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CH-TRANSFORMATIONS ON THE TANGENT BUNDLE OF A
RIEMANNIAN MANIFOLD

ASEN HRISTOV
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ABSTRACT. In this paper we study a conformal-holomorphic change of the
complete lift of a Riemannian metric, and we prove a necessary and sufficient
condition for the existence of such a metric. We show that the complete lift of
the curvature tensor on the base in the tangent bundle is CH-invariant under
a conformal-holomorphic change.

We suppose that M is a Riemannian (pseudo-Riemannian) manifold with a met-
ric g, and that T'M is its tangent bundle with a metric g¢, which is the complete
lift of g. An integrable nilpotent tensor field f of type (1,1) arises on TM. If
(xl,22,...,2") are local coordinates in U C M and (x',22,... 2" y',v%, ..., y")
are the corresponding ones on 7'M, the matrix of f is

(32)

where FE is the unit matrix of order n.
The vertical lift ¢g¥ and ¢° are connected by f in the following way

g"(z,y) = g°(fr,y) = g°(, fy)
(1)
Jop = 9osla = 9o i
where

0 o
(gc)ik = thgilm (gc)n+i7k = Gik> (gc)7l+i7n+k = 0, 1) = 17 25 sy T

Definition 1. The functions u = u(z,y), v = v(zx, y) define an ordered holomorphic
pair (u,v) if
ou Jv Ou

dx Oy dy

Date: Received: Jun 14, 2011 and Accepted: October 14, 2011.

2000 Mathematics Subject Classification. 53B20, 53B21.

Key words and phrases. Conformal-holomorphic change, complete lift of a Riemannian metric,
tangent bundle, nilpotent structure.

78



CH-TRANSFORMATIONS ON THE TANGENT BUNDLE OF A RIEMANNIAN MANIFOLD 79

By this definition the ordered pairs (gg4,955), @, 8 =1,2,...,2n, are holomor-
phic with respect to the variables (2%, y?).
For any point p on T'M, the pair of tangent vectors

(v,9)p == (v, fv)p, D= fv
defines a holomorphic plane through the point p. The holomorphic plane is called
complete if the rank of the matrix defined by the coordinates of v and ¥ is complete
(equal to 2).

Two holomorphic planes define a pair of stationary angles between them. The
squares of the cosines of these angles are the eigenvalues of the matrix

W = (ATA)"1.(ATB).(BTB)"'.(BT A4) ,

T4 1 zz THh [ TY TY e

(see [1]). By the notation introduced above,

(W0
v w )

where

where ( ~)2
_ (=g
M= G e
o@D+ i)

(x2)%.(y9)?

The eigenvalues of W coincide and cos? § = Wi, where 6 is the stationary angle
between the holomorphic planes (z, %) and (y, ).

A two-dimensional plane from T'M defines a bivector. If U and V' are bivectors
determined by the holomorphic planes (u,a), and (v,?),, then according to the
theory developed by Grassman (see [2, p. 396], for example), the angle between U
and V is

(2) cos(U, V') := £ cos by cosby ,
where cos? 6, and cos? 6, are the eigenvalues of the matrix W.

Theorem 1. Two holomorphic planes, determined by vectors that are lifts of vector
fields from the base, are orthogonal if and only if these vector fields are orthogonal.
Proof. The equations that determine the orthogonality of the two planes are

go(usv9) =0, g°u ") =0.
Then

g¢(u’,v%) =0, g¢°u”,v")=0
are implied by (1) and the relations

fut=u", fu’=fv"=0.

Since
C v

9°(u,v%)p = [g(u, v)]; and g°(u®,v"), = [g(u, V)],
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(see [4]), the proof is complete. O

Corollary 1. The orthogonal vector fields

€1,€2,...,€n,

which determine a basis in each point on the base M, generate a system of mutually
orthogonal pairs

(63:7611))’ o (e’(l“l’ 6’11’)7,)7
with respect to which g¢ has a canonical form

9911 g11

c. OGnn Gnn
' g11

9nn

where 0g;, = yS%gik. The blank spaces denote zeros.

We suppose that ¢ is a function on the base M. The conformal change of the
metric g — og leads to a change of the metric on TM : g¢ — (og)°. As

(O_g)c — O_Cg’U +O_Ugc ,

the change of the metric on T'M is called a conformal-holomorphic change (CH-
change) [3]. It has not been investigated thoroughly so far and therefore it is the
main object of this paper.

Theorem 2. The conformal-holomorphic change of the metric g¢ preserves the
angle between two bivectors.

Proof. We assume that U and V are bivectors, initiated by (u,@) and (v,?), re-
spectively. If o is a function we have

(c9)°(u,v) =0,
(09)(u,0) = (09" + 0"g°)(u,0) = 0" (u,v).
Hence, from (2) we get

(09" (u, v)]?
a?g?(u,u)ovg? (v, v)

(3) cos(U,V) = =cos(U,V) .

Here cos(U, V) is calculated by means of (0g)°. O

We note that the last theorem remains valid for an arbitrary 7,v : ¢¢ — 7¢°+vg",
since in such a change ¢ is replaced by 7¢".

Theorem 3. If two metrics g° and §° preserve the angles between the bivectors,
then they are conformal-holomorphic.
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Proof. We suppose that u and v are two random vector fields from the base M,
and
U:= @ a), V.= @%0)
are the corresponding bivectors. These metrics preserve the angle between U and V.
Then from (3),
g(u,v) _ 9(u,v)

Gl w)g(v,0)]>  [g(u,u)g(v,v)]2

which shows conformal equivalence of g and g : g = og, and thus we have

)

gC:UCg’l}_’_O_UgC .
(]

The condition (1) for purity of the metric g¢ with respect to f plays an important
role for the differential-geometrical properties of TM. For example, the tensor field
f should be constant with respect to the connection generated by ¢°.

Theorem 4. The nilpotent structure f is covariant constant with respect to the
Riemann connection generated by g° if and only if the partial derivatives

0
%gﬂd(za = x13x27"'xn; y17y27.”,yn)

are pure with respect to f.

Proof. The proof is standard and we omit it. It is sufficient to use 820 5 =00

Therefore there exist many connections on 7'M and f is covariant constant with
respect to them.

Theorem 5. If o is a differentiable function on the base, then the pair
((09a5)", (09a5)°)
is holomorphic.

Proof. Tt is sufficient to consider the special case a = k, 8 = j. From

. ; 0o . ;0
o= yzaxi and (g )kj = yz@gkj

we find that
Jdo¢ Jo 0 0

9F = oo and 87;’(9 ki = o7 (9" )k

and therefore

a c 8 c, v v _C 8 v v 8
@ (Og)kj = 372,”(0 Jrj + O gkj) = %ngj +o @gk]’
0 9 .
= Oz (Ug)kj = %(Ug)kj
and 9
Tyi(gg)zj =0.

Theorem 6. The purity of the partial derivatives of g5 1s a sufficient condition
for the holomorphicity of the pairs (935, gas)-
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Proof. Suppose that G : (Gap) is a pure metric on TM, ie. Gopfy = Gaof§-
Then
Gn+i,k = Gi,nJrk 5 Gn+i,n+k =0.
For the partial derivatives 0,Gqog we also assume purity with respect to f:
0

A _ rv _
fo-a)\Gaﬁ = faaanﬁa a)\Gaﬁ = Yo

Gaﬁ ;

a,B,... =1,2,...,2n,

where z" is one of the variables

L1, L2y +5Tns Y1,Y25-- -5 Yn -

The above condition is equivalent to

[ 00 41Gap = fTP05Crip -
Taking into consideration that
n+l _ 5l
k= %
for
(c=s, a=1i, 8=k) and (c =n+s, a=1i, f=k),
we have

0 0 0
@Gik = @Gnﬂ',k, 0= TyanJri,k .

Solutions to this system are the components of the metrics g¢ and ¢g¥. Indeed,

0 0 0 0

oy 9k = %gﬁm 0= ) Intik = aTJsgik

and

o , d )
g == 0=0, 0=—=—gliy-
oy* Jia = Py ’ Oy* Intisk

Theorem 7. A necessary and sufficient condition the metric

Gap = Nap + 19as

to have pure partial derivatives with respect to f is holomorphicity of the pair func-
tions (A, ).

Proof. With respect to the local coordinates z* = 2%, 2%/ = g/, the condition for
purity of the partial derivatives

0 o __ 0 0
§ar oty = o Gonta

is

N o Oy e 9958 99as\ ;o
(azggaﬁ + MQQB) fl/ + <>\ 92° +/J‘ 927 fy

O\ c a:u v 0 0 c 0 v 6
<6z”g% + 621’905> Jot (Awgeﬁ + Mazygeg> e

From (1) and the holomorphicity of (g4, g55), the above equation is equivalent to
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oA o oA,
(4) (azn+sgaﬁ + 9z n+sga6> f = azl,gaﬁ =0.

First, assume that Q%Gaﬁ are pure. For (v =14, 8 =n+k, a = h) we have

O
ngcl,n+k? =0 < @an =0,

from where we get

oN
oyt
For (v =14, f =k, a = h) the last equation implies
ox . 0 o O
Hon+i? 8 a5 9kh T anti Ik = F9kh
that is
oN  Op
ozt Oyt

Now, suppose that the pair (A, x) is holomorphic. The part of the system (4)
which is not zero is obtained for v = i, i.e. (4) is equivalent to

oA . (Ox au\ ,
ayigaﬂ_ ot y’ 9aps

As the pair (), p) is holomorphic, the above result holds. Therefore G, have pure
partial derivatives. (I

By using Theorem 4 we prove

Corollary 2. The structure f is covariant constant with respect to the Riemannian
connection generated by G = (Gap).

Corollary 3. The Kristoffel symbols generated by G are pure with respect to f.
The objects constructed by these symbols are pure, too.

Corollary 4. The pair (A = 1,u = 1) is holomorphic. In this case the metrics
g¢+ g¥ and g° generate the same connection of Levi-Chevita.

We should note that the metric g° 4 ¢g* is known in [4] as the metric I + IT.

The previous considerations raise the following question: why do we investigate
CH-changes but not conformal ones? Is there a function h such that the metric hg®
generates a connection preserving f7

Theorem 8. Suppose that h(z',...,2?") is an arbitrary differentiable function on
TM. Then f is covariant constant with respect to the Levi-Chevita connection
generated by hg® if and only if h = const.

Proof. First, assume that Vf = 0, where V is the connection under consideration.
By Theorem 4 we have

a)\(hgaﬁ)f(i\ = aa(hg)\ﬁfoé)'

Hence

dh
Any6P = hy 158 hy=— ).
fo- )\a fou A 82/\
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This relation is valid for all values of the indices. In the special case 8 = n + 1,
a =k, f,?“ = 0}, the above equation is reduced to

FAhASIT = h,ot

which leads to h, = 0 for all o.
If h = const the statement is obvious. O

Theorem 9. The complete lift of the conformal curvature tensor of the base M of
TM is CH-invariant under the change

gC % O,Cgl/ + O_l/gC .
Proof. Since

09" +0"g° = (0g9)°,
we have a conformal change of the base metric. In this case the tensor of the
conformal curvature C is invariant. Thus C° does not depend on o. O

We denote by R, r = p(R) and 7 = 7(R) the Riemann curvature tensor on M,
Ricci’s tensor for R and the corresponding scalar curvature, respectively. Then

1
g/i"ya = gﬂ’ya + n—92 T(C)wg[ga + 7"279/030 + Tgagg'y + Tgagfm

v _c v o_c c v v o c
Tac98y — Tac980c — T"Bo9ac — T"py9ac

(6]

.

+ m(ggvgza—gzggzy)

+ L(gc Ioo T 95950 — 96090 — 9hoTary) -
(n—1)(n—2) ByJdao ByJdao Boday Boday

Regarding f, C¢ is pure with respect to all indices. Hence

c A
C(Z,B’yo’ = C;.\ﬁ'yafa

Byo

is also CH-invariant.
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