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THE MINKOWSKIAN PLANAR 4R MECHANISM

GÁBOR HEGEDÜS AND BRIAN MOORE

(Communicated by Yusuf YAYLI)

Abstract. We characterize and classify completely the planar 4R closed chain

working on the Minkowskian plane. Our work would open a new research direc-
tion in the theory of geometric designs: the classification and characterization
of the geometric design of linkages working in non–Euclidean spaces.

1. Introduction

First we recall here some preliminary definitions and results from the geometry
of linkages.

A linkage is a collection of interconnected components, individually called links.
The joint is the physical connection between two links.

In our article we consider only the revolute joint, which can be viewed as con-
structed from the rotary hinge. We denote the revolute joint by R.

The revolute joint allows one-degree-of-freedom movement between the two links
that it connects. The configuration variable for a hinge is the angle measured
around its axis between the two bodies.

Of course we can form linkages from other joints, for example the universal joint,
the ball-in-socket and the prismatic joint.

The generic mobility of the system is the number of independent parameters
such as the joint angles that are needed to specify the configuration of the linkage.

On the other hand it can be shown that this is the dimension of the configuration
space of the system.

A planar linkage has the property that all of its links move in parallel planes.
We are interested here in the four–bar linkage, which is a closed chain formed by
four links and four joints. Figure 1 is an example of a planar 4R closed chain.

The usual model of geometric designs are working in the Euclidean space. In this
article we would like to characterize and classify completely the planar 4R closed
chain working on the Minkowskian plane. This work would open a new research

Date: Received: February 07, 2011 and Accepted: January 15, 2012.

2010 Mathematics Subject Classification. 51P05, 53A17, 70B15.
Key words and phrases. Mechanism, Minkowskian space, double numbers.

1
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Figure 1. The planar 4R linkage

direction in the theory of geometric designs: the classification and characterization
of the geometric design of linkages working in non–Euclidean spaces.

A. Einstein published in 1905 his famous paper [5] which later became known
as his introduction to the special relativity theory. In 1907 Minkowski gave a
geometrical interpretation of the special relativity space–time using 4–dimensional
Minkowskian spaces and Lorentz transformations.

Later P. Fjelstad used the perplex number system to exploit this connection with
special relativity (see [6]).

This mathematical tool based on the hyperbolic numbers, introduced by S. Lie
in the late XIX century (see [9]).

One of our main motivation to consider the Minkowskian planar 4R mechanism
was to connect the geometric theory of special relativity to the geometric design of
linkages. We do not see obvious interpretation of our work in theoretical physics,
but we hope we can motivate later such research.

In Chapter 2 we collected the preliminary definitions and results about the
Minkowskian plane and hyperbolic trigonometry. In Chapter 3 we describe our
main results: the position analysis and the classification of the Minkowskian 4R
planar linkage. We give also an exact formula for the coupler curve of this system
and compute the transmission and coupler angles.

2. Preliminaries

2.1. The Minkowskian plane and the double numbers. First we give an
algebraic description of the Minkowskian plane.

In analogy with the complex number system, the system of double numbers 1 can
be introduced:

H := {x+ jy : x, y ∈ R, j2 = 1}
Here j is the double imaginary unit and x and y are respectively called the real

and the unipotent parts of the double number z = x+ yj.
It follows that multiplication in H is defined by (x + yj)(r + sj) = (xr + ys) +

j(xs+ yr).

1these numbers are called to split–complex numbers, too
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It is known that the complex numbers are related to the Euclidean geometry.
Similarly the double system of numbers serve as coordinates in the Minkowskian
plane (space-time geometry, see [6]).

The hyperbolic conjugate z of z = x+ yj is defined by z = x− yj.
The hyperbolic scalar product is given by

⟨z, w⟩ := Re(zw) = xu− yv,

where z = x + yj and w = u + jv. We say that the double numbers z and w are
double–orthogonal, if ⟨z, w⟩ = 0.

We define the hyperbolic modulus of z = x+ yj by

(2.1) ∥ z∥h :=
√
|⟨z, z⟩| =

√
|zz| =

√
|x2 − y2| ≥ 0.

We can consider this modulus as the hyperbolic distance of the point z from the
origin.

It can be shown that this modulus is the Lorentz invariant of two dimensional
special relativity, see [16].

Note that the points z ̸= 0 on the lines y = x and y = −x are isotropic. This
means that they are nonzero vectors with ∥ z ∥h= 0.

For r ∈ R+ the Minkowskian circle of radius r centered at the origin in H is
defined by

{(x, y) ∈ R : x2 − y2 = r2}

Clearly this set is the set of all points in the Minkowskian plane that satisfy the
equation ∥ z ∥2h= r2 (see Figure 2).

X

Y

•AA���������������� //

OO

x2 − y2 = r2

C(rch(t), rsh(t))

Figure 2. The Minkowskian circle of radius r centered at the origin
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We can remind here for the following analog of Euler’s formula for the double
numbers z = x+ yj:

z = rejϕ = r(ch (ϕ) + jsh (ϕ))

where x2 − y2 > 0 and y > 0.

2.2. Hyperbolic trigonometry. Let L := L2 denote the vector space R2 provided
with the hyperbolic scalar product.

We denote by SO+(1, 1) the proper Lorentzian group consisting of all matrices
of the form

A(ϕ) =

(
ch (ϕ) sh (ϕ)
sh (ϕ) ch (ϕ)

)
,

where ϕ ∈ R, see [1], [16].
In L2 a Lorentzian vector u is called to spacelike, lightlike or timelike if ⟨u, u⟩L >

0, ⟨u, u⟩L = 0 or ⟨u, u⟩L < 0, respectively.
We say that a timelike vector u = (u1, u2) is left–pointing or right–pointing if

u2 > 0 or u2 < 0, respectively. Similarly, a spacelike vector u = (u1, u2) is left–
pointing or right–pointing if u1 > 0 or u1 < 0, respectively (see [12]). The following
Lemma was proven in [1].

Lemma 2.1. (Reversed triangle inequality) Let x and y be left–pointing timelike

vectors in L2. Then x+ y is a left–pointing timelike vector and

∥ x+ y ∥≥∥ x ∥ + ∥ y ∥ .

Here the equality holds iff y = cx for some c > 0.

Lemma 2.2. Let x and y be left–pointing spacelike vectors in L2. Then x+ y is a
left–pointing spacelike vector and

∥ x+ y ∥≥∥ x ∥ + ∥ y ∥ .

Here the equality holds iff y = cx for some c > 0.

Proof. Suppose that x =
−−→
AB, y =

−−→
BC and x + y =

−→
AC. Now after reflecting the

points A, B and C to the line y = x we get the points A′, B′ and C ′. Let d :=
−−−→
A′B′

and e :=
−−−→
B′C ′. Then d + e =

−−→
A′C ′ and it comes from the definition of the norm

that

∥ x ∥=∥ d ∥, ∥ y ∥=∥ e ∥ and ∥ d+ e ∥=∥ x+ y ∥ .
Hence using Lemma 2.1 we get that

∥ d+ e ∥=∥ x+ y ∥≥∥ x ∥ + ∥ y ∥=∥ d ∥ + ∥ e ∥ .

�

Corollary 2.1. Suppose that OABC is a quadrilaterial where a =∥
−→
OA ∥, b =∥

−−→
BC ∥, g =∥

−−→
OC ∥, h =∥

−−→
AB ∥. Suppose that

−→
OA,

−−→
BC,

−−→
OC and

−−→
AB are left–

pointing spacelike vectors (see Figure 1). Then g ≥ a+ b+ h.

Moreover, if g = a+ b+h, then the vectors
−→
OA,

−−→
BC,

−−→
OC and

−−→
AB are collinear.

Proof. The inequality g ≥ a+ b+ h is a direct consequence of Lemma 2.2.

Now, assume that g = a+ b+h. We prove first that the vectors
−−→
OC and

−−→
OB are

collinear. Suppose, indirectly, that
−−→
OC and

−−→
OB are not collinear. Since

−−→
OB is a



THE MINKOWSKIAN PLANAR 4R MECHANISM 5

left–pointing spacelike vector, hence we can apply the reversed triangle inequality
(Lemma 2.2) for the triangle OBC. Then it follows that

g =∥
−−→
OC ∥>∥

−−→
OB ∥ + ∥

−−→
BC ∥= b+ ∥

−−→
OB ∥

We can apply again Lemma 2.2 for the triangle OAB. Hence

∥ −−→
OB ∥≥ a+ h.

Consequently

g =∥
−−→
OC ∥> a+ b+ h,

which is a contradiction.
Similar argument shows that

−−→
OB and

−→
OA are colllinear. Hence

−−→
OC and

−→
OA

are collinear. We can use very similar arguments to prove that
−→
OA and

−−→
AB are

collinear vectors. So the result follows. �
We define now the notion of angle on the Minkowskian plane.
Let x and y be two left–pointing timelike unit vectors. We say that ϕ ∈ R is the

(oriented) angle from x to y if A(ϕ)x = y. The (unoriented) angle between x and
y is defined to be |ϕ|. Then it comes from the definition that

ch (ϕ) = −⟨x, y⟩L,

where the right-hand side is greater than 1.
When x and y are left–pointing timelike vectors, than the angle ϕ for x and y is

the same as for x/ ∥ x ∥ and y/ ∥ y ∥.
We have

ch (ϕ) = −
⟨x, y⟩L

∥ x ∥∥ y ∥
We can give the same definition for the angle between left–pointing spacelike

vectors. From this definition, we obtain similar formula for ch (ϕ): if x and y are
two left–pointing spacelike unit vectors, then

ch (ϕ) = ⟨x, y⟩L,

where ϕ is the (oriented) angle from x to y.
In the Euclidean plane, a motion can be represented by a combination of a

rotation and translation. It is well–known that any motion can be expressed using
the matrix operation

M(t, a, b)

 x1
x2
1

 =

 cos(t) −sin(t) a
sin(t) cos(t) b
0 0 1

 x1
x2
1


Similarly, for the Minkowskian plane the group of motions is the following:

G :=


 ch (t) sh (t) a

sh (t) ch (t) b
0 0 1

 : t, a, b ∈ R


We now introduce an important class of triangles. By a pure triangle we mean a

triangle with vertices A,B and C such that
−−→
AB and

−−→
BC are left–pointing timelike

vectors. In the following we assume that we named the vertices of a pure triangle

ABC in this manner. The angle Ĉ is the angle between the lines BC and AC.
Finally we recall here for the Minkowskian cosine rule:
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Theorem 2.1. (see [1, Theorem 7]) Let △ABC be a pure triangle. Then

(2.2) c2 = a2 + b2 − 2abch(Ĉ)

where a =∥
−−→
BC ∥, b =∥

−→
AC ∥ and c =∥

−−→
AB ∥.

�
Remark 2.1. It can be shown (see [14]) that Theorem 2.1 holds for any pure triangles

such that all its sides
−−→
AB,

−→
AC and

−−→
BC are spacelike vectors.

3. The main results

3.1. Position Analysis of the Minkowskian 4R linkage. Recall that the four-
bar linkage is a mechanism that lies in the plane and consists of four bars connected
by joints that allow rotation only in the plane of the mechanism, see Figure 1.

Throughout this Chapter we suppose that
−→
OA,

−−→
OC and

−−→
CB are left–pointing

spacelike vectors. Suppose that
−−→
AB is a spacelike vector.

Let the fixed and the moving pivots of the input crank be O and A, respectively.
Let the fixed and the moving pivots of the output crank be C and B, respectively.

We define the distances between these points as follows:

a :=∥
−→
OA ∥, b :=∥

−−→
BC ∥, g :=∥

−−→
OC ∥, h :=∥

−−→
AB ∥ .

To analyse the linkage, we locate the origin in the fixed Minkowskian frame F
at O and orient it so that the x-axis passes through the other fixed pivot C.

Theorem 3.1. Let θ be the input angle measured around O from the x-axis of F
to OA. Let ψ be the angular position of the output crank CB (see Figure 1). Then

(3.1) ψ = 2artanh
−B(θ)±

√
B(θ)2 + C(θ)2 −A(θ)2

A(θ) + C(θ)
,

where
A(θ) = 2gb− 2abch (θ) ,

B(θ) = 2absh (θ) ,

and
C(θ) = h2 − g2 − b2 − a2 + 2agch (θ) .

Proof. Since h =∥
−−→
AB∥ is constant, we get the constraint equation as

(3.2) ∥
−−→
AB∥2 = h2.

It is easy to verify that the coordinates ofA andB is given byA = (ach (θ) , ash (θ))
and

(3.3) B = (g + bch (ψ) , bsh (ψ)).

If we substitute these coordinates into (3.2), then we obtain

b2 + g2 + a2 + 2gbch (ψ)− 2agch (θ)− 2abch (ψ) ch (θ) + 2absh (ψ) sh (θ) = h2.

If we gather the coefficients of ch (ψ) and sh (ψ), we obtain the constraint equa-
tion for the 4R chain as

(3.4) A(θ)ch (ψ) +B(θ)sh (ψ) = C(θ),

where
A(θ) = 2gb− 2abch (θ) ,
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B(θ) = 2absh (θ) ,

and

C(θ) = h2 − g2 − b2 − a2 + 2agch (θ) .

We solve this equation using the tan-half-technique. This technique uses a
transformation of variables to convert ch (ψ) and sh (ψ) into algebraic functions
of th (ψ/2).

Introduce the parameter y = th (ψ/2), which allows us to define

ch (ψ) =
1 + y2

1− y2
and sh (ψ) =

2y

1− y2

Substitute into (3.4) to obtain

(A(θ) + C(θ))y2 + 2B(θ)y +A(θ)− C(θ) = 0.

This equation is solved using the quadratic formula to obtain

th (ψ/2) =
−B(θ)±

√
B(θ)2 + C(θ)2 −A(θ)2

A(θ) + C(θ)
.

�

Remark 3.1. It can be derived the following alternative equation for ψ:

ψ = −artanh
B(θ)

A(θ)
± arch

C(θ)√
A(θ)2 −B(θ)2

.

Namely we infer from (3.4) that

(3.5)
A(θ)√

A(θ)2 −B(θ)2
ch (ψ) +

B(θ)√
A(θ)2 −B(θ)2

sh (ψ) =
C(θ)√

A(θ)2 −B(θ)2
.

Since
A(θ)√

A(θ)2 −B(θ)2
≥ 1,

hence there exists δ such that

ch (δ) =
A(θ)√

A(θ)2 −B(θ)2

and

sh (δ) =
B(θ)√

A(θ)2 −B(θ)2
.

Then clearly

th (δ) =
B(θ)

A(θ)
.

We infer from (3.5) that

ch(δ + ψ) = ch (δ) ch (ψ) + sh (δ) sh (ψ) =
C(θ)√

A(θ)2 −B(θ)2
.

The result follows.

Remark 3.2. A graph of ψ as a function of θ is called the (kinematic) transmission
function. The transmission function has a very characteristic shape, hence the type
of the Minkowskian four-bar linkage can immediately be read from it.
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Remark 3.3. Notice that there are two angles ψ for each angle θ. This arises
because the moving pivot B of the output crank can be assembled above or below
the diagonal joining the moving pivot A of the input crank to the fixed pivot of C.

3.2. Branching points. The transmission function gives for any θ two, one, no
or an infinite number of values of ψ. No values for ψ exist iff the position of the
linkage is impossible. In an ’undetermined position’ θ and ψ are independent of
each other: at a single θ, an infinite amount of values of ψ is possible or vice versa.
We call these θ angles to the branching points of the mechanism.

Corollary 3.1. (Branching points) Suppose that g ̸= b. Then the branching points
of the Minkowskian planar 4R occours at

(3.6) θ = arch

(
a2 − h2

2a(g − b)
+
g − b

2a

)
.

Proof. It is clear from Theorem 3.1 that θ is a branching point of the mechanism
iff

A(θ) + C(θ) = 0.

This means that

2gb− 2abch (θ) + h2 − g2 − b2 − a2 + 2agch (θ) = 0,

that is

ch (θ) =
a2 − h2

2a(g − b)
+
g − b

2a
.

�

Corollary 3.2. Suppose that g = b and h ̸= a. Then there is no branching points.

Proof. If g = b and h ̸= a, then

A(θ) + C(θ) = h2 − a2 ̸= 0.

for each θ. �

Corollary 3.3. Suppose that g = b and h = a. Then all points are branching
points.

Proof. This is clear, since then

A(θ) + C(θ) = 0

for each θ. �

Remark 3.4. The deeper investigation of branching points will be one of the topics
of our next article.

3.3. Coupler Angles. Let ϕ denote the angle between the vectors
−→
AO and

−−→
AB

(see Figure 3).

Theorem 3.2. If ϕ denotes the coupler angle, then

ϕ = artanh

(
bsh (ψ)− ash (θ)

g + bch (ψ)− ach (θ)

)
− θ
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Figure 3. The coupler angle

Proof. Since ϕ was the coupler angle, hence θ+ϕ is the angle to AB from the x-axis
of F . Consequently we can write the coordinates of B in terms of ϕ as

(3.7) B = (ach (θ) + hch (θ + ϕ) , ash (θ) + hsh (θ + ϕ)).

If we equate the two forms (3.3) and (3.7) for B, we obtain the following loop
equations of the four-bar linkage:

ach (θ) + hch (θ + ϕ) = g + bch (ψ)

ash (θ) + hsh (θ + ϕ) = bsh (ψ)

Therefore, for a given value of the driving crank θ, ch (θ + ϕ) and sh (θ + ϕ) are
given by

ch (θ + ϕ) =
g + bch (ψ)− ach (θ)

h
and

sh (θ + ϕ) =
bsh (ψ)− ash (θ)

h
.

Hence

th (θ + ϕ) =
bsh (ψ)− ash (θ)

g + bch (ψ)− ach (θ)

and Theorem 3.2 follows. �
Remark 3.5. Notice that we obtain a unique value for ϕ associated with each of
the two solutions for the output angle ψ.

3.4. The transmission angle. Let ζ denote the angle between the coupler and
the driven crank at B, the transmission angle of the linkage (see Figure 4).

Theorem 3.3. If ζ is the transmission angle of the linkage, then

ζ = arch

(
−g2 − a2 + h2 + b2 + 2agch (θ)

2bh

)
.

Proof. Let d :=∥ −→
AC ∥.

To determine ζ in terms of θ, equate the Minkowskian cosine laws (Theorem 2.1)
for the diagonal AC for the triangles △COA and △ABC. Since ζ is the interior
angle at B, we have

d2 = g2 + a2 − 2agch (θ) = h2 + b2 − 2bhch (ζ) .

The result follows �
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Figure 4. The transmission angle

3.5. The coupler curve. In this subsection, we study the motion of the coupler by
analyzing the curve traced by a point on the coupler link. We get the parametrized
equation of this curve, the coupler curve from the kinematics equations of the
driving RR chain (see Figure 5).
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Figure 5. The coupler curve

Theorem 3.4. The curve traced by any point of the coupler link of a Minkowskian
planar four-bar linkage is algebraic, of sixth degree.

Proof. Let x = (x, y)T be the coordinates of a coupler point in the frameM located
at A with its x-axis along AB.

Let X = (X,Y )T be the coordinates of a coupler point in the frame F .
We obtain the algebraic equation of the coupler curve by defining the coordinates

of X = (X,Y )T from two points of view. Let the coupler triangle △XAB have
length r and s given by

r =∥
−−→
AX ∥=

√
x2 − y2

and
s =∥

−−→
BX ∥=

√
(x− h)2 − y2.

If λ is the angle to AX in F and µ is the angle to BX (see Figure 5), then we have
by definition that −−→

AX = (rch (λ) , rsh (λ))
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and
−−→
BX = (sch (µ) , ssh (µ)).

If we substitute into the identities ∥
−→
OA ∥2= a2 and ∥

−−→
CB ∥2= b2 and rearrange

these equations, we obtain

(3.8) (X − sch (µ)− g)2 − (Y − ssh (µ))2 = h2

and

(3.9) (X − rch (λ))2 − (Y − rsh (λ))2 = a2.

If we expand equations (3.8) and (3.9), we get

(3.10) 2Xsch (µ)− 2Y ssh (µ)− 2gsch (µ)−X2 + 2Xg + Y 2 − g2 + h2 − s2 = 0

and

(3.11) 2Xrch (λ)− 2Y rsh (λ)−X2 + Y 2 + a2 − r2 = 0.

Let γ := µ− λ and substitute µ = λ+ γ into the equation (3.10).
If we rearrange these equations we get

A1(X,Y )ch (λ) +B1(X,Y )sh (λ) = C1(X,Y ),

(3.12) A2(X,Y )ch (λ) +B2(X,Y )sh (λ) = C2(X,Y ),

where

A1(X,Y ) := 2Xssh (γ)− 2Y sch (γ)− 2gssh (γ) ,

B1(X,Y ) := 2Xsch (γ)− 2Y ssh (γ)− 2gsch (γ) ,

C1(X,Y ) := X2 − 2Xg − Y 2 + g2 − h2 + s2,

A2(X,Y ) := 2rX,

B2(X,Y ) := −2rY,

and

C2(X,Y ) := X2 − Y 2 − a2 + r2.

We can eliminate λ from the equation system (3.12) by solving linearly for u =
ch (λ) and v = sh (λ). Then we can impose the condition u2 − v2 = 1. This yields
to

(C1(X,Y )B2(X,Y )−C2(X,Y )B1(X,Y ))2−(A2(X,Y )C1(X,Y )−A1(X,Y )C2(X,Y ))2−

−(A1(X,Y )B2(X,Y )−A2(X,Y )B1(X,Y ))2 = 0.

Notice that Ai(X,Y ) and Bi(X,Y ) are linear in the coordinates X and Y , and
Ci(X,Y ) are quadratic. Therefore the equation defines a curve of degree 6. �
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3.6. The input and the output Crank Angles and the classification of the
4R linkage. The following Theorem describes the upper and the lower limiting
angles.

Theorem 3.5. The upper and the lower limiting angles θmax and θmin that define
the range of movement of the input crank,

ch(θmin) =
a2 + g2 − (b+ h)2

2ag

and

ch(θmax) =
a2 + g2 − (b− h)2

2ag
.

Proof. The formula (see equation (3.1) in Theorem 3.1) that defines the output
angle ψ for a given input angle θ has a real solution if and only if B(θ)2 +C(θ)2 −
A(θ)2 ≥ 0. We obtain the maximum and the minimum values for θ if we set this
condition to zero, which yields the following quadratic equation in ch (θ)

4a2g2ch2(θ)− 4ag(g2 + a2 − h2 − b2)ch (θ)+

+((g2 + a2)− (h+ b)2)((g2 + a2)− (h− b)2) = 0.

The roots of this equation are the given equations for ch(θmin) and ch(θmax). �

Remark 3.6. These equations are the cosine laws for the two ways that the triangle
AOC△ can be formed with the coupler AB aligned with the output crank CB, see
Figure 6, Figure 7 and Figure 8.
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g
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h
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Figure 6. The angles θmin and θmax are the limits to the range
of movement of the input link

The hyperbolic cosine function does not distinguish between ±θ, so there are
actually two limits for ch(θmax) above and below OC.

If θmax does not exist, then the crank has no lower limit to its movement and it
rotated though θ = 0 to reach negative values below the segment OC.

Thus ch(θmax) < 1 is the condition that there is no lower limit to the input
crank rotation, that is,

a2 + g2 − (b− h)2

2ag
< 1.

We can simplify this to yield

(b− h)2 − (a− g)2 > 0,
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Figure 8. The angles θmin and θmax are the limits to the range
of movement of the input link

If we factor the difference to two squares, we obtain

(−a+ g + b− h)(a− g + b− h) > 0,

that is
T1T2 > 0,

where T1 := −a+ g + b− h and T2 := a− g + b− h.
If ch(θmin) > 1, then both upper and lower limiting angles exist. The input crank

rocks in one of three separate ranges: (i) θmax ≤ θ ≤ ∞, (ii) −θmin ≤ θ ≤ θmin or
(iii) −∞ ≤ θ ≤ −θmax.

It is easy to see that the ch(θmin) > 1 condition is equivalent with

(g − a− b− h)(g − a+ b+ h) > 0,

that is, T3T4 > 0, where T3 := g − a− b− h and T4 := g − a+ b+ h.
Finally we get the following result:

Theorem 3.6. We can identify three types of movement available to the input
crank of a 4R linkage:

1. A crank: T1T2 ≥ 0 and T3T4 ≤ 0, in which case no θmin, θmax exists, and
the input crank rocks though θ = 0.
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2. A rocker: T1T2 < 0 and T3T4 ≤ 0, which means that both upper and lower
limiting angles exist, and the crank cannot pass though 0. Instead, it rocks in one
of the two separate ranges: (i) θmax ≤ θ ≤ ∞ or (ii) −∞ ≤ θ ≤ −θmax.

3. A superrocker: T1T2 < 0 and T3T4 > 0, which means that both upper
and lower limiting angles exist. It rocks in one of the three separate ranges: (i)
θmax ≤ theta ≤ ∞, (ii) −θmin ≤ θ ≤ θmin or (iii) −∞ ≤ θ ≤ −θmax.

�
The range of movement of the output crank can be analyzed in the same way.

The limiting positions occur when the input crank OA and the coupler AB become
aligned.

Theorem 3.7. The limits ψmax and ψmin are defined by the equations

ch(ψmax) =
(a+ h)2 − g2 − b2

2bg

and

ch(ψmin) =
(a− h)2 − g2 − b2

2bg
.

�

Remark 3.7. In this case ψ is the exterior angle and changes the sign of the hyper-
bolic cosine term in the cosine law formula.

We find the condition for no lower limit ψmax is

ch(ψmax) =
(a+ h)2 − g2 − b2

2bg
< 1.

Hence

(a+ h)2 < (b+ g)2

that is

(g + b+ a+ h)(g + b− h− a) > 0.

Using the notations

T1 := g + b− h− a and T7 := g + b+ a+ h,

we get

T1T7 > 0.

But clearly T7 > 0.
It is easy to see that the condition ch(ψmin) > 1 is equivalent with (a − h −

g − b)(a − h + g + b) > 0, that is T4T5 < 0, where T4 := −a + h + g + b and
T5 := a− h+ g + b.

Finally we get the following result.

Theorem 3.8. We can identify three types of movement available to the output
crank of a 4R Minkowskian linkage:

1. A crank: T1 ≥ 0 and T4T5 ≥ 0, in which case no ψmin, ψmax exists, and the
output crank rocks though ψ = 0.

2. A rocker: T1 < 0 and T4T5 ≥ 0, which means that both upper and lower
limiting angles exist, and the crank cannot pass though 0. Instead, it rocks in one
of the two separate ranges: (i) ψmax ≤ ψ ≤ ∞ or (ii) −∞ ≤ ψ ≤ −ψmax.
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3. A superrocker: T1 < 0 and T4T5 < 0, which means that both upper and
lower limiting angles exist. It rocks in one of the three separate ranges: (i) ψmax ≤
ψ ≤ ∞, (ii) −ψmin ≤ ψ ≤ ψmin or (iii) −∞ ≤ ψ ≤ −ψmax.

�
Hence we can classify a Minkowskian planar 4R linkage by the movement of

input and output cranks. For example, a crank-rocker has a rotatable input link
though O and an output link that rocks.

Now we define special subclasses of the Minkowskian planar 4R mechanisms.
We say that a planar 4R is normal, if all the conditions a+b+h ≤ g, a+b+g ≤ h,

a + g + h ≤ b and b + g + h ≤ a are satisfied. We say that a planar 4R is strange
if it is not normal. This means that there exists one link, which is longer than the
sum of other links’ lengths.

We say that a normal planar 4R is rigid, if one of the following conditions is
satisfied: a+ b+ h = g, a+ b+ g = h, a+ g + h = b and b+ g + h = a.

We say that a nonrigid normal planar 4R is irreducible, if T1 ̸= 0 and T2 ̸= 0,
i.e., a+ h ̸= b+ g and a+ b ̸= g + h.

Finally we say that a nonrigid normal planar 4R, which is not irreducible, is a
reducible planar 4R.

First we investigate the strange mechanisms.

Theorem 3.9. Suppose that g > a+ b+ h. Then the Minkowskian planar 4R has
a superrocker–crank type.

Proof. Since T1 > 0, T2 < 0, T3 > 0, T4 > 0 and T5 > 0.
�

Theorem 3.10. Suppose that a > g+ b+h. Then the Minkowskian planar 4R has
a superrocker–superrocker type.

Proof. Since T1 < 0, T2 > 0, T3 < 0, T4 < 0 and T5 > 0.
�

Theorem 3.11. Suppose that h > g+ b+a. Then the Minkowskian planar 4R has
a crank–superrocker type.

Proof. Since T1 < 0, T2 < 0, T3 < 0, T4 > 0 and T5 < 0.
�

Theorem 3.12. Suppose that b > g+h+a. Then the Minkowskian planar 4R has
a crank–crank type.

Proof. Since T1 > 0, T2 > 0, T3 < 0, T4 > 0 and T5 > 0. �
We summarized the classification of strange mechanisms in Table 1.
In the following we consider only normal mechanisms.
Here we investigate first the rigid mechanisms.

Theorem 3.13. Suppose that g = a+ b+h. Then the Minkowskian planar 4R has
a rocker–crank type.

Proof. Since T1 > 0, T2 < 0, T3 = 0, T4 > 0 and T5 > 0.
�

Theorem 3.14. Suppose that a = g+ b+h. Then the Minkowskian planar 4R has
a rocker–rocker type.



16 GÁBOR HEGEDÜS AND BRIAN MOORE

Linkage Type Condition
1 Crank–Crank b > g + h+ a
2 Crank–Superrocker h > g + b+ a
3 Superrocker–crank g > a+ b+ h
4 Superrocker–superrocker a > g + b+ h

Table 1. Basic Planar 4R Strange Linkage Types

Proof. Since T1 < 0, T2 > 0, T3 < 0, T4 = 0 and T5 > 0.
�

Theorem 3.15. Suppose that h = g+ b+a. Then the Minkowskian planar 4R has
a crank–rocker type.

Proof. Since T1 < 0, T2 < 0, T3 < 0, T4 > 0 and T5 = 0.
�

Theorem 3.16. Suppose that b = g+h+a. Then the Minkowskian planar 4R has
a crank–crank type.

Proof. Since T1 > 0, T2 > 0, T3 < 0, T4 > 0 and T5 > 0. �
We summarized the classification of rigid mechanisms in Table 2.

Linkage Type Condition
1 Crank–Crank b = g + h+ a
2 Crank–Rocker h = g + b+ a
3 Rocker–crank g = a+ b+ h
4 Rocker–Rocker a = g + b+ h

Table 2. Basic Planar 4R Rigid Linkage Types

Now we consider normal, non–rigid reducible linkages.

Theorem 3.17. Suppose that g+ b = a+h. Then the Minkowskian planar 4R has
a crank–crank type.

Proof. Since T1 = 0, hence T1T2 = 0. �

Theorem 3.18. Suppose that a+ b = g + h. Then the input crank is crank.

Proof. Since T2 = 0, hence T1T2 = 0. �
Finally we investigate non–rigid normal Minkowskian planar 4R mechanisms.

Theorem 3.19. For all non–rigid normal Minkowskian planar 4R we have T3 < 0,
T4 > 0 and T5 > 0.

The link lengths a, b, g and h for a 4R chain define the two parameters T1, T2.
Clearly our classification requires only the signs of these parameters. We assamble
here an array for (sgnT1, sgnT2) (see Table 3).
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Linkage Type T1 T2
1 Crank–crank + +
2 Rocker–crank + –
3 Rocker–rocker – +
4 Crank–rocker – –

Table 3. Basic Planar 4R Normal Non–Rigid Linkage Types

Remark 3.8. It is easy to see from the reversed triangle inequality (Lemma 2.2)
that the following criterion is analogous to Grashof’s criterion:

l + s ≥ p+ q,

where s is the length of the shortest link, l is the length of the longest link and p,
q are the lengths of the remaining two links.

3.7. Examples. We animated the movement of the Minkowskian planar 4R in
Matlab. In the following examples we show some pictures from our animation.

1. Suppose that a := 1, b := 1, g := 4 and h := 1. Then g > a + b + h, hence
this is a strange Minkowskian planar 4R. We get

ch(θmin) = 1.625,

ch(θmax) = 2.125,

ch(ψmin) = −2.125,

ch(ψmax) = −1.625.

T1 = g + b − h − a = 3, T2 = a − g + b − h = −3, T3 = g − a − b − h = 1,
T4 = g − a+ b+ h = 5 and T5 = a− h+ g + b = 5. Since T1 > 0, T2 < 0, T3 > 0,
T4 > 0 and T5 > 0, thus this planar 4R has a superrocker–crank type.

The branching points occour at ch (θ) = 1.5.
We show here two pictures from the animation (see Figures 9, 10), the coupler

curve (Figure 11) and the transmission curve (Figure 12). In Figure 11 the blue
(resp. dashed) curve shows the trajectory of the end of the input crank, the black
(resp. thick) curve shows the trajectory of the middle point of the coupler, while
the red (resp. solid) curve shows the trajectory of the end of the input crank

2. Suppose that a := 1.2, b := 0.4, g := 0.4 and h := 0.4. Then a = g + b + h,
hence this is a rigid Minkowskian planar 4R. We get

ch(θmin) = 1,

ch(θmax) ≈ 1.6666,

ch(ψmin) = 1,

ch(ψmax) = 7.

T1 = g + b − h − a = −0.8, T2 = a − g + b − h = 0.8, T3 = g − a − b − h = −1.6,
T4 = g − a+ b+ h = 0 and T5 = a− h+ g + b = 1.6. Since T1 < 0, T2 > 0, T3 < 0,
T4 = 0 and T5 > 0, thus this planar 4R has a rocker–rocker type.

Here g = b, but h ̸= a, hence there are no branching points.
We show here two pictures from the animation (Figures 13, 14), the coupler

curve (Figure 15) and the transmission curve (Figure 16). In Figure 15 the blue
(resp. dashed) curve shows the trajectory of the end of the input crank, the black
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(resp. thick) curve shows the trajectory of the middle point of the coupler, while
the red (resp. solid) curve shows the trajectory of the end of the input crank

3. Suppose that a := 0.5, b := 1, g := 2 and h := 2.5. Then g+ b = a+ h, hence
this is a normal, non–rigid reducible Minkowskian planar 4R. We get

ch(θmin) = −4,

ch(θmax) = 1,

ch(ψmin) = −0.25,

ch(ψmax) = 1.

Hence T1 = g + b− h− a = 0, T2 = a− g + b− h = −3, T3 = g − a− b− h = −2,
T4 = g − a+ b+ h = 5 and T5 = a− h+ g + b = 1. Since T1 = 0, T2 < 0, T3 < 0,
T4 > 0 and T5 > 0, thus this planar 4R has a crank–crank type.

The branching points occour at ch (θ) = −5, hence there are no branching
points..

We show here two pictures from the animation (Figures 17, 18), the coupler
curve (Figure 19) and the transmission curve (Figure 20). In Figure 19 the blue
(resp. dashed) curve shows the trajectory of the end of the input crank, the black
(resp. thick) curve shows the trajectory of the middle point of the coupler, while
the red (resp. solid) curve shows the trajectory of the end of the input crank

4. Suppose that a := 0.6, b := 1, g := 0.7 and h := 0.5. Then this is a normal,
non–rigid irreducible Minkowskian planar 4R. We get

ch(θmin) ≈ −1.6666,

ch(θmax) ≈ 0.71428,

ch(ψmin) ≈ −1.05714,

ch(ψmax) = −0.2.

Hence T1 = g+ b−h−a = 0.6, T2 = a− g+ b−h = 0.4, T3 = g−a− b−h = −1.4,
T4 = g−a+ b+h = 1.6 and T5 = a−h+ g+ b = 1.8. Since T1 > 0, T2 > 0, T3 < 0,
T4 > 0 and T5 > 0, thus this planar 4R has a crank–crank type.

The branching points occour at ch (θ) ≈ −0.5555, hence there are no branching
points..

We show here two pictures from the animation (Figures 21,22), the coupler curve
(Figure 23) and the transmission curve (Figure 24). In Figure 23 the blue (resp.
dashed) curve shows the trajectory of the end of the input crank, the black (resp.
thick) curve shows the trajectory of the middle point of the coupler, while the red
(resp. solid) curve shows the trajectory of the end of the input crank

4. Conclusion

In this article we characterized and classified completely the planar 4R closed
chain working on the Minkowskian plane. We derived formulas for the output crank
angle, the coupler angle and the transmission angle. We found four basic types in
the classification: the crank-crank, crank–rocker, rocker–crank and rocker–rocker
Minkowskian planar 4R mechanisms and we described the Minkowskian Grashof
condition.
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[7] Gündoğan, H. and Keçilioğlu, O., Lorentzian matrix multiplication and the motions on
Lorentzian plane. Glas. Mat. Ser. III 41(61) (2006), no. 2, 329–334.

[8] Harkin, A. A. and Harkin, J. B., Geometry of Generalized Complex Numbers. Math. Mag.
77 (2004), no. 2, 118–129.

[9] Lie, S. and Scheffers, M. G., Vorlesungen über continuierliche Gruppen, Kap. 21, Teubner,

Leipzig, 1893
[10] McCarthy, J. M., Geometric design of linkages. Interdisciplinary Applied Mathematics, 11

Springer-Verlag, New York, 2000.
[11] McCarthy, J. M., An Introduction to Theoretical Kinematics, MIT Press, Cambridge, 1990.

[12] Myrvold, W.C. and Christian, J., Quantum Reality, Relativistic Causality and closing the
epistemic circle, Springer Science+Business Media, 2009.

[13] O’Neill, B., Semi-Riemannian Geometry. With Applications to Relativity, Academic Press,
Inc., New York, 1983.
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Figure 9. The Minkowskian planar 4R with a = 1, b = 1, h = 1,
g = 4 at θ = −π/2
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Figure 10. The Minkowskian planar 4R with a = 1, b = 1, h = 1,
g = 4 at θ = π/4



22 GÁBOR HEGEDÜS AND BRIAN MOORE

Figure 11. The coupler curve of the Minkowskian planar 4R with
a = 1, b = 1, h = 1, g = 4
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Figure 12. The transmission function of the Minkowskian planar
4R with a = 1, b = 1, h = 1, g = 4
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Figure 13. The Minkowskian planar 4R with a = 1.2, b = 0.4,
h = 0.4, g = 0.4 at θ = −π/2
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Figure 14. The Minkowskian planar 4R with a = 1.2, b = 0.4,
h = 0.4, g = 0.4 at θ = 3π/4
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Figure 15. The coupler curve of the Minkowskian planar 4R with
a = 1.2, b = 0.4, h = 0.4, g = 0.4
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Figure 16. The transmission function of the Minkowskian planar
4R with a = 1.2, b = 0.4, h = 0.4, g = 0.4
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Figure 17. The Minkowskian planar 4R with a := 0.5, b := 1,
g := 2, h := 2.5 at θ = −π/4
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Figure 18. The Minkowskian planar 4R with a := 0.5, b := 1,
g := 2, h := 2.5 at θ = π/2
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Figure 19. The coupler curve of the Minkowskian planar 4R with
a := 0.5, b := 1, g := 2, h := 2.5
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Figure 20. The transmission function of the Minkowskian planar
4R with a := 0.5, b := 1, g := 2, h := 2.5



32 GÁBOR HEGEDÜS AND BRIAN MOORE

Figure 21. The Minkowskian planar 4R with a := 0.6, b := 1,
g := 0.7, h := 0.5 at θ = −π/4



THE MINKOWSKIAN PLANAR 4R MECHANISM 33

Figure 22. The Minkowskian planar 4R with a := 0.6, b := 1,
g := 0.7, h := 0.5 at θ = π/2
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Figure 23. The coupler curve of the Minkowskian planar 4R with
a := 0.6, b := 1, g := 0.7, h := 0.5
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Figure 24. The transmission function of the Minkowskian planar
4R with a := 0.6, b := 1, g := 0.7, h := 0.5


