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ON DOUGLAS SPACES WITH VANISHING E-CURVATURE

A. TAYEBI AND E. PEYGHAN

(Communicated by Vladimir BALAN)

ABSTRACT. In this paper, we prove that every compact Douglas space is a
Berwald space, when the mean Berwald curvature is covariantly constant along
all horizontal directions on the slit tangent bundle.

1. INTRODUCTION

There are two well-known projective invariants of Finsler metrics namely, Dou-
glas curvature [8] and Weyl curvature [18]. The Douglas curvature is a non-
Riemannian projective invariant constructed from the Berwald curvature. The
notion of Douglas curvature was proposed by Bdcsé and Matsumoto as a general-
ization of Berwald curvature [4][11].

On the other hand, there are several important non-Riemannian quantities such
as the Cartan torsion C, the Berwald curvature B, the mean Berwald curvature E
and the Landsberg curvature L, etc [16]. They all vanish for Riemannian metrics,
hence they are said to be non-Riemannian.

The study shows that the above mentioned non-Riemannian quantities are closely
related to the Douglas metrics, namely Bacsé-Matsumoto proved that every Dou-
glas metric with vanishing Landsberg curvature is a Berwald metric [3]. Is there
any other interesting non-Riemannian quantity with such property? In [12], Shen
find a new non-Riemannian quantity for Finsler metrics that is closely related to
the E-curvature and call it E-curvature. Recall that E is obtained from the mean
Berwald curvature by the covariant horizontal differentiation along geodesics.

In this paper, we prove that every compact Douglas space with vanishing E-
curvature is a Berwald space. More precisely, we prove the following.

Theorem 1.1. Let ﬁM, F) be a complete Douglas space with bounded Cartan tor-

sion. Suppose that E-curvature of F is vanishing. Then F' reduces to a Berwald
metric. In particular, every compact Douglas space with EE = 0 is a Berwald space.
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The completeness in Theorem 1.1, can not be dropped. Consider following
Finsler metric on the unit ball B™ C R™,

_ VWP = (ePlyP- <2y >+ <ay>
1= [ap? !

F(y): yeTT,B" =R"

where |.| and <, > denote the Euclidean norm and inner product in R™, respectively.
F' is called the Funk metric which is a Randers metric on B". One can show that
F' is positively complete on B™ [7]. Funk metric is a Douglas metric and satisfies

E = 0 while B # 0.

There are many connections in Finsler geometry [6][14][15]. Throughout this
paper, we use the Berwald connection on Finsler manifolds. The h- and v- covariant
derivatives of a Finsler tensor field are denoted by “ | ” and ¢, ” respectively.

2. PRELIMINARIES

Let M be a n-dimensional C*° manifold. Denote by T,,M the tangent space at
x € M, by TM = UzenT, M the tangent bundle of M and by TMy, = TM \ {0}
the slit tangent bundle. A Finsler metric on M is a function F' : TM — [0,00)
which has the following properties:
(i) F is C* on T Mo,
(ii) F is positively 1-homogeneous on the fibers of T M,
(iii) for each y € T, M, the following quadratic form g, on T, M is positive definite,

1 02

gy(u,v) == 2 Be0t [F2(y + su+tv)] |s4=0, u,v € T,M.

Let x € M and F, := F|r, . To measure the non-Euclidean feature of F,, define
C,:T,Me@T,M®T,M— R by

d
Sat [9y+tw(uav)] lt=0, w,v,w € T, M.
The family C := {Cy},ernm, is called the Cartan torsion. It is well known that
C=0 if and only if F' is Riemannian.

Given a Finsler manifold (M, F)), then a global vector field G is induced by F
on T My, which in a standard coordinate (z¢,y?) for T M, is given by
_ i 9
Y o
where G'(y) are local functions on TM given by
; 1,1 0%[F? o[F?]
G'i= 29" LoS ) yerm
19 \orkay? T o S VS
G is called the associated spray to (M, F'). The projection of an integral curve of
G is called a geodesic in M. In local coordinates, a curve c¢(t) is a geodesic if and
only if its coordinates (c!(t)) satisfy ¢ + 2G%(¢) =0

Cy(u,v,w) :=

G () 2

G .
oyt’

For a tangent vector y € T, My, define By : T, M ® T, M ® T, M — T, M and
E,: T,M®T,M — R by

kla

B, (1,0, w) i= By (yw/vw! 2|, B, (u,v) = Bj(yhulo”,
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where 4
) o°G* 1
szkl(y) = W@)’ Ej’c(?/) = §B?km<y)7
u = u1£ 5 U = via‘; . and w = wl£ .. B and E are called the Berwald

curvature and mean Berwald curvature, respectively. A Finsler metric is called a
Berwald metric and mean Berwald metric if B = 0 or E = 0, respectively [12].

_ For a tangent vector y € T, My, define E, : T,M ® T,M @ T,M — R by
E,(u,v,w) := jkl(y)uivjwk, where

Eiji := Eijjk-
From a Bianchi identity, we have
i i _ pi
B jmllk B jkm|l — R Jkl.m>

where R’ is the Riemannian curvature of Berwald connection [13][17]. By putting
i = m in the above relation, we get

Ejlk — Ejkl = 2R"j%kl,m'
Then E;j;, is not totally symmetric in all three of its indices. It is easy to see
that if E-curvature is vanishing, then E-curvature is covariantly constant along all

horizontal directions on the slit tangent bundle T' M.

The quantity H, = Hijdxi ®dz’ is defined as the covariant derivative of E along
geodesics [1][10]. More precisely

o m __ m
Hij == Eijimy™ = Eijmy™.

Define Dy, : T,M @ T,M @ T,M — T, M by Dy(u,v,w) = Dijkl(y>uivjwk agi z
where

. . 2 . . . .
Dljkl = szkl — m{E]kéf + Ejl(;;;; + Ekl5; + Ejk,lyl}.

We call D := {D, }yernm, the Douglas curvature [8]. A Finsler metric with D = 0
is called a Douglas metric [9]. It is remarkable that, the notion of Douglas metrics

was proposed by Bdcsd-Matsumoto as a generalization of Berwald metrics (see [4]
and [5]).

Define L, : T.M ® T,M ® T,M — R by L,(u,v,w) := Ly (y)uiviw® where
Liji, == Cijrsy®. The family L := {L,},ern, is called the Landsberg curvature
[17]. F is called a Landsberg metric if L=0. Every Berwald metric is a Landsberg
metric.

Theorem 2.1. ([2][3]) For a Douglas metric F' on a manifold M, if L = 0, then
B=o0.
3. PROOF OF THEOREM 1.1
To prove the Theorem 1.1, we need the following;:

Lemma 3.1.

(31) Ejk,l|mym = Hjkl — Ejkl'
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Proof. The following Ricci identity for F;; is hold:

(3.2) Eijuk — Eijika = Ep By + Eip By,

It follows from (3.2) that

(3.3) Ejeiim¥™ = Ejkima¥™ = [Ejemy™ 1 — Ejii-

This yields the (3.1). O

Proposition 3.1. Let (M, F) be a Douglas space. Suppose that F satisfies E = 0.
Then for any geodesic c(t) and any parallel vector field U(t) along c, the following
functions

(3.4) C(t) = Ce(U@), U(1),U(t)),

satisfying in the following equation

(3.5) C(t) = L(0)t + C(0).

Proof.

(3.6) D' =B — %H{Ejkail + Ewd’; + Ejjd'y, + Ejray'}.
Then

(B.7) D' jeyymy™ = B jrpm¥™ — m{HjM o+ Higd'y + Hijd"y + Ejgjmy™y' 3

By Lemma 3.1, we get

(3.8) B iimy™ = %H{ijyl + Hid'; + Hij6" + Hiky' — Ejy'}-
From assumption, we have

(3.9) B jpajmy™ = 0.

Contracting with y; yields

(3.10) Linmy™ = 0.

Let

(3.11) L(t) = L:(U),U(t),U(t)).

From the definition of L,, we have

(3.12) L(t) = C (t).

By (3.10) we get

(3.13) L'(t)=0.

The equation (3.13) implies that

(3.14) L(t) = L(0).

Then we get the equation (3.5). O

Remark 3.1. Let (M, F) be a Finsler space and ¢ : [a,b] = M be a geodesic. For a
parallel vector field V' (t) along c,

(3.15) 9:(V(t), V(t)) = constant.
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Proof of Theorem 1.1: Take an arbitrary unit vector y € T, M and an arbitrary
vector v € T, M. Let ¢(t) be the geodesic with ¢(0) = y and V(¢) the parallel
vector field along ¢ with V(0) = v. Define C(¢) and L(¢) as in (3.4) and (3.11),
respectively. Then

(3.16) C(t) =t L(0) + C(0).

Suppose that C, is bounded, i.e., there is a constant N < oo such that
C

(3.17) l|IC||z := sup sup M <N

yET, Mo veT: M [gy(v,v)]2

By (3.15), we know that
T := g:(V(t),V(t)) = constant.

is positive constant. Thus
(3.18) IC(t)| < NT? < oo,
and C(t) is a bounded function on [0, 00). This implies
(3.19) L,(v,v,v) = L(0) = 0.
Therefore L = 0 and by the Theorem 2.1, F' is a Berwald metric. O

Corollary 3.1. Let (M, F) be a compact Douglas manifold. Then L = 0 if and
only if E=0.

Proof. It D = L = 0, then by Theorem 2.1 B = 0 which implies that E =0.
Conversely let F' be a compact Douglas metric with E = 0. By Theorem 1.1,
B =0 and then L = 0. O

Corollary 3.2. Let (M, F) be a complete Finsler space with Randers metric F =
a+ [ such that a is a Riemannian metric and 8 is a close 1-form on M. Suppose
that F' satisfies E = 0. Then F is a Berwald metric.

Proof. Tt is known that for a Randers metric ' = a + § the Cartan tensor is
bounded [12]. In fact

3

7
Béacsé-Matsumoto showed that the Randers metric F' = a4+ is a Douglas metric if
and only if 8 is a closed form [4]. Then by Theorem 1.1, we obtain the corollary. O

ICll <

Corollary 3.3. For any complete submanifold M in a Minkowski space (V,F), if

the induced metric F satisfies E = 0, then F is a Berwald metric.

Proof. For a submanifold M in a Minkowski space (V,F), the Cartan tensor is
bounded [12]. Then by Theorem 1.1, F is a Berwald metric. O
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