ON DOUGLAS SPACES WITH VANISHING E-CURVATURE

A. TAYEBI AND E. PEYGHAN

(Communicated by Vladimir BALAN)

ABSTRACT. In this paper, we prove that every compact Douglas space is a Berwald space, when the mean Berwald curvature is covariantly constant along all horizontal directions on the slit tangent bundle.

1. INTRODUCTION

There are two well-known projective invariants of Finsler metrics namely, Douglas curvature [8] and Weyl curvature [18]. The Douglas curvature is a non-Riemannian projective invariant constructed from the Berwald curvature. The notion of Douglas curvature was proposed by Bácsó and Matsumoto as a generalization of Berwald curvature [4][11].

On the other hand, there are several important non-Riemannian quantities such as the Cartan torsion \mathbf{C} , the Berwald curvature \mathbf{B} , the mean Berwald curvature \mathbf{E} and the Landsberg curvature \mathbf{L} , etc [16]. They all vanish for Riemannian metrics, hence they are said to be non-Riemannian.

The study shows that the above mentioned non-Riemannian quantities are closely related to the Douglas metrics, namely Bácsó-Matsumoto proved that every Douglas metric with vanishing Landsberg curvature is a Berwald metric [3]. Is there any other interesting non-Riemannian quantity with such property? In [12], Shen find a new non-Riemannian quantity for Finsler metrics that is closely related to the **E**-curvature and call it $\mathbf{\bar{E}}$ -curvature. Recall that $\mathbf{\bar{E}}$ is obtained from the mean Berwald curvature by the covariant horizontal differentiation along geodesics.

In this paper, we prove that every compact Douglas space with vanishing \mathbf{E} -curvature is a Berwald space. More precisely, we prove the following.

Theorem 1.1. Let (M, F) be a complete Douglas space with bounded Cartan torsion. Suppose that $\mathbf{\bar{E}}$ -curvature of F is vanishing. Then F reduces to a Berwald metric. In particular, every compact Douglas space with $\mathbf{\bar{E}} = 0$ is a Berwald space.

Date: Received: May 30, 2011 and Accepted: December 5, 2011.

 $^{2000\} Mathematics\ Subject\ Classification.\ 53B40,\ 53C60.$

Key words and phrases. Finsler metric, Douglas metric, Berwald metric.

The completeness in Theorem 1.1, can not be dropped. Consider following Finsler metric on the unit ball $\mathbb{B}^n \subset \mathbb{R}^n$,

$$F(y) := \frac{\sqrt{|y|^2 - (|x|^2|y|^2 - \langle x, y \rangle^2)} + \langle x, y \rangle}{1 - |x|^2}, \quad y \in T_x \mathbb{B}^n = \mathbb{R}^n$$

where |.| and \langle , \rangle denote the Euclidean norm and inner product in \mathbb{R}^n , respectively. F is called the Funk metric which is a Randers metric on \mathbb{B}^n . One can show that F is positively complete on \mathbb{B}^n [7]. Funk metric is a Douglas metric and satisfies $\mathbf{\bar{E}} = 0$ while $\mathbf{B} \neq 0$.

There are many connections in Finsler geometry [6][14][15]. Throughout this paper, we use the Berwald connection on Finsler manifolds. The h- and v- covariant derivatives of a Finsler tensor field are denoted by " | " and ", " respectively.

2. Preliminaries

Let M be a n-dimensional C^{∞} manifold. Denote by $T_x M$ the tangent space at $x \in M$, by $TM = \bigcup_{x \in M} T_x M$ the tangent bundle of M and by $TM_0 = TM \setminus \{0\}$ the slit tangent bundle. A Finsler metric on M is a function $F : TM \to [0, \infty)$ which has the following properties:

- (i) F is C^{∞} on TM_0 ,
- (ii) F is positively 1-homogeneous on the fibers of TM,
- (iii) for each $y \in T_x M$, the following quadratic form g_y on $T_x M$ is positive definite,

$$g_y(u,v) := \frac{1}{2} \frac{\partial^2}{\partial s \partial t} \left[F^2(y + su + tv) \right]|_{s,t=0}, \quad u,v \in T_x M.$$

Let $x \in M$ and $F_x := F|_{T_xM}$. To measure the non-Euclidean feature of F_x , define $\mathbf{C}_y : T_xM \otimes T_xM \otimes T_xM \to \mathbb{R}$ by

$$\mathbf{C}_{y}(u, v, w) := \frac{1}{2} \frac{d}{dt} \left[g_{y+tw}(u, v) \right]|_{t=0}, \ u, v, w \in T_{x} M.$$

The family $\mathbf{C} := {\mathbf{C}_y}_{y \in TM_0}$ is called the Cartan torsion. It is well known that $\mathbf{C=0}$ if and only if F is Riemannian.

Given a Finsler manifold (M, F), then a global vector field **G** is induced by F on TM_0 , which in a standard coordinate (x^i, y^i) for TM_0 is given by

$$\mathbf{G} = y^i \frac{\partial}{\partial x^i} - 2G^i(x, y) \frac{\partial}{\partial y^i},$$

where $G^{i}(y)$ are local functions on TM given by

$$G^{i} := \frac{1}{4}g^{il} \left\{ \frac{\partial^{2}[F^{2}]}{\partial x^{k} \partial y^{l}} y^{k} - \frac{\partial [F^{2}]}{\partial x^{l}} \right\}, \quad y \in T_{x}M.$$

G is called the associated spray to (M, F). The projection of an integral curve of **G** is called a geodesic in M. In local coordinates, a curve c(t) is a geodesic if and only if its coordinates $(c^i(t))$ satisfy $\ddot{c}^i + 2G^i(\dot{c}) = 0$.

For a tangent vector $y \in T_x M_0$, define $\mathbf{B}_y : T_x M \otimes T_x M \otimes T_x M \to T_x M$ and $\mathbf{E}_y : T_x M \otimes T_x M \to \mathbb{R}$ by

$$\mathbf{B}_{y}(u,v,w) := B^{i}_{\ jkl}(y)u^{j}v^{k}w^{l}\frac{\partial}{\partial x^{i}}|_{x}, \quad \mathbf{E}_{y}(u,v) := E_{jk}(y)u^{j}v^{k},$$

A. TAYEBI AND E. PEYGHAN

where

$$B^{i}_{\ jkl}(y) := \frac{\partial^{3} G^{i}}{\partial y^{j} \partial y^{k} \partial y^{l}}(y), \quad E_{jk}(y) := \frac{1}{2} B^{m}_{\ jkm}(y),$$

 $u = u^i \frac{\partial}{\partial x^i}|_x$, $v = v^i \frac{\partial}{\partial x^i}|_x$ and $w = w^i \frac{\partial}{\partial x^i}|_x$. **B** and **E** are called the Berwald curvature and mean Berwald curvature, respectively. A Finsler metric is called a Berwald metric and mean Berwald metric if **B** = 0 or **E** = 0, respectively [12].

For a tangent vector $y \in T_x M_0$, define $\mathbf{\bar{E}}_y : T_x M \otimes T_x M \otimes T_x M \to \mathbb{R}$ by $\mathbf{\bar{E}}_y(u, v, w) := \bar{E}_{jkl}(y) u^i v^j w^k$, where

$$\bar{E}_{ijk} := E_{ij|k}.$$

From a Bianchi identity, we have

$$B^{i}_{jml|k} - B^{i}_{jkm|l} = R^{i}_{jkl.m}$$

where R^i_{jkl} is the Riemannian curvature of Berwald connection [13][17]. By putting i = m in the above relation, we get

$$\bar{E}_{jlk} - \bar{E}_{jkl} = 2R^m_{\ jkl,m}.$$

Then \bar{E}_{ijk} is not totally symmetric in all three of its indices. It is easy to see that if $\bar{\mathbf{E}}$ -curvature is vanishing, then \mathbf{E} -curvature is covariantly constant along all horizontal directions on the slit tangent bundle TM_0 .

The quantity $\mathbf{H}_y = H_{ij} dx^i \otimes dx^j$ is defined as the covariant derivative of \mathbf{E} along geodesics [1][10]. More precisely

$$H_{ij} := E_{ij|m} y^m = \bar{E}_{ijm} y^m.$$

Define $\mathbf{D}_y : T_x M \otimes T_x M \otimes T_x M \to T_x M$ by $\mathbf{D}_y(u, v, w) := D^i_{jkl}(y) u^i v^j w^k \frac{\partial}{\partial x^i}|_x$ where

$$D^{i}_{jkl} := B^{i}_{jkl} - \frac{2}{n+1} \{ E_{jk} \delta^{i}_{l} + E_{jl} \delta^{i}_{k} + E_{kl} \delta^{i}_{j} + E_{jk,l} y^{i} \}.$$

We call $\mathbf{D} := {\mathbf{D}_y}_{y \in TM_0}$ the Douglas curvature [8]. A Finsler metric with $\mathbf{D} = 0$ is called a Douglas metric [9]. It is remarkable that, the notion of Douglas metrics was proposed by Bácsó-Matsumoto as a generalization of Berwald metrics (see [4] and [5]).

Define $\mathbf{L}_y : T_x M \otimes T_x M \otimes T_x M \to \mathbb{R}$ by $\mathbf{L}_y(u, v, w) := L_{ijk}(y)u^i v^j w^k$ where $L_{ijk} := C_{ijk|s}y^s$. The family $\mathbf{L} := {\mathbf{L}_y}_{y \in TM_0}$ is called the Landsberg curvature [17]. *F* is called a Landsberg metric if $\mathbf{L=0}$. Every Berwald metric is a Landsberg metric.

Theorem 2.1. ([2][3]) For a Douglas metric F on a manifold M, if $\mathbf{L} = \mathbf{0}$, then $\mathbf{B} = \mathbf{0}$.

3. Proof of Theorem 1.1

To prove the Theorem 1.1, we need the following:

Lemma 3.1.

(3.1)
$$E_{jk,l|m}y^m = H_{jk,l} - E_{jkl}.$$

38

Proof. The following Ricci identity for E_{ij} is hold:

(3.2)
$$E_{ij,l|k} - E_{ij|k,l} = E_{pj}B^{p}_{\ ikl} + E_{ip}B^{p}_{\ jkl}$$

It follows from (3.2) that

(3.3)
$$E_{jk,l|m}y^m = E_{jk|m,l}y^m = [E_{jk|m}y^m]_{,l} - E_{jk|l}.$$

This yields the (3.1).

Proposition 3.1. Let (M, F) be a Douglas space. Suppose that F satisfies $\overline{\mathbf{E}} = 0$. Then for any geodesic c(t) and any parallel vector field U(t) along c, the following functions

(3.4)
$$\mathbf{C}(t) = \mathbf{C}_{\dot{c}}(U(t), U(t), U(t)),$$

satisfying in the following equation

$$\mathbf{C}(t) = \mathbf{L}(0)t + \mathbf{C}(0).$$

Proof.

(3.6)
$$D^{i}_{jkl} = B^{i}_{jkl} - \frac{2}{n+1} \{ E_{jk} \delta^{i}_{l} + E_{kl} \delta^{i}_{j} + E_{lj} \delta^{i}_{k} + E_{jk,l} y^{i} \}.$$

Then

$$(3.7) \quad D^{i}_{jkl|m}y^{m} = B^{i}_{jkl|m}y^{m} - \frac{2}{n+1}\{H_{jk}\delta^{i}_{l} + H_{kl}\delta^{i}_{j} + H_{lj}\delta^{i}_{k} + E_{jk,l|m}y^{m}y^{i}\}.$$

By Lemma 3.1, we get

(3.8)
$$B^{i}{}_{jkl|m}y^{m} = \frac{2}{n+1} \{ H_{jk}\delta^{i}{}_{l} + H_{kl}\delta^{i}{}_{j} + H_{lj}\delta^{i}{}_{k} + H_{jk,l}y^{i} - \bar{E}_{jkl}y^{i} \}.$$

From assumption, we have

$$B^i_{\ jkl|m}y^m = 0.$$

Contracting with y_i yields

$$(3.10) L_{jkl|m}y^m = 0.$$

Let

(3.11)
$$\mathbf{L}(t) = \mathbf{L}_{\dot{c}}(U(t), U(t), U(t))$$

From the definition of \mathbf{L}_y , we have

$$\mathbf{L}(t) = \mathbf{C}'(t).$$

By (3.10) we get

$$\mathbf{L}'(t) = 0$$

The equation (3.13) implies that

$$\mathbf{L}(t) = \mathbf{L}(0).$$

Then we get the equation (3.5).

Remark 3.1. Let (M, F) be a Finsler space and $c : [a, b] \to M$ be a geodesic. For a parallel vector field V(t) along c,

(3.15)
$$g_{\dot{c}}(V(t),V(t)) = constant.$$

Proof of Theorem 1.1: Take an arbitrary unit vector $y \in T_x M$ and an arbitrary vector $v \in T_x M$. Let c(t) be the geodesic with $\dot{c}(0) = y$ and V(t) the parallel vector field along c with V(0) = v. Define $\mathbf{C}(t)$ and $\mathbf{L}(t)$ as in (3.4) and (3.11), respectively. Then

$$\mathbf{C}(t) = t \ \mathbf{L}(0) + \mathbf{C}(0).$$

Suppose that \mathbf{C}_y is bounded, i.e., there is a constant $N < \infty$ such that

(3.17)
$$||\mathbf{C}||_{x} := \sup_{y \in T_{x}M_{0}} \sup_{v \in T_{x}M} \frac{\mathbf{C}_{y}(v, v, v)}{[g_{y}(v, v)]^{\frac{3}{2}}} \le N.$$

By (3.15), we know that

$$T := g_{\dot{c}}(V(t), V(t)) = constant.$$

is positive constant. Thus

$$|\mathbf{C}(t)| \le NT^{\frac{3}{2}} < \infty,$$

and $\mathbf{C}(t)$ is a bounded function on $[0, \infty)$. This implies

$$\mathbf{L}_{y}(v,v,v) = \mathbf{L}(0) = 0.$$

Therefore $\mathbf{L} = 0$ and by the Theorem 2.1, F is a Berwald metric.

Corollary 3.1. Let (M, F) be a compact Douglas manifold. Then $\mathbf{L} = 0$ if and only if $\mathbf{\bar{E}} = 0$.

Proof. If $\mathbf{D} = \mathbf{L} = 0$, then by Theorem 2.1 $\mathbf{B} = 0$ which implies that $\mathbf{\bar{E}} = 0$. Conversely let F be a compact Douglas metric with $\mathbf{\bar{E}} = 0$. By Theorem 1.1, $\mathbf{B} = 0$ and then $\mathbf{L} = 0$.

Corollary 3.2. Let (M, F) be a complete Finsler space with Randers metric $F = \alpha + \beta$ such that α is a Riemannian metric and β is a close 1-form on M. Suppose that F satisfies $\mathbf{\bar{E}} = 0$. Then F is a Berwald metric.

Proof. It is known that for a Randers metric $F = \alpha + \beta$ the Cartan tensor is bounded [12]. In fact

$$\|\mathbf{C}\| \le \frac{3}{\sqrt{2}}.$$

Bácsó-Matsumoto showed that the Randers metric $F = \alpha + \beta$ is a Douglas metric if and only if β is a closed form [4]. Then by Theorem 1.1, we obtain the corollary. \Box

Corollary 3.3. For any complete submanifold M in a Minkowski space (V, F), if the induced metric \overline{F} satisfies $\overline{\mathbf{E}} = 0$, then \overline{F} is a Berwald metric.

Proof. For a submanifold M in a Minkowski space (V, F), the Cartan tensor is bounded [12]. Then by Theorem 1.1, \overline{F} is a Berwald metric.

40

References

- Akbar-Zadeh, H., Initiation to Global Finslerian Geometry, North-Holland Mathematical Library, 2006.
- [2] Bácsó, S. Ilosvay, F. and Kis, B., Landsberg spaces with common geodesics, Publ. Math. Debrecen. 42(1993), 139-144.
- [3] Bácsó, S. and Matsumoto, M., Reduction theorems of certain Landsberg spaces to Berwald spaces, Publ. Math. Debrecen. 48(1996), 357-366.
- [4] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type, A generalization of notion of Berwald space, Publ. Math. Debrecen. 51(1997), 385-406.
- [5] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type II, Projectively flat spaces, Publ. Math. Debrecen. 53(1998), 423-438.
- [6] Bidabad, B. and Tayebi, A., A classification of some Finsler connections, Publ. Math. Debrecen. 71(2007), 253-260.
- [7] Chen, X. and Shen, Z., On Douglas metrics, Publ. Math. Debrecen. 66(2005), 503-512.
- [8] Douglas, J., The general geometry of path, Ann. Math. 29(1927-28), 143-168.
- [9] Najafi, B. Shen, Z. and Tayebi, A., On a projective class of Finsler metrics, Publ. Math. Debrecen. 70(2007), 211-219.
- [10] Najafi, B. Shen, Z. and Tayebi, A., Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata. 131(2008), 87-97.
- [11] Najafi, B. and Tayebi, A. Finsler Metrics of scalar flag curvature and projective invariants, Balkan Journal of Geometry and Its Applications, 15(2010), 90-99.
- [12] Shen, Z., Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
- [13] Shen, Z., Lectures on Finsler Geometry, World Scientific, Singapore, 2001.
- [14] Tayebi, A. Azizpour, E. and Esrafilian, E., On a family of connections in Finsler geometry, Publ. Math. Debrecen. 72(2008), 1-15.
- [15] Tayebi, A. and Najafi, B., Shen's processes on Finslerian connections, Bull. Iran. Math. Soc. 36(2010), no. 2, 57-73.
- [16] Tayebi, A. and Peyghan, E., Special Berwald Metrics, Symmetry, Integrability and Geometry: Methods and its Applications, 6(2010), 008.
- [17] Tayebi, A. and Peyghan, E., On Ricci tensors of Randers metrics, Journal of Geometry and Physics, 60(2010), 1665-1670.
- [18] Weyl, H., Zur Infinitesimal geometrie, Göttinger Nachrichten. (1921), 99-112.

FACULTY OF SCIENCE, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF QOM, QOM. IRAN *E-mail address*: akbar.tayebi@gmail.com

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, ARAK UNIVERSITY, ARAK 38156-8-8349, IRAN

E-mail address: epeyghan@gmail.com