global stability of the endemic equilibrium Σ+.

Theorem 2. The endemic equilibrium Σ+ of model (2.1) is globally asymptotically
stable for R0 > 1.

Proof. We start by defining the region Ω0 = {(S, I, C,A) ∈ Ω | I = C = A = 0}.
Consider the following Lyapunov function:

V = (S − S∗ ln(S)) + (I − I∗ ln(I)) +
ω

ξ2

(C − C∗ ln(C)) +
α

ξ1

(A−A∗ ln(A)) .

Differentiating V with respect to time gives

V̇ =

(
1− S∗

S

)
Ṡ +

(
1− I∗

I

)
İ +

ω

ξ2

(
1− C∗

C

)
Ċ +

α

ξ1

(
1− A∗

A

)
Ȧ.

Substituting the expressions for the derivatives in V̇ , it follows from (2.1) that

V̇ =

(
1− S∗

S

)
[Λ− β (I + ηC C + ηAA)S − µS]

+

(
1− I∗

I

)
[β (I + ηC C + ηAA)S − ξ3I + αA+ ωC]

+
ω

ξ2

(
1− C∗

C

)
[φI − ξ2C] +

α

ξ1

(
1− A∗

A

)
[ρI − ξ1A] .

(4.1)
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Using the relation Λ = β (I∗ + ηC C
∗ + ηAA

∗)S∗ + µS∗, we have from the first
equation of system (2.1) at steady-state that (4.1) can be written as

V̇ =

(
1− S∗

S

)
[β (I∗ + ηC C

∗ + ηAA
∗)S∗ + µS∗ − β (I + ηC C + ηAA)S − µS]

+

(
1− I∗

I

)
[β (I + ηC C + ηAA)S − ξ3I + αA+ ωC]

+
ω

ξ2

(
1− C∗

C

)
[φI − ξ2C] +

α

ξ1

(
1− A∗

A

)
[ρI − ξ1A] ,

which can then be simplified to

V̇ =

(
1− S∗

S

)
βI∗S∗ + µS∗

(
2− S

S∗
− S∗

S

)
− βIS + βIS∗

+ β(ηCC
∗ + ηAA

∗)S∗ − β(ηCC + ηAA)S − S∗

S
β(ηCC

∗ + ηAA
∗)S∗

+ S∗β(ηCC + ηAA) +

(
1− I∗

I

)
[β (I + ηC C + ηAA)S − ξ3I + αA+ ωC]

+
ω

ξ2

(
1− C∗

C

)
[φI − ξ2C] +

α

ξ1

(
1− A∗

A

)
[ρI − ξ1A] .

Using the relations at the steady state

ξ3I
∗ = β(I∗ + ηCC

∗ + ηAA
∗)S∗ + αA∗ + ωC∗, ξ2C

∗ = φI∗, ξ1A
∗ = ρI∗,

and after some simplifications, we have

V̇ = (βI∗S∗ + µS∗)

(
2− S

S∗
− S∗

S

)
+ βS∗ (ηCC

∗ + ηAA
∗)

(
2− S∗

S
− I

I∗

)
+ βS∗ (ηCC + ηAA)

(
1− I∗

I

S

S∗

)
+ αA∗

(
1− A

A∗
I∗

I

)
+ ωC∗

(
1− C

C∗
I∗

I

)
+
ωφ

ξ2

I∗
(

1− I

I∗
C∗

C

)
+
αρ

ξ1

I∗
(

1− I

I∗
A∗

A

)
.

Because the geometric mean is less or equal than the arithmetic mean, it follows
that the terms between the larger brackets are less or equal than zero and V̇ = 0
holds if and only if (S, I, C,A) take the equilibrium values (S∗, I∗, C∗, A∗). Thus,
by LaSalle’s invariance principle, the endemic equilibrium Σ+ is globally asymp-
totically stable. �

5. Numerical simulations

In this section, we provide some numerical simulations that illustrate the analytic
results proved in Sections 3 and 4. Consider the parameter values µ = 1/70, Λ = 2,
β = 0.001, ηC = 0.04, ηA = 1.3, ω = 0.09, ρ = 0.1, φ = 1, α = 0.33 and d = 1.
The corresponding basic reproduction number is equal to R0 = 0.9141. The disease
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free equilibrium is given by
(
S0, I0, C0, A0

)
= (140, 0, 0, 0). Figure 1 illustrates the

stability of the disease free equilibrium proved in Theorem 1.

(A) (I, S) (B) (A,C)

Figure 1. Global stability of the disease free equilibrium (3.1)
for µ = 1/70, Λ = 2, β = 0.001, ηC = 0.04, ηA = 1.3, ω = 0.09,
ρ = 0.1, φ = 1, α = 0.33 and d = 1.

In Figure 2, we can observe the stability of the endemic equilibrium proved in
Theorem 2 for the paremeter values µ = 1/70, Λ = 2, β = 0.002, ηC = 0.04,
ηA = 1.3, ω = 0.09, ρ = 0.1, φ = 1, α = 0.33 and d = 1, which corresponds to
a basic reproduction number equal to R0 = 1.8281 and where the unique endemic
equilibrium is given by Σ+ = (S∗, I∗, C∗, A∗) = (76.5820, 3.9959, 38.3171, 0.2973).

(A) S(t), t ∈ [0, 1000] (B) I(t), C(t), A(t), t ∈ [0, 1000]

Figure 2.Global stability of the endemic equilibrium of Lemma 2
for µ = 1/70, Λ = 2, β = 0.002, ηC = 0.04, ηA = 1.3, ω = 0.09,
ρ = 0.1, φ = 1, α = 0.33 and d = 1.

6. Conclusion

We proposed a mathematical model for HIV/AIDS transmission with variable
total population size and different transmission rates depending on the viral load
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of HIV infected individuals. We proved existence of a disease free equilibrium and
computed the basic reproduction number R0 using the method in [26]. Existence
of an endemic equilibrium is proved for R0 > 1. We also proved the global stability
of the disease free equilibrium when R0 < 1 and the global stability of the endemic
equilibrium for R0 > 1. The proofs of global stability are carried out through Lya-
punov’s direct method combined with LaSalle’s invariance principle. The numerical
simulations provided in Section 5 illustrate the obtained stability results.

Acknowledgments

This research was partially supported by FCT (The Portuguese Foundation
for Science and Technology) within projects UID/MAT/04106/2013, CIDMA, and
PTDC/EEI-AUT/2933/2014, TOCCATA, funded by FEDER funds through COM-
PETE 2020 —Programa Operacional Competitividade e Internacionalização (POCI)
and by national funds through FCT. Silva is also grateful to the FCT post-doc fel-
lowship SFRH/BPD/72061/2010.

References

[1] U. L. Abbas, R. M. Anderson and J. W. Mellors, Potential Impact of Antiretroviral Chemo-
prophylaxis on HIV-1 Transmission in Resource-Limited Settings, PLoS ONE 2 (2007), e875.

[2] R. M. Anderson, The role of mathematical models in the study of HIV transmission and the
epidemiology of AIDS J. AIDS 1 (1988), 241—256.

[3] R. M. Anderson, G. F. Medley, R. M. May and A. M. Johnson, A Preliminary Study of the
Transmission Dynamics of the Human Immunodeficiency Virus (HIV), the Causative Agent
of AIDS, IMA J. Math. Appl. Med. and Biol. 3 (1986), 229—263.

[4] S. M. Blower, D. Hartel, H. Dowlatabadi, R. M. Anderson and R. M. May, Drugs, Sex and
HIV: A Mathematical Model for New York City, Phil. Trans. R. Soc. Lond. B 321 (1991),
171—187.

[5] L. Cai, X. Li, M. Ghosh and B. Guo, Stability analysis of an HIV/AIDS epidemic model
with treatment, Journal of Computational and Applied Mathematics 229 (2009), 313—323.

[6] P. W. David, G. L. Matthew, E. G. Andrew, A. C. David and M. K. John, Relation between
HIV viral load and infectiousness: A model-based analysis, The Lancet 372 (2008), no. 9635,
314—320.

[7] S. G. Deeks, S. R. Lewin and D. V. Havlir, The end of AIDS: HIV infection as a chronic
disease, The Lancet, 382 (2013), no. 9903, 1525—1533.

[8] R. Denysiuk, C. J. Silva and D. F. M. Torres, Multiobjective approach to optimal control for
a tuberculosis model, Optim. Methods Softw. 30 (2015), no. 5, 893—910.

[9] H. Hai-Feng, C. Rui and W. Xun-Yang, Modelling and stability of HIV/AIDS epidemic model
with treatment, Applied Mathematical Modelling 40 (2016), 6550—6559.

[10] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev. 42 (2000), 599—653.
[11] H. W. Hethcote and J. W. Van Ark, Modeling HIV Transmission and AIDS in the United

States, Lecture notes in Biomathematics, Springer-Verlag, New York, 1992.
[12] H. Huo and L. Feng, Global stability for an HIV/AIDS epidemic model with diff erent latent

stages and treatment, Applied Mathematical Modelling 37 (2013), 1480—1489.
[13] J. M. Hyman and E. A. Stanley, Using mathematical models to understand the AIDS epi-

demic, Mathematical Biosciences 90 (1988), 415—473.
[14] V. Lakshmikantham, S. Leela and A. A. Martynyuk, Stability Analysis of Nonlinear Systems,

Marcel Dekker, Inc., New York and Basel, 1989.



GLOBAL STABILITY FOR A HIV/AIDS MODEL 101

[15] J. P. LaSalle, The Stability of Dynamical Systems, in: Regional Conferences Series in Applied
Mathematics, SIAM, Philadelphia, 1976.

[16] J. Li, Y. Yanga and Y. Zhoub, Global stability of an epidemic model with latent stage and
vaccination Nonlinear Analysis: Real World Applications 12 (2011), 2163—2173.

[17] Z. Mukandavire and W. Garirar, Effect of Public Health Educational Campaigns and the Role
of Sex Workers on the Spread of HIV/AIDS among Heterosexuals, Theoretical Population
Biology 72 (2007), 346—365.

[18] R. Naresh, A. Tripathi and S. Omar, Modelling the spread of AIDS epidemic with vertical
transmission, Applied Mathematics and Computation 178 (2006), 262—272

[19] F. Nyabadza, Z. Mukandavire and S. D. Hove-Musekwa, Modelling the HIV/AIDS epidemic
trends in South Africa: Insights from a simple mathematical model, Nonlinear Anal. Real
World Appl. 12 (2011), 2091—2104.

[20] A. Rachah and D. F. M. Torres, Mathematical modelling, simulation, and optimal control
of the 2014 Ebola outbreak in West Africa, Discrete Dyn. Nat. Soc. 2015 (2015), Art. ID
842792, 9 pp.

[21] H. S. Rodrigues, M. T. T. Monteiro and D. F. M. Torres, Vaccination models and optimal
control strategies to dengue, Math. Biosci. 247 (2014), 1—12.

[22] A. Sani, D. P. Kroese and P. K. Pollet, Stochastic Models for the Spread of HIV in a Mobile
Heterosexual Population, Math Biosc 208 (2007), 98—124.

[23] D. Sharma, Modelling and analysis of the spread of AIDS epidemic with immigration of HIV
infectives, Mathematical and Computer Modelling 49 (2009), 880—892.

[24] C. J. Silva and D. F. M. Torres, A TB-HIV/AIDS coinfection model and optimal control
treatment, Discrete Contin. Dyn. Syst. 35 (2015), no. 9, 4639—4663.

[25] A. Tripathi, R. Naresh and D. Sharma, Modelling the eff ect of screening of unaware infectives
on the spread of HIV infection, Applied Mathematics and Computation 184 (2007), 1053—
1068.

[26] P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic
equilibria for compartmental models of disease transmission, Math. Biosc. 180 (2002), 29—48.

Current address : Cristiana J. Silva: Center for Research and Development in Mathematics
and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro,
Portugal.

E-mail address : cjoaosilva@ua.pt
Current address : Delfim F. M. Torres: Center for Research and Development in Mathematics

and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro,
Portugal.

E-mail address : delfim@ua.pt


