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Abstract. In this paper we study a conformal-holomorphic change of the
complete lift of a Riemannian metric, and we prove a necessary and sufficient
condition for the existence of such a metric. We show that the complete lift of
the curvature tensor on the base in the tangent bundle is CH-invariant under

a conformal-holomorphic change.

We suppose that M is a Riemannian (pseudo-Riemannian) manifold with a met-
ric g, and that TM is its tangent bundle with a metric gc, which is the complete
lift of g. An integrable nilpotent tensor field f of type (1, 1) arises on TM . If
(x1, x2, . . . , xn) are local coordinates in U ⊂ M and (x1, x2, . . . , xn; y1, y2, . . . , yn)
are the corresponding ones on TM , the matrix of f is

f :

(
0 0
E 0

)
,

where E is the unit matrix of order n.
The vertical lift gv and gc are connected by f in the following way

gv(x, y) = gc(fx, y) = gc(x, fy)

(1)

gvαβ = gcσβf
σ
α = gcασf

σ
β ,

where

(gc)ik = yh
∂

∂xh
gik, (gc)n+i,k = gik, (gc)n+i,n+k = 0; i, j = 1, 2, . . . , n .

Definition 1. The functions u = u(x, y), v = v(x, y) define an ordered holomorphic
pair (u, v) if

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= 0 .
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By this definition the ordered pairs (gvαβ , g
c
αβ), α, β = 1, 2, . . . , 2n, are holomor-

phic with respect to the variables (xi, yi).
For any point p on TM , the pair of tangent vectors

(v, ṽ)p := (v, fv)p, ṽ = fv

defines a holomorphic plane through the point p. The holomorphic plane is called
complete if the rank of the matrix defined by the coordinates of v and ṽ is complete
(equal to 2).

Two holomorphic planes define a pair of stationary angles between them. The
squares of the cosines of these angles are the eigenvalues of the matrix

W = (ATA)−1.(ATB).(BTB)−1.(BTA) ,

where

ATA =

(
1 xx̃
xx̃ 0

)
, ATB =

(
xy xỹ
x̃y 0

)
, xy := gc(x, y)

(see [1]). By the notation introduced above,

W =

(
W1 0
W2 W1

)
,

where

W1 =
(xỹ)2

(xx̃)2.(yỹ)2
,

W2 = − (xỹ)2(yỹ + xx̃)

(xx̃)2.(yỹ)2
.

The eigenvalues of W coincide and cos2 θ = W1, where θ is the stationary angle
between the holomorphic planes (x, x̃) and (y, ỹ).

A two-dimensional plane from TM defines a bivector. If U and V are bivectors
determined by the holomorphic planes (u, ũ)p and (v, ṽ)p, then according to the
theory developed by Grassman (see [2, p. 396], for example), the angle between U
and V is

(2) cos(U, V ) := ± cos θ1 cos θ2 ,

where cos2 θ1 and cos2 θ2 are the eigenvalues of the matrix W .

Theorem 1. Two holomorphic planes, determined by vectors that are lifts of vector
fields from the base, are orthogonal if and only if these vector fields are orthogonal.

Proof. The equations that determine the orthogonality of the two planes are

gc(uc, vc) = 0 , gc(uc, vv) = 0.

Then
gc(uv, vc) = 0 , gc(uv, vv) = 0

are implied by (1) and the relations

f uc = uv , f uv = f vv = 0 .

Since
gc(uc, vc)p = [g(u, v)]cp and gc(uc, vv)p = [g(u, v)]vp
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(see [4]), the proof is complete. �

Corollary 1. The orthogonal vector fields

e1, e2, . . . , en,

which determine a basis in each point on the base M , generate a system of mutually
orthogonal pairs

(ec1, e
v
1), . . . , (e

c
n, e

v
n),

with respect to which gc has a canonical form

gc :



∂g11
. . .

∂gnn

g11
. . .

gnn
g11

. . .

gnn


,

where ∂gik = ys ∂
∂xs gik. The blank spaces denote zeros.

We suppose that σ is a function on the base M . The conformal change of the
metric g → σg leads to a change of the metric on TM : gc → (σg)c. As

(σg)c = σcgv + σvgc ,

the change of the metric on TM is called a conformal-holomorphic change (CH-
change) [3]. It has not been investigated thoroughly so far and therefore it is the
main object of this paper.

Theorem 2. The conformal-holomorphic change of the metric gc preserves the
angle between two bivectors.

Proof. We assume that U and V are bivectors, initiated by (u, ũ) and (v, ṽ), re-
spectively. If σ is a function we have

(σg)c(u, v) = 0 ,

(σg)c(u, ṽ) = (σcgv + σvgc)(u, ṽ) = σvgv(u, v) .

Hence, from (2) we get

(3) cos(U, V ) =
[σvgv(u, v)]2

σvgv(u, u)σvgv(v, v)
= cos(U, V ) .

Here cos(U, V ) is calculated by means of (σg)c. �

We note that the last theorem remains valid for an arbitrary τ, ν : gc → τgc+νgv,
since in such a change gv is replaced by τgv.

Theorem 3. If two metrics gc and gc preserve the angles between the bivectors,
then they are conformal-holomorphic.
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Proof. We suppose that u and v are two random vector fields from the base M ,
and

U := (uc, ũ) , V := (vc, ṽ)

are the corresponding bivectors. These metrics preserve the angle between U and V .
Then from (3),

g(u, v)

[g(u, u)g(v, v)]
1
2

=
g(u, v)

[g(u, u)g(v, v)]
1
2

,

which shows conformal equivalence of g and g : g = σg, and thus we have

gc = σcgv + σvgc .

�
The condition (1) for purity of the metric gc with respect to f plays an important

role for the differential-geometrical properties of TM . For example, the tensor field
f should be constant with respect to the connection generated by gc.

Theorem 4. The nilpotent structure f is covariant constant with respect to the
Riemann connection generated by gc if and only if the partial derivatives

∂

∂zα
gβσ(z

α = x1, x2, . . . xn; y1, y2, . . . , yn)

are pure with respect to f .

Proof. The proof is standard and we omit it. It is sufficient to use ∂
∂zσ f

α
β = 0. �

Therefore there exist many connections on TM and f is covariant constant with
respect to them.

Theorem 5. If σ is a differentiable function on the base, then the pair

((σgαβ)
v, (σgαβ)

c)

is holomorphic.

Proof. It is sufficient to consider the special case α = k, β = j. From

σc = yi
∂σ

∂xi
and (gc)kj = yi

∂

∂xi
gkj

we find that
∂σc

∂yk
=

∂σ

∂xk
and

∂

∂yi
(gc)kj =

∂

∂xi
(gv)kj ,

and therefore
∂

∂yi
(σg)

c
kj =

∂

∂yi
(σcgvkj + σvgckj) =

∂

∂xi
σgvkj + σv ∂

∂xi
gkj

=
∂

∂xi
(σg)kj =

∂

∂xi
(σg)vkj

and
∂

∂yi
(σg)vkj = 0 .

�

Theorem 6. The purity of the partial derivatives of gcαβ is a sufficient condition

for the holomorphicity of the pairs (gvαβ , g
c
αβ).
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Proof. Suppose that G : (Gαβ) is a pure metric on TM , i.e. Gσβf
σ
α = Gασf

σ
β .

Then

Gn+i,k = Gi,n+k , Gn+i,n+k = 0 .

For the partial derivatives ∂σGαβ we also assume purity with respect to f :

fλ
σ ∂λGαβ = fν

α∂σGνβ , ∂λGαβ =
∂

∂zλ
Gαβ ,

α, β, . . . = 1, 2, . . . , 2n ,

where zν is one of the variables

x1, x2, . . . , xn; y1, y2, . . . , yn .

The above condition is equivalent to

fn+k
σ ∂n+kGαβ = fn+p

α ∂σGn+p,β .

Taking into consideration that

fn+l
k = δlk

for

(σ = s, α = i, β = k) and (σ = n+ s, α = i, β = k) ,

we have
∂

∂yσ
Gik =

∂

∂xσ
Gn+i,k , 0 =

∂

∂ys
Gn+i,k .

Solutions to this system are the components of the metrics gc and gv. Indeed,

∂

∂ys
gci,k =

∂

∂xs
gvi,k , 0 =

∂

∂ys
gcn+i,k =

∂

∂ys
gik

and
∂

∂ys
gviα =

∂

∂xs
0 = 0 , 0 =

∂

∂ys
gvn+i,k .

�

Theorem 7. A necessary and sufficient condition the metric

Gαβ = λgcαβ + µgvαβ

to have pure partial derivatives with respect to f is holomorphicity of the pair func-
tions (λ, µ).

Proof. With respect to the local coordinates zi = xi, zn+j = yj , the condition for
purity of the partial derivatives

∂

∂zσ
Gαβf

σ
ν =

∂

∂zν
Gθβf

θ
α

is(
∂λ

∂zσ
gcαβ +

∂µ

∂zσ
gvαβ

)
fσ
ν +

(
λ
∂gcαβ
∂zσ

+ µ
∂gvαβ
∂zσ

)
fσ
ν

=

(
∂λ

∂zν
gcθβ +

∂µ

∂zν
gvθβ

)
fθ
α +

(
λ

∂

∂zν
gcθβ + µ

∂

∂zν
gvθβ

)
fθ
α.

From (1) and the holomorphicity of (gvαβ , g
c
αβ), the above equation is equivalent to
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(4)

(
∂λ

∂zn+s
gcαβ +

∂µ

∂zn+s
gvαβ

)
fn+s
ν =

∂λ

∂zν
gvαβ = 0.

First, assume that ∂
∂zσ Gαβ are pure. For (ν = i, β = n+ k, α = h) we have

∂λ

∂zn+i
gch,n+k = 0 ⇔ ∂λ

∂yi
gnk = 0 ,

from where we get
∂λ

∂yi
= 0 .

For (ν = i, β = k, α = h) the last equation implies

∂λ

∂zn+i
ys

∂

∂xs
gkh +

∂µ

∂zn+i
gkh =

∂λ

∂zi
gkh ,

that is
∂λ

∂xi
=

∂µ

∂yi
.

Now, suppose that the pair (λ, µ) is holomorphic. The part of the system (4)
which is not zero is obtained for ν = i, i.e. (4) is equivalent to

∂λ

∂yi
gcαβ =

(
∂λ

∂xi
− ∂µ

∂yi

)
gvαβ .

As the pair (λ, µ) is holomorphic, the above result holds. Therefore Gαβ have pure
partial derivatives. �

By using Theorem 4 we prove

Corollary 2. The structure f is covariant constant with respect to the Riemannian
connection generated by G = (Gαβ).

Corollary 3. The Kristoffel symbols generated by G are pure with respect to f .
The objects constructed by these symbols are pure, too.

Corollary 4. The pair (λ = 1, µ = 1) is holomorphic. In this case the metrics
gc + gv and gc generate the same connection of Levi-Chevita.

We should note that the metric gc + gv is known in [4] as the metric I + II.
The previous considerations raise the following question: why do we investigate

CH-changes but not conformal ones? Is there a function h such that the metric hgc

generates a connection preserving f?

Theorem 8. Suppose that h(z1, . . . , z2n) is an arbitrary differentiable function on
TM . Then f is covariant constant with respect to the Levi-Chevita connection
generated by hgc if and only if h = const.

Proof. First, assume that ∇f = 0, where ∇ is the connection under consideration.
By Theorem 4 we have

∂λ(hgαβ)f
λ
σ = ∂σ(hgλβf

λ
α).

Hence

fλ
σhλδ

β
α = hσf

β
α ,

(
hλ =

∂h

∂zλ

)
.
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This relation is valid for all values of the indices. In the special case β = n + i,
α = k, fn+i

k = δik the above equation is reduced to

fλ
σhλδ

n+i
k = hσδ

i
k ,

which leads to hσ = 0 for all σ.
If h = const the statement is obvious. �

Theorem 9. The complete lift of the conformal curvature tensor of the base M of
TM is CH-invariant under the change

gc → σcgν + σνgc .

Proof. Since
σcgv + σvgc = (σg)c ,

we have a conformal change of the base metric. In this case the tensor of the
conformal curvature C is invariant. Thus Cc does not depend on σ. �

We denote by R, r = ρ(R) and τ = τ(R) the Riemann curvature tensor on M ,
Ricci’s tensor for R and the corresponding scalar curvature, respectively. Then

Cc
αβγσ = Rc

αβγσ +
1

n− 2

[
rcαγg

v
βσ + rvαγg

c
βσ + rcβσg

v
αγ + rvβσg

c
αγ

− rvασg
c
βγ − rvασg

c
βσ − rcβσg

v
ασ − rvβγg

c
ασ

]
+

τ c

(n− 1)(n− 2)
(gvβγg

v
ασ − gvβσg

v
αγ)

+
τv

(n− 1)(n− 2)
(gcβγg

v
ασ + gvβγg

c
ασ − gcβσg

v
αγ − gvβσg

c
αγ) .

Regarding f , Cc
αβγσ is pure with respect to all indices. Hence

Cv
αβγσ = Cc

λβγσf
λ
α

is also CH-invariant.
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