INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY VOLUME 5 NO.1 PP. 78- 84 (2012) ©IEJG

CH-TRANSFORMATIONS ON THE TANGENT BUNDLE OF A RIEMANNIAN MANIFOLD

ASEN HRISTOV

(Communicated by Arif SALIMOV)

ABSTRACT. In this paper we study a conformal-holomorphic change of the complete lift of a Riemannian metric, and we prove a necessary and sufficient condition for the existence of such a metric. We show that the complete lift of the curvature tensor on the base in the tangent bundle is CH-invariant under a conformal-holomorphic change.

We suppose that M is a Riemannian (pseudo-Riemannian) manifold with a metric g, and that TM is its tangent bundle with a metric g^c , which is the complete lift of g. An integrable nilpotent tensor field f of type (1,1) arises on TM. If (x^1, x^2, \ldots, x^n) are local coordinates in $U \subset M$ and $(x^1, x^2, \ldots, x^n; y^1, y^2, \ldots, y^n)$ are the corresponding ones on TM, the matrix of f is

$$f: \left(\begin{array}{c|c} 0 & 0 \\ \hline E & 0 \end{array}\right),$$

where E is the unit matrix of order n.

The vertical lift g^v and g^c are connected by f in the following way

$$g^{v}(x,y) = g^{c}(fx,y) = g^{c}(x,fy)$$

(1)

$$g^{v}_{\alpha\beta} = g^{c}_{\sigma\beta} f^{\sigma}_{\alpha} = g^{c}_{\alpha\sigma} f^{\sigma}_{\beta},$$

where

$$(g^c)_{ik} = y^h \frac{\partial}{\partial x^h} g_{ik}, \ (g^c)_{n+i,k} = g_{ik}, \ (g^c)_{n+i,n+k} = 0; \ i, j = 1, 2, \dots, n$$

Definition 1. The functions u = u(x, y), v = v(x, y) define an ordered holomorphic pair (u, v) if

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = 0.$$

Date: Received: Jun 14, 2011 and Accepted: October 14, 2011.

²⁰⁰⁰ Mathematics Subject Classification. 53B20, 53B21.

 $Key\ words\ and\ phrases.$ Conformal-holomorphic change, complete lift of a Riemannian metric, tangent bundle, nilpotent structure.

By this definition the ordered pairs $(g^{v}_{\alpha\beta}, g^{c}_{\alpha\beta}), \alpha, \beta = 1, 2, ..., 2n$, are holomorphic with respect to the variables (x^{i}, y^{i}) .

For any point p on TM, the pair of tangent vectors

$$(v, \tilde{v})_p := (v, fv)_p, \ \tilde{v} = fv$$

defines a holomorphic plane through the point p. The holomorphic plane is called complete if the rank of the matrix defined by the coordinates of v and \tilde{v} is complete (equal to 2).

Two holomorphic planes define a pair of stationary angles between them. The squares of the cosines of these angles are the eigenvalues of the matrix

$$W = (A^T A)^{-1} . (A^T B) . (B^T B)^{-1} . (B^T A) ,$$

where

$$A^{T}A = \begin{pmatrix} 1 & x\tilde{x} \\ x\tilde{x} & 0 \end{pmatrix}, \ A^{T}B = \begin{pmatrix} xy & x\tilde{y} \\ \tilde{x}y & 0 \end{pmatrix}, \ xy := g^{c}(x,y)$$

(see [1]). By the notation introduced above,

$$W = \left(\begin{array}{cc} W_1 & 0\\ W_2 & W_1 \end{array}\right) \,,$$

where

$$W_1 = \frac{(x\tilde{y})^2}{(x\tilde{x})^2 \cdot (y\tilde{y})^2} ,$$
$$W_2 = -\frac{(x\tilde{y})^2 (y\tilde{y} + x\tilde{x})}{(x\tilde{x})^2 \cdot (y\tilde{y})^2} .$$

The eigenvalues of W coincide and $\cos^2 \theta = W_1$, where θ is the stationary angle between the holomorphic planes (x, \tilde{x}) and (y, \tilde{y}) .

A two-dimensional plane from TM defines a bivector. If U and V are bivectors determined by the holomorphic planes $(u, \tilde{u})_p$ and $(v, \tilde{v})_p$, then according to the theory developed by Grassman (see [2, p. 396], for example), the angle between Uand V is

(2)
$$\cos(U,V) := \pm \cos\theta_1 \cos\theta_2$$

where $\cos^2 \theta_1$ and $\cos^2 \theta_2$ are the eigenvalues of the matrix W.

Theorem 1. Two holomorphic planes, determined by vectors that are lifts of vector fields from the base, are orthogonal if and only if these vector fields are orthogonal.

Proof. The equations that determine the orthogonality of the two planes are

$$g^{c}(u^{c}, v^{c}) = 0, \quad g^{c}(u^{c}, v^{v}) = 0.$$

Then

$$g^{c}(u^{v}, v^{c}) = 0, \quad g^{c}(u^{v}, v^{v}) = 0$$

are implied by (1) and the relations

$$f u^c = u^v, \quad f u^v = f v^v = 0$$

Since

$$g^{c}(u^{c}, v^{c})_{p} = [g(u, v)]_{p}^{c}$$
 and $g^{c}(u^{c}, v^{v})_{p} = [g(u, v)]_{p}^{v}$

(see [4]), the proof is complete.

Corollary 1. The orthogonal vector fields

$$e_1, e_2, \ldots, e_n$$

which determine a basis in each point on the base M, generate a system of mutually orthogonal pairs

$$(e_1^c, e_1^v), \dots, (e_n^c, e_n^v)$$

with respect to which g^c has a canonical form

where $\partial g_{ik} = y^s \frac{\partial}{\partial x^s} g_{ik}$. The blank spaces denote zeros.

We suppose that σ is a function on the base M. The conformal change of the metric $g \to \sigma g$ leads to a change of the metric on $TM : g^c \to (\sigma g)^c$. As

$$(\sigma g)^c = \sigma^c g^v + \sigma^v g^c$$

the change of the metric on TM is called a conformal-holomorphic change (CHchange) [3]. It has not been investigated thoroughly so far and therefore it is the main object of this paper.

Theorem 2. The conformal-holomorphic change of the metric g^c preserves the angle between two bivectors.

Proof. We assume that U and V are bivectors, initiated by (u, \tilde{u}) and (v, \tilde{v}) , respectively. If σ is a function we have

$$(\sigma g)^c(u,v) = 0 \ ,$$

$$(\sigma g)^c(u,\tilde{v}) = (\sigma^c g^v + \sigma^v g^c)(u,\tilde{v}) = \sigma^v g^v(u,v) \, .$$

Hence, from (2) we get

(3)
$$\overline{\cos(U,V)} = \frac{[\sigma^v g^v(u,v)]^2}{\sigma^v g^v(u,u)\sigma^v g^v(v,v)} = \cos(U,V) \ .$$

Here $\overline{\cos(U, V)}$ is calculated by means of $(\sigma g)^c$.

We note that the last theorem remains valid for an arbitrary $\tau, \nu : g^c \to \tau g^c + \nu g^v$, since in such a change g^v is replaced by τg^v .

Theorem 3. If two metrics g^c and \overline{g}^c preserve the angles between the bivectors, then they are conformal-holomorphic.

80

Proof. We suppose that u and v are two random vector fields from the base M, and

$$U := (u^c, \tilde{u}), \ V := (v^c, \tilde{v})$$

are the corresponding bivectors. These metrics preserve the angle between U and V. Then from (3),

$$\frac{\overline{g}(u,v)}{[\overline{g}(u,u)\overline{g}(v,v)]^{\frac{1}{2}}} = \frac{g(u,v)}{[g(u,u)g(v,v)]^{\frac{1}{2}}} ,$$

which shows conformal equivalence of g and $\overline{g}: \overline{g} = \sigma g$, and thus we have

$$\overline{g}^c = \sigma^c g^v + \sigma^v g^c \ .$$

The condition (1) for purity of the metric g^c with respect to f plays an important role for the differential-geometrical properties of TM. For example, the tensor field f should be constant with respect to the connection generated by g^c .

Theorem 4. The nilpotent structure f is covariant constant with respect to the Riemann connection generated by g^c if and only if the partial derivatives

$$\frac{\partial}{\partial z^{\alpha}}g_{\beta\sigma}(z^{\alpha}=x^{1},x^{2},\ldots x^{n};\ y^{1},y^{2},\ldots,y^{n})$$

are pure with respect to f.

Proof. The proof is standard and we omit it. It is sufficient to use $\frac{\partial}{\partial z^{\sigma}} f^{\alpha}_{\beta} = 0$. \Box

Therefore there exist many connections on TM and f is covariant constant with respect to them.

Theorem 5. If σ is a differentiable function on the base, then the pair

$$((\sigma g_{\alpha\beta})^v, (\sigma g_{\alpha\beta})^c)$$

is holomorphic.

Proof. It is sufficient to consider the special case $\alpha = k, \beta = j$. From

$$\sigma^c = y^i \frac{\partial \sigma}{\partial x^i}$$
 and $(g^c)_{kj} = y^i \frac{\partial}{\partial x^i} g_{kj}$

we find that

$$\frac{\partial \sigma^c}{\partial y^k} = \frac{\partial \sigma}{\partial x^k}$$
 and $\frac{\partial}{\partial y^i} (g^c)_{kj} = \frac{\partial}{\partial x^i} (g^v)_{kj}$

and therefore

and

$$\frac{\partial}{\partial y^{i}} (\sigma g)_{kj}^{c} = \frac{\partial}{\partial y^{i}} (\sigma^{c} g_{kj}^{v} + \sigma^{v} g_{kj}^{c}) = \frac{\partial}{\partial x^{i}} \sigma g_{kj}^{v} + \sigma^{v} \frac{\partial}{\partial x^{i}} g_{kj}$$
$$= \frac{\partial}{\partial x^{i}} (\sigma g)_{kj} = \frac{\partial}{\partial x^{i}} (\sigma g)_{kj}^{v}$$
$$\frac{\partial}{\partial y^{i}} (\sigma g)_{kj}^{v} = 0.$$

Theorem 6. The purity of the partial derivatives of $g_{\alpha\beta}^c$ is a sufficient condition for the holomorphicity of the pairs $(g_{\alpha\beta}^v, g_{\alpha\beta}^c)$.

Proof. Suppose that $G: (G_{\alpha\beta})$ is a pure metric on TM, i.e. $G_{\sigma\beta}f^{\sigma}_{\alpha} = G_{\alpha\sigma}f^{\sigma}_{\beta}$. Then

$$G_{n+i,k} = G_{i,n+k}, \quad G_{n+i,n+k} = 0$$

For the partial derivatives $\partial_{\sigma}G_{\alpha\beta}$ we also assume purity with respect to f:

$$f^{\lambda}_{\sigma}\partial_{\lambda}G_{\alpha\beta} = f^{\nu}_{\alpha}\partial_{\sigma}G_{\nu\beta}, \quad \partial_{\lambda}G_{\alpha\beta} = \frac{\partial}{\partial z^{\lambda}}G_{\alpha\beta},$$
$$\alpha, \beta, \dots = 1, 2, \dots, 2n,$$

where z^{ν} is one of the variables

$$x_1, x_2, \ldots, x_n; y_1, y_2, \ldots, y_n$$

The above condition is equivalent to

$$f_{\sigma}^{n+k}\partial_{n+k}G_{\alpha\beta} = f_{\alpha}^{n+p}\partial_{\sigma}G_{n+p,\beta} \; .$$

Taking into consideration that

$$f_k^{n+l} = \delta_k^l$$

for

$$(\sigma = s, \ \alpha = i, \ \beta = k)$$
 and $(\sigma = n + s, \ \alpha = i, \ \beta = k),$

we have

$$\frac{\partial}{\partial y^{\sigma}}G_{ik} = \frac{\partial}{\partial x^{\sigma}}G_{n+i,k}, \quad 0 = \frac{\partial}{\partial y^s}G_{n+i,k}$$

Solutions to this system are the components of the metrics g^c and g^v . Indeed,

$$\begin{aligned} \frac{\partial}{\partial y^s} g_{i,k}^c &= \frac{\partial}{\partial x^s} g_{i,k}^v \,, \quad 0 = \frac{\partial}{\partial y^s} g_{n+i,k}^c = \frac{\partial}{\partial y^s} g_{ik} \\ \frac{\partial}{\partial y^s} g_{i\alpha}^v &= \frac{\partial}{\partial x^s} 0 = 0 \,, \quad 0 = \frac{\partial}{\partial y^s} g_{n+i,k}^v \,. \end{aligned}$$

and

Theorem 7. A necessary and sufficient condition the metric

$$G_{\alpha\beta} = \lambda g^c_{\alpha\beta} + \mu g^v_{\alpha\beta}$$

to have pure partial derivatives with respect to f is holomorphicity of the pair functions (λ, μ) .

Proof. With respect to the local coordinates $z^i = x^i, z^{n+j} = y^j$, the condition for purity of the partial derivatives

$$\frac{\partial}{\partial z^{\sigma}}G_{\alpha\beta}f_{\nu}^{\sigma} = \frac{\partial}{\partial z^{\nu}}G_{\theta\beta}f_{\alpha}^{\theta}$$

is

$$\begin{pmatrix} \frac{\partial \lambda}{\partial z^{\sigma}} g^{c}_{\alpha\beta} + \frac{\partial \mu}{\partial z^{\sigma}} g^{v}_{\alpha\beta} \end{pmatrix} f^{\sigma}_{\nu} + \left(\lambda \frac{\partial g^{c}_{\alpha\beta}}{\partial z^{\sigma}} + \mu \frac{\partial g^{v}_{\alpha\beta}}{\partial z^{\sigma}} \right) f^{\sigma}_{\nu}$$

$$= \left(\frac{\partial \lambda}{\partial z^{\nu}} g^{c}_{\theta\beta} + \frac{\partial \mu}{\partial z^{\nu}} g^{v}_{\theta\beta} \right) f^{\theta}_{\alpha} + \left(\lambda \frac{\partial}{\partial z^{\nu}} g^{c}_{\theta\beta} + \mu \frac{\partial}{\partial z^{\nu}} g^{v}_{\theta\beta} \right) f^{\theta}_{\alpha}$$

From (1) and the holomorphicity of $(g^v_{\alpha\beta}, g^c_{\alpha\beta})$, the above equation is equivalent to

82

(4)
$$\left(\frac{\partial\lambda}{\partial z^{n+s}}g^c_{\alpha\beta} + \frac{\partial\mu}{\partial z^{n+s}}g^v_{\alpha\beta}\right)f^{n+s}_{\nu} = \frac{\partial\lambda}{\partial z^{\nu}}g^v_{\alpha\beta} = 0$$

First, assume that $\frac{\partial}{\partial z^{\sigma}}G_{\alpha\beta}$ are pure. For $(\nu = i, \beta = n + k, \alpha = h)$ we have

$$\frac{\partial \lambda}{\partial z^{n+i}}g^c_{h,n+k} = 0 \iff \frac{\partial \lambda}{\partial y^i}g_{nk} = 0 ,$$

from where we get

$$\frac{\partial \lambda}{\partial y^i} = 0$$

For $(\nu = i, \beta = k, \alpha = h)$ the last equation implies

$$\frac{\partial \lambda}{\partial z^{n+i}} y^s \frac{\partial}{\partial x^s} g_{kh} + \frac{\partial \mu}{\partial z^{n+i}} g_{kh} = \frac{\partial \lambda}{\partial z^i} g_{kh} ,$$

that is

$$\frac{\partial \lambda}{\partial x^i} = \frac{\partial \mu}{\partial y^i}$$

Now, suppose that the pair (λ, μ) is holomorphic. The part of the system (4) which is not zero is obtained for $\nu = i$, i.e. (4) is equivalent to

$$\frac{\partial \lambda}{\partial y^i} g^c_{\alpha\beta} = \left(\frac{\partial \lambda}{\partial x^i} - \frac{\partial \mu}{\partial y^i}\right) g^v_{\alpha\beta}.$$

As the pair (λ, μ) is holomorphic, the above result holds. Therefore $G_{\alpha\beta}$ have pure partial derivatives.

By using Theorem 4 we prove

Corollary 2. The structure f is covariant constant with respect to the Riemannian connection generated by $G = (G_{\alpha\beta})$.

Corollary 3. The Kristoffel symbols generated by G are pure with respect to f. The objects constructed by these symbols are pure, too.

Corollary 4. The pair $(\lambda = 1, \mu = 1)$ is holomorphic. In this case the metrics $g^c + g^v$ and g^c generate the same connection of Levi-Chevita.

We should note that the metric $g^c + g^v$ is known in [4] as the metric I + II.

The previous considerations raise the following question: why do we investigate CH-changes but not conformal ones? Is there a function h such that the metric hg^c generates a connection preserving f?

Theorem 8. Suppose that $h(z^1, \ldots, z^{2n})$ is an arbitrary differentiable function on TM. Then f is covariant constant with respect to the Levi-Chevita connection generated by hg^c if and only if h = const.

Proof. First, assume that $\nabla f = 0$, where ∇ is the connection under consideration. By Theorem 4 we have

$$\partial_{\lambda}(hg_{\alpha\beta})f_{\sigma}^{\lambda} = \partial_{\sigma}(hg_{\lambda\beta}f_{\alpha}^{\lambda}).$$

Hence

$$f_{\sigma}^{\lambda}h_{\lambda}\delta_{\alpha}^{\beta} = h_{\sigma}f_{\alpha}^{\beta}, \quad \left(h_{\lambda} = \frac{\partial h}{\partial z^{\lambda}}\right).$$

This relation is valid for all values of the indices. In the special case $\beta = n + i$, $\alpha = k$, $f_k^{n+i} = \delta_k^i$ the above equation is reduced to

$$f^{\lambda}_{\sigma}h_{\lambda}\delta^{n+i}_{k} = h_{\sigma}\delta^{i}_{k},$$

which leads to $h_{\sigma} = 0$ for all σ .

If h = const the statement is obvious.

Theorem 9. The complete lift of the conformal curvature tensor of the base M of TM is CH-invariant under the change

$$g^c \rightarrow \sigma^c g^\nu + \sigma^\nu g^c$$
 .

Proof. Since

$$\sigma^c g^v + \sigma^v g^c = (\sigma g)^c \,,$$

we have a conformal change of the base metric. In this case the tensor of the conformal curvature C is invariant. Thus C^c does not depend on σ .

We denote by R, $r = \rho(R)$ and $\tau = \tau(R)$ the Riemann curvature tensor on M, Ricci's tensor for R and the corresponding scalar curvature, respectively. Then

$$\begin{split} C^{c}_{\alpha\beta\gamma\sigma} &= R^{c}_{\alpha\beta\gamma\sigma} + \frac{1}{n-2} \Big[r^{c}_{\alpha\gamma}g^{v}_{\beta\sigma} + r^{v}_{\alpha\gamma}g^{c}_{\beta\sigma} + r^{c}_{\beta\sigma}g^{v}_{\alpha\gamma} + r^{v}_{\beta\sigma}g^{c}_{\alpha\gamma} \\ &- r^{v}_{\alpha\sigma}g^{c}_{\beta\gamma} - r^{v}_{\alpha\sigma}g^{c}_{\beta\sigma} - r^{c}_{\beta\sigma}g^{v}_{\alpha\sigma} - r^{v}_{\beta\gamma}g^{c}_{\alpha\sigma} \Big] \\ &+ \frac{\tau^{c}}{(n-1)(n-2)} (g^{v}_{\beta\gamma}g^{v}_{\alpha\sigma} - g^{v}_{\beta\sigma}g^{v}_{\alpha\gamma}) \\ &+ \frac{\tau^{v}}{(n-1)(n-2)} (g^{c}_{\beta\gamma}g^{v}_{\alpha\sigma} + g^{v}_{\beta\gamma}g^{c}_{\alpha\sigma} - g^{c}_{\beta\sigma}g^{v}_{\alpha\gamma} - g^{v}_{\beta\sigma}g^{c}_{\alpha\gamma}) \; . \end{split}$$

Regarding $f, C^c_{\alpha\beta\gamma\sigma}$ is pure with respect to all indices. Hence

$$C^v_{\alpha\beta\gamma\sigma} = C^c_{\lambda\beta\gamma\sigma} f^\lambda_\alpha$$

is also CH-invariant.

References

- [1] Shirokov, P. A., Tensor Calculation, Kazan University Press, Kazan, 1961 (in Russian).
- [2] Rosenfield, B. A., High-Dimensional Spaces, Nauka, Moscow, 1966 (in Russian).
- [3] Pavlov, E. P., A Real Realization of Conformal Congruence of Riemannian Spaces Over a Clifford Algebra, Higher School Bulletin, Mathematics, 7(1978), 64-68 (in Russian).
- [4] Yano, K. and Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker Inc., New York, 1973.

FACULTY OF MATHEMATICS AND INFORMATICS, UNIVERSITY OF PLOVDIV, BULGARIA *E-mail address*: asehri@uni-plovdiv.bg

84