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DIFFUSIVE REPRESENTATION OF A FRACTIONAL CONTROL
USING ADAPTIVE PARTITIONING ALGORITHM

DJALIL BOUDJEHEM, BADREDDINE BOUDJEHEM, AND BELGACEM MECHERI

Abstract. This article presents optimal fractional control. This control is
based on the property of the invariance of a fractional order differential equa-
tion. The problem formulation of the used control is expressed by diffusive
representation. The fractional control problem is described in a minimiza-
tion form, where the global optimum represents the diffusive realization of the
controller. To determine the optimal fractional diffusive control, an adaptive
partitioning algorithm is used. As an application, we have chosen the control
of a DC motor with uncertain parameters.

1. Introduction

The fractional operators become an interesting tool in the systems mathematical
modeling and design, their use appeared strongly in different disciplines. Moreover,
their convenient interest has been proved in the last decade. These operators are
widely used in automatic control systems to construct robust fractional controllers
like fractional PIα or PDβ , ...etc. [1, 2, 3, 4, 5, 6].
In controlling uncertain dynamic systems, the use of robust control laws that

are able to ensure the best compromise between performances and Robustness is
highly required. In order to satisfy this requirement researchers used the fractional
control as an alternative choice, where the concept of the robustness is based on
the property of the invariance of the fractional differential equation.
The fundamental property of this control is to preserve as much as possible, and

on all the domain of uncertainty, the dynamic features imposed by the control of the
nominal system, up to time scaling (or to frequency scaling). However, the use of
fractional operators leads to some diffi culties and problems, which come mainly from
the fact that these operators are hereditary with singular kernels, and hence the
numerical approximation becomes very diffi cult and requires large memory storage
capacities. To remedy these problems, the fractional control will be achieved by
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using the diffusive representation [9]. This representation allows the realization of
the fractional operators in non-hereditary way using linear dynamical systems of
diffusive nature.[9]
We apply this concept to the control of a DC motor of which the transfer function

is uncertain. The uncertainty is carried at the mechanical load and the current loop
constant time. The non strict invariance consists in the minimization of an adequate
cost functional. The optimal controller is achieved by using new algorithm so called
’Adaptive Partitioning Algorithms.
This article is organized as follows. Section 2 gives an overview on fractional

order control systems and its realization by a irrational function . Section 3 de-
scribes the principle of the control design. where the mathematical formulation of
the optimal control are presented by diffusive model. In section 4, we discuss an
experimental design that is used to construct the new sub-regions and to generate
the new populations. This design produces a set of individuals; each one occupies
a subregion of the feasible region. Finally, an application are given in section 5

2. Fractional Calculus

In this part, We present some concepts of the fractional calculus, its scope and
the diffi culties associated with it. We also present the fractional operator realization
using the diffusive representation.

2.1. Fractional Operator. The fractional derivation and integration of order α ∈
[0+∞] of a causal function f , formulated by Riemann-Liouville, is given by [1, 5, 6].

Iα(t) =

∫ ∞
0

(t− τ)(α−1)

Γ(α)
f(t)dτ (2.1)

Dα
t f(t) =

d

dt

∫ ∞
0

(t− τ)−α

Γ(1− α)
f(t)dτ (2.2)

where Γ is the gamma function defined by the expression: Γ(α) =
∫∞
0
t(α−1)e−tdt

2.2. Fractional systems. A linear fractional system with constant coeffi cient can
be represented by a fractional order differential equation given by

K∑
k=0

ak
d

dt

αk

y(t) =

M∑
k=0

bk
d

dt

βk

f(t) (2.3)

where K and M are integers, ak, bm are real numbers and αk, βk are arbitrary
constants.
Using Laplace transform of 2.3, we obtain the following transfer function

H(s) =

∑M
k=0 bks

βk∑K
k=0 aks

αk
(2.4)
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If there are k, l and m as αka = m.a1 and βm = kβ1, then the fractional system
(2.4) is called to commensurable order system, if this is not the case it is not a
commensurable order.

2.3. Problems related to the fractional calculus. The diffi culties encountered
in the study of systems containing fractional operators, come mainly from the fact
that these operators are hereditary with singular kernels, making the numerical
approximation very diffi cult and requires large memory storage.

2.4. Diffusive Representation. The theory of diffusive representation allows the
realization of fractional operators in non-hereditary way using linear dynamical
systems of diffusive nature. It is very suited to the analysis and study of systems
containing these operators.
LetH(s) be a transfer function (non-rational) associated with the causal convolu-

tion operatorH(d/dt), the diffusive canonic realization of this operator is expressed,
if any, by the realization of the state f → y = h(d/dt)f = h ∗ f [10, 11].{

∂tϕ(t, ξ) = ξ(t, ξ) + f(t)
y =

∫∞
0
µ(ξ)ϕ(t, ξ)dξ

(2.5)

where µ(ξ) is called diffusive representation of H(d/dt).
The diffusive representation µ(ξ) of an invariant symbol pseudo-differential time

operator H(s) is defined, if any, as the integral equation solution [7, 8].

H(s) =

∫ ∞
0

µ(ξ)

s+ ξ
dξ (2.6)

Equation 2.6 is the transfer function associated with the diffusive representation,
with µ = L−1{h}, and h is the impulse response.

h(t) =

∫ +∞

0

µ(ξ)e−ξtdξ (2.7)

The diffusive representation is therefore the use of the Laplace transform in the
opposite direction , wherein t plays the role of the Laplace variable.

3. Fractional Control

3.1. Principle. Let’s consider the fractional differential equation of order β with
uncertain parameter λ:

λ
dβ

dtβ
y (t) + y (t) = e (t) 1 ≤ β < 2 (3.1)

The corresponding transfer function is given by:

Hλ (s) =
1

λsβ + 1
(3.2)

The system (3.2) is the closed loop transfer function of the open loop transfer
function Hol given by
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Hol(s) =
1

λsβ
. (3.3)

The transfer function 3.3 is the Bode’s ideal transfer function where the gain
crossover frequency ωc is 1

λ
1
β
.

The transfer function given by (3.2) is closed to a damping second order transfer
function, and the damping ration is related directly to β and insensitive to gain
variations [12] which give a time responses with iso-damping.
In mathematical point of view, the gain variations may be presented are equiva-

lent to a change of time scale. Using the change of frequency s̃ = λ
1
β s, the transfer

function (3.2) will be written in the following form:

Hλ(s) =
1

s̃β + 1
. (3.4)

All changes of the value of λ are equivalent to a change of frequency scale. In other
way, the closed loop transfer function presents the property of the invariance under
transformation noted Tσ and defined by σλ = λ

1
β [13].

The set of changes of frequency defined by a function σλ > 0 are a group of
transformations under change of frequency [13]. We can write then:

(TσHλ) (s) = Hλ (σλs) ∼= Hλ0 (s) (3.5)

where λ0 is the nominal parameter

3.2. Optimal fractional controller design. In control system, The system 3.3
may be used as a reference model to design a controller . In the case it is impossible
to determine analytically a controller that permits to give a system closed to (3.3),
the problem are solved through an optimization problem. So, the mathematical
formulation of this problem are given by

min
C∈κ
= (F (C) , F (C0)) (3.6)

where F (C) is the closed loop transfer function of the uncertain system controlled by
a fractional compensator C, and F (C0) is the desired closed loop transfer function
for the nominal system controlled by the classical controller C0.
In the problem described by (3.6), the functional cost under group of transfor-

mation can be expressed in a Hilbert space as follows [14]:

min
T∈ς,C∈κ

{
‖TσF (C)− Fλ0(C0)‖

2
λ,s

}
(3.7)

where ς is the group of continuous functions defined on Λ, κ is the space of con-
trollers and ‖ . ‖2λ,s is the H2 Hilbertien norm. This formulation permits to get a
compensated transfer function with proximity to the reference response defined by
a standard controllers C0 , where TσF (C) is closed as possible to Fλ0(C0), ∀λ ∈ Λ.
The transfer function of the optimal controller C (solution of the problem 3.7)

are a rational function. So, the controller C is a fractional controller that can be
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achieved via diffusive representation given by (2.6). Therefore, The problem of
minimization (3.6) can be formulated under diffusive formulation by (3.8) [14].

min
T∈ς

min
µ,Kc∈κ

{
‖TσF (Cµ)− Fλ0(C0)‖

2
λ,ω

}
(3.8)

where the compensator Cµ(s) is defined by:

Cµ(s) = Kc

∫ +∞

−∞

µ (ξ)

s+ ξ
dξ (3.9)

4. The optimization algorithm

In the optimization part we used an adaptive partitioning algorithm. The prin-
ciple of this algorithm is based on successive division of the search space until a
narrow area is achieved about the global optimum. The initial search space denoted
by α0 is partitioned into Cm2 sub-regions denoted by αi (i = 1..k), where t indicates
the iteration number and m is the number of the best points selected after sampling
the initial search space. m is defined at the beginning of the optimization operation.
The partitioning and sampling operations are established using new experimental
technique that will be described in what follows.

4.1. The proposed experimental design. The proposed technique that we call
"circular design" is an experimental technique that permits to generate a set of
points (individuals) around a central point expected to be the global optimum
located between two points (that we called "parents") Xt

P1 and X
t
P2 [15, 16]. These

individuals are selected form a population that occupies a limited region in the
search space. The new population has a property that the point’s distribution
density decreases when we go far from its center (the expected global optimum).
This is due to the fact that the points’ distribution should have higher density
about the central point.
To illustrate the proposed idea, let’s suppose an n dimensional problem, thus

at an iteration time t, a population of q individuals can be generated from two
individuals Xt

P1 and X
t
P2. This population is located inside a hypersphere centered

at

Xt
c = [xtc1, x

t
c2, ...x

t
cn] (4.1)

where:

Xt
c =

1

2
(Xt

p1 +Xt
p2) (4.2)



DIFFUSIVE REPRESENTATION OF A FRACTIONAL CONTROL 173

The coordinates of each individual Xt
k = [xtk1, x

t
k2, ..., x

t
kn] for (k=1,. . . , q), are

calculated using the system equation 4.3.

xtk1 = xtc1 +
R

2π

n∏
l=2

cos θl

xtkn = xtcn +
R

2π
θl sin θ2and

xtkr = xtcr +
R

2π

(
n−r+1∏
l=2

cos θl

)
sin θn−r+2

(4.3)

for : r = 2, ..., (n− 1) and k = 1, ..., q. and

θl =
2π

q
ud(j, l)l = 1, .., n (4.4)

Eq. 4.3 represents the circular transformation of ud = [udij ]q×n, a matrix of points
uniformly scattered and is obtained by applying the linear uniform design technique
discussed in [15, 16] over the considered research space. R is the radius of the
hypersphere and is given by (4.5).

R =
√

(Xt
P1 −Xt

P2)
T (Xt

P1 −Xt
P2) (4.5)

Equation 4.5 shows that the error offset equals to 1/2 of the population radius i.e.
the real selected sub-region α′i(t) to be repartitioned at iteration t + 1 is greater
than αi(t). Hence, we reduce the probability to miss the global optimum, supposing
that αi(t) is the most promising subregion and contains the global optimum.
The proposed experimental technique mechanism is summarized as follows:
At each iteration number t, we generate Cm2 populations; each population oc-

cupies a sub-region of the search space; and each population is defined by its own
vector Xt

k,i=1..ni, where ni = 1..Cm2 . We should notice that the space includes Xt
i

represents exactly αi.
The following definition describes the partitioning scheme of the APA.

Definition. The collection of the sub-sets generated by the circular design at the
iteration time t is defined as follows

S = {αi, i = 1...k} (4.6)

where k = Cm2 , and

{α1(t+ 1) ∪ α2(t+ 1) ∪ α3(t+ 1)...αk(t+ 1) ∩ αi(t)} 6= φ (4.7)

The last equation shows that the union of the new produced sub-regions is greater
than their parent region, which means that the set S does not represent an exact
partition of αi(t). The left side of the last relation describes the set that has a weak
probability of the global optimum existence. The real new sub-regions are given by
a modified sub regions denoted by α′i(t+ 1); these sub-regions are a modified form
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of the selected sub-region αi(t+ 1). Where

α′i(t+ 1) = βi(t+ 1).αi(t+ 1) (4.8)

where βi(t + 1) represents an error margin coeffi cient which depends strictly on
the parameters of a given sub region. This coeffi cient allows the algorithm to
reallocate the new sub-regions when the expected localization of the global optimum
at iteration t do not confirm those given by the stochastic tests at the iteration t+1.

4.2. The potential of a sub region and the decision factor. The way deciding
which αi(t) containing the global optimum is based on the sub-regions’potential.
The potential of a space can be evaluated using interval, and statistical estimation
techniques [15] or fuzzy approaches [16]. For the fuzzy approaches, the degree of
a membership of any point is measured by the membership function µi,k of the
function to minimize f(xij), xij ∈ Di(t), and Di(t) represents a sample set of
the sub-region α′i(t). For the evaluation of µi,k, several formulations are possible,
we can mention the S-membership function, the Gaussian membership function or
the linear membership function. In this paper, we have chosen to compute µi,k,
using the modified linear membership function, described in [15]. This member
ship function maps sample points functional values f(xij) in α′i(t) to a unit interval
[0, 1].

µt,ij = (f(xij)− f(x∗))/R(t) (4.9)

where f(x∗) is the best (minimum) functional value obtained, and R(t) is the range
of all functional values gathered up to and including the iteration t. the member
ship function measures the location of f(xij) on the rang scale. Now, we can define
the potential of a sub region using (4.10).

rij =
1

q

q∑
j=1

µt,ij . exp(1− µt,ij) (4.10)

q is the size of the sample set Di(t).
It is very important to mention here that the circular design forces the sub

region, whose central point is located at the nearest position to the global optimum
to have the smallest potential value by ensuring a good point distribution around
this expected optimum. Thus, we ensure that the probability of missing the global
optimum when t the iteration time increases goes to zero.

5. Application to a dc motor control

The open loop uncertain transfer function of the motor can be written as

Hλ (s) =
1

Js (1 + Tbcs)
(5.1)

The uncertainty is carried at the moment of inertia J "motor + load", the time
constant Tbc of the current loop or on the two at the same time.



DIFFUSIVE REPRESENTATION OF A FRACTIONAL CONTROL 175

Let’s consider the nominal parameter λ0 which contains the nominal values of J
and Tbc noted by J0 and Tbc0 respectively. Where J is the moment of inertia. We
can distinguish three possible cases:

(1) λ0 = [J ], the moment of inertia J is uncertain and the constant of time Tbc
is fixed where: Λ = [J0]× [Tbc0].

(2) λ0 = [J0, Tbc], Tbc is uncertain, J is fixed where: Λ = [J0]× [Tbcmin , Tbcmax ]
(3) λ0 = [J, Tbc] , J and Tbc are uncertain where: Λ = [Jmin, Jmax]×[Tbcmin , Tbcmax ]

We consider that the moment of inertia, the load and the time constant in the
current loop are uncertain.
In this case it is impossible to find a compensator that confers a transfer function

to the uncertain system of the form given by 3.9. Therefore, it is necessary to choose
the best group of transformation that is well adapted to the chosen application that
permits to have some invariant responses.

Figure 1. Mean functional values of the minimization problem of
equation (3.9)

We used the proposed optimization algorithm to find out the optimal fractional
corrector. The variations of the mean functional values are shown in figure 1. Table
1 shows the center and the radius of the selected subregions during the optimization
operation. Figures 2 and 3 present the step responses of the velocity for different
values of Tbc, where, J=0.1 in the case of a classical PI controller and a fractional
one. It is very clear, that the fractional controller use permits to obtain pseudo
invariant responses around nominal system response.

6. Conclusion

In this paper, optimal fractional control realization via diffusive representation
is proposed. The use of the diffusive representation of pseudo differential operators
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Table 1. The center and the radius of the selected subregions

The Center xm R(t) t
-1.3115 -7.3770
-0.8476 -6.3604
-0.7711 -5.9313
-0.6957 -5.5377
-0.6846 -5.4650
-0.7045 -5.0592
-0.6979 -5.0091
-0.6958 -4.9579
-0.6956 -4.9571

2.8013
1.8702
1.1871
0.5019
0.4043
0.1495
0.0632
0.0013
0.0006

1
2
3
4
5
8
9
13
14

Figure 2. Step response with classical PI controller

allow to solve a number of problems involving fractional operators or more generally
long memory non oscillating ones by transforming them into input-output well
posed differential equations. The optimal solution obtained using the Adaptive
partitioning algorithm was able to produce a stable controlled system with iso-
damping step responses over the uncertainty domain of system parameters.
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Figure 3. Step response with fractional controller
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