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ON DOUGLAS SPACES WITH VANISHING Ē-CURVATURE
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(Communicated by Vladimir BALAN)

Abstract. In this paper, we prove that every compact Douglas space is a
Berwald space, when the mean Berwald curvature is covariantly constant along

all horizontal directions on the slit tangent bundle.

1. Introduction

There are two well-known projective invariants of Finsler metrics namely, Dou-
glas curvature [8] and Weyl curvature [18]. The Douglas curvature is a non-
Riemannian projective invariant constructed from the Berwald curvature. The
notion of Douglas curvature was proposed by Bácsó and Matsumoto as a general-
ization of Berwald curvature [4][11].

On the other hand, there are several important non-Riemannian quantities such
as the Cartan torsion C, the Berwald curvature B, the mean Berwald curvature E
and the Landsberg curvature L, etc [16]. They all vanish for Riemannian metrics,
hence they are said to be non-Riemannian.

The study shows that the above mentioned non-Riemannian quantities are closely
related to the Douglas metrics, namely Bácsó-Matsumoto proved that every Dou-
glas metric with vanishing Landsberg curvature is a Berwald metric [3]. Is there
any other interesting non-Riemannian quantity with such property? In [12], Shen
find a new non-Riemannian quantity for Finsler metrics that is closely related to
the E-curvature and call it Ē-curvature. Recall that Ē is obtained from the mean
Berwald curvature by the covariant horizontal differentiation along geodesics.

In this paper, we prove that every compact Douglas space with vanishing Ē-
curvature is a Berwald space. More precisely, we prove the following.

Theorem 1.1. Let (M,F ) be a complete Douglas space with bounded Cartan tor-
sion. Suppose that Ē-curvature of F is vanishing. Then F reduces to a Berwald
metric. In particular, every compact Douglas space with Ē = 0 is a Berwald space.
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The completeness in Theorem 1.1, can not be dropped. Consider following
Finsler metric on the unit ball Bn ⊂ Rn,

F (y) :=

√
|y|2 − (|x|2|y|2− < x, y >2)+ < x, y >

1− |x|2
, y ∈ TxBn = Rn

where |.| and <,> denote the Euclidean norm and inner product in Rn, respectively.
F is called the Funk metric which is a Randers metric on Bn. One can show that
F is positively complete on Bn [7]. Funk metric is a Douglas metric and satisfies
Ē = 0 while B ̸= 0.

There are many connections in Finsler geometry [6][14][15]. Throughout this
paper, we use the Berwald connection on Finsler manifolds. The h- and v- covariant
derivatives of a Finsler tensor field are denoted by “ | ” and “, ” respectively.

2. Preliminaries

Let M be a n-dimensional C∞ manifold. Denote by TxM the tangent space at
x ∈ M , by TM = ∪x∈MTxM the tangent bundle of M and by TM0 = TM \ {0}
the slit tangent bundle. A Finsler metric on M is a function F : TM → [0,∞)
which has the following properties:
(i) F is C∞ on TM0,
(ii) F is positively 1-homogeneous on the fibers of TM ,
(iii) for each y ∈ TxM , the following quadratic form gy on TxM is positive definite,

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s,t=0, u, v ∈ TxM.

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, define
Cy : TxM ⊗ TxM ⊗ TxM → R by

Cy(u, v, w) :=
1

2

d

dt
[gy+tw(u, v)] |t=0, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion. It is well known that
C=0 if and only if F is Riemannian.

Given a Finsler manifold (M,F ), then a global vector field G is induced by F
on TM0, which in a standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where Gi(y) are local functions on TM given by

Gi :=
1

4
gil

{ ∂2[F 2]

∂xk∂yl
yk − ∂[F 2]

∂xl

}
, y ∈ TxM.

G is called the associated spray to (M,F ). The projection of an integral curve of
G is called a geodesic in M . In local coordinates, a curve c(t) is a geodesic if and
only if its coordinates (ci(t)) satisfy c̈i + 2Gi(ċ) = 0.

For a tangent vector y ∈ TxM0, define By : TxM ⊗ TxM ⊗ TxM → TxM and
Ey : TxM ⊗ TxM → R by

By(u, v, w) := Bi
jkl(y)u

jvkwl ∂

∂xi
|x, Ey(u, v) := Ejk(y)u

jvk,
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where

Bi
jkl(y) :=

∂3Gi

∂yj∂yk∂yl
(y), Ejk(y) :=

1

2
Bm

jkm(y),

u = ui ∂
∂xi |x, v = vi ∂

∂xi |x and w = wi ∂
∂xi |x. B and E are called the Berwald

curvature and mean Berwald curvature, respectively. A Finsler metric is called a
Berwald metric and mean Berwald metric if B = 0 or E = 0, respectively [12].

For a tangent vector y ∈ TxM0, define Ēy : TxM ⊗ TxM ⊗ TxM → R by
Ēy(u, v, w) := Ējkl(y)u

ivjwk, where

Ēijk := Eij|k.

From a Bianchi identity, we have

Bi
jml|k −Bi

jkm|l = Ri
jkl.m,

where Ri
jkl is the Riemannian curvature of Berwald connection [13][17]. By putting

i = m in the above relation, we get

Ējlk − Ējkl = 2Rm
jkl,m.

Then Ēijk is not totally symmetric in all three of its indices. It is easy to see
that if Ē-curvature is vanishing, then E-curvature is covariantly constant along all
horizontal directions on the slit tangent bundle TM0.

The quantity Hy = Hijdx
i⊗dxj is defined as the covariant derivative of E along

geodesics [1][10]. More precisely

Hij := Eij|mym = Ēijmym.

Define Dy : TxM ⊗ TxM ⊗ TxM → TxM by Dy(u, v, w) := Di
jkl(y)u

ivjwk ∂
∂xi |x

where

Di
jkl := Bi

jkl −
2

n+ 1
{Ejkδ

i
l + Ejlδ

i
k + Eklδ

i
j + Ejk,ly

i}.

We call D := {Dy}y∈TM0 the Douglas curvature [8]. A Finsler metric with D = 0
is called a Douglas metric [9]. It is remarkable that, the notion of Douglas metrics
was proposed by Bácsó-Matsumoto as a generalization of Berwald metrics (see [4]
and [5]).

Define Ly : TxM ⊗ TxM ⊗ TxM → R by Ly(u, v, w) := Lijk(y)u
ivjwk where

Lijk := Cijk|sy
s. The family L := {Ly}y∈TM0 is called the Landsberg curvature

[17]. F is called a Landsberg metric if L=0. Every Berwald metric is a Landsberg
metric.

Theorem 2.1. ([2][3]) For a Douglas metric F on a manifold M , if L = 0, then
B = 0.

3. Proof of Theorem 1.1

To prove the Theorem 1.1, we need the following:

Lemma 3.1.

(3.1) Ejk,l|mym = Hjk,l − Ējkl.
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Proof. The following Ricci identity for Eij is hold:

(3.2) Eij,l|k − Eij|k,l = EpjB
p
ikl + EipB

p
jkl.

It follows from (3.2) that

(3.3) Ejk,l|mym = Ejk|m,ly
m = [Ejk|mym],l − Ejk|l.

This yields the (3.1). �

Proposition 3.1. Let (M,F ) be a Douglas space. Suppose that F satisfies Ē = 0.
Then for any geodesic c(t) and any parallel vector field U(t) along c, the following
functions

(3.4) C(t) = Cċ(U(t), U(t), U(t)),

satisfying in the following equation

(3.5) C(t) = L(0)t+C(0).

Proof.

(3.6) Di
jkl = Bi

jkl −
2

n+ 1
{Ejkδ

i
l + Eklδ

i
j + Eljδ

i
k + Ejk,ly

i}.

Then

(3.7) Di
jkl|mym = Bi

jkl|mym − 2

n+ 1
{Hjkδ

i
l +Hklδ

i
j +Hljδ

i
k + Ejk,l|mymyi}.

By Lemma 3.1, we get

(3.8) Bi
jkl|mym =

2

n+ 1
{Hjkδ

i
l +Hklδ

i
j +Hljδ

i
k +Hjk,ly

i − Ējkly
i}.

From assumption, we have

(3.9) Bi
jkl|mym = 0.

Contracting with yi yields

(3.10) Ljkl|mym = 0.

Let

(3.11) L(t) = Lċ(U(t), U(t), U(t)).

From the definition of Ly, we have

(3.12) L(t) = C
′
(t).

By (3.10) we get

(3.13) L
′
(t) = 0.

The equation (3.13) implies that

(3.14) L(t) = L(0).

Then we get the equation (3.5). �

Remark 3.1. Let (M,F ) be a Finsler space and c : [a, b] → M be a geodesic. For a
parallel vector field V (t) along c,

(3.15) gċ(V (t), V (t)) = constant.
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Proof of Theorem 1.1: Take an arbitrary unit vector y ∈ TxM and an arbitrary
vector v ∈ TxM . Let c(t) be the geodesic with ċ(0) = y and V (t) the parallel
vector field along c with V (0) = v. Define C(t) and L(t) as in (3.4) and (3.11),
respectively. Then

(3.16) C(t) = t L(0) +C(0).

Suppose that Cy is bounded, i.e., there is a constant N < ∞ such that

(3.17) ||C||x := sup
y∈TxM0

sup
v∈TxM

Cy(v, v, v)

[gy(v, v)]
3
2

≤ N.

By (3.15), we know that

T := gċ(V (t), V (t)) = constant.

is positive constant. Thus

(3.18) |C(t)| ≤ NT
3
2 < ∞,

and C(t) is a bounded function on [0,∞). This implies

(3.19) Ly(v, v, v) = L(0) = 0.

Therefore L = 0 and by the Theorem 2.1, F is a Berwald metric. �

Corollary 3.1. Let (M,F ) be a compact Douglas manifold. Then L = 0 if and
only if Ē = 0.

Proof. If D = L = 0, then by Theorem 2.1 B = 0 which implies that Ē = 0.
Conversely let F be a compact Douglas metric with Ē = 0. By Theorem 1.1,
B = 0 and then L = 0. �

Corollary 3.2. Let (M,F ) be a complete Finsler space with Randers metric F =
α+ β such that α is a Riemannian metric and β is a close 1-form on M . Suppose
that F satisfies Ē = 0. Then F is a Berwald metric.

Proof. It is known that for a Randers metric F = α + β the Cartan tensor is
bounded [12]. In fact

∥C∥ ≤ 3√
2
.

Bácsó-Matsumoto showed that the Randers metric F = α+β is a Douglas metric if
and only if β is a closed form [4]. Then by Theorem 1.1, we obtain the corollary. �

Corollary 3.3. For any complete submanifold M in a Minkowski space (V, F ), if
the induced metric F̄ satisfies Ē = 0, then F̄ is a Berwald metric.

Proof. For a submanifold M in a Minkowski space (V, F ), the Cartan tensor is
bounded [12]. Then by Theorem 1.1, F̄ is a Berwald metric. �
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